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Abstract 

Background: As the SARS-Cov-2/Covid-19 pandemic continues to ravage the world, it is 

important to understanding the characteristics of its spread and possible correlates for control to 

develop strategies of response.  

Methods: Here we show how a simple Susceptible-Infective-Recovered (SIR) model applied to 

data for eight European countries and the United Kingdom (UK) can be used to forecast the 

descending limb (post-peak) of confirmed cases and deaths as a function of time, and predict the 

duration of the pandemic once it has peaked, by estimating and fixing parameters using only 

characteristics of the ascending limb and the magnitude of the first peak.  

Results: The predicted and actual case fatality ratio, or number of deaths per million population 

from the start of the pandemic to when daily deaths number less than five for the first time, was 

lowest in Norway (predicted: 44 ± 5 deaths/million; actual: 36 deaths/million) and highest for 

the United Kingdom (predicted: 578 +/- 65 deaths/million; actual 621 deaths/million). The 

inferred pandemic characteristics separated into two distinct groups: those that are largely 

invariant across countries, and those that are highly variable. Among the former is the infective 

period, TL = 16.3 ± 2.7 days, the average time between contacts, TR = 3.8+/- 0.5 days  and the 

average number of contacts while infective R = 4.4 +/- 0.5. In contrast, there is a highly variable 

time lag TD between the peak in the daily number of confirmed cases and the peak in the daily 

number of deaths, ranging from lows of TD = 2,4 days for Denmark and Italy respectively, to 

highs of TD = 12, 15 for Germany and Norway respectively. The mortality fraction, or ratio of 

deaths to confirmed cases, was also highly variable, ranging from low values 3%, 5% and 5% for 
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Norway, Denmark and Germany respectively, to high values of 18%, 20% and 21% for Sweden, 

France, and the UK respectively.  The probability of mortality rather than recovery was a 

significant correlate of the duration of the pandemic, defined as the time from 12/31/2019 to 

when the number of daily deaths fell below 5. Finally, we observed a small but detectable effect 

of average temperature on the probability 𝛼 of infection per contact, with higher temperatures 

associated with lower infectivity.   

Conclusions: Our simple model captures the dynamics of the initial stages of the pandemic, 

from its exponential beginning to the first peak and beyond, with remarkable precision. As with 

all epidemiological analyses, unanticipated behavioral changes will result in deviations between 

projection and observation. This is abundantly clear for the current pandemic.  Nonetheless, 

accurate short-term projections are possible, and the methodology we present is a useful addition 

to the epidemiologist's armamentarium. Our predictions assume that control measures such as 

lockdown, social distancing, use of masks etc. remain the same post-peak as before peak. 

Consequently, deviations from our predictions are a measure of the extent to which loosening of 

control measures have impacted case-loads and deaths since the first peak and initial decline in 

daily cases and deaths. Our findings suggest that the two key parameters to control and reduce 

the impact of a developing pandemic are the infective period and the mortality fraction, which 

are achievable by early case identification, contact tracing and quarantine (which would reduce 

the former) and improving quality of care for identified cases (which would reduce the latter). 

 

 Keywords: Epidemic modelling, SARS-Cov-2/Covid-19 pandemic,  SIR model, predictions.  
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I. Background 

 

Coronaviruses are large, enveloped, single-stranded RNA viruses which are widespread in animals 

and usually cause only mild respiratory illnesses in humans [1-5]. However, in 2003, a new 

coronavirus SARS-CoV (Severe Acute Respiratory Syndrome – Corona Virus) emerged, which 

caused a life-threatening respiratory disease, with a fatality rate of almost 10% [6,7].  

Unfortunately, after an initial burst of interest in development of treatment options, interest in this 

virus waned. The emergence of a novel coronavirus SARS-CoV-2, identified in January 2020 as 

the likely causative agent of a cluster of pneumonia cases which first appeared in Wuhan, China 

in December 2019, has since caused a worldwide pandemic [8-13]. SARS-CoV-2 is the seventh 

known coronavirus to cause pathology in humans [1]. The associated respiratory illness, called 

COVID-19, ranges in severity from a symptomless infection [8], to common-cold like symptoms, 

to viral pneumonia, organ failure, neurological complications and death [9-11]. While the mortality 

in SARS-CoV-2 infections is lower than in SARS-CoV [9-12], it has more favorable transmission 

characteristics, a higher reproduction number [13], and as we will show, a long latency period and 

asymptomatic infective phase. 

 

The governments of several countries have taken significant measures to slow the infection rate of 

Covid-19, such as social distancing, quarantine, identification, tracking and isolation. However, 

there is no uniform policy, some governments have reacted later than others and some (e.g. 

Sweden) made a deliberate decision to keep the country open, leaving counter-measures up to 

individuals. 

 

A large amount of consistent public data is now available on the number of tests performed, the 

number of confirmed infected cases, and the number of deaths in different contexts,  such as 

locations and health conditions [14]. These provide important sources of information for the 

development and testing of models that can identify pandemic characteristics affecting viral 

dynamics,and guide public policy by predicting the impact of various interventions [15].  

 

All data, of course, have limitations, and it is ultimately the completeness and quality of data that 

limit the success of models. It is well known that confirmed infected cases seriously 

underestimate the actual number of infections [16,17]: not everyone who is infected is 

symptomatic, and  not everyone who dies from the disease has been tested [18]. Even the number 

of reported deaths may be underestimated because of co-mortalities; i.e. COVID-19  increases 

susceptibility to other diseases and conditions [19]. Moreover, the virus can be transmitted by 

asymptomatic individuals – who  comprise a substantial portion of the infected population [20] 

—militating against accurate estimates of transmission probability. Nonetheless as indicated in 

[21] and by our own verified forecasts, models can provide useful information. 

 

Dynamical (mechanistic) models, such as the one presented here, have been used for forecasting 

(meaning that once initial conditions are set, there are no changes in the model) and for 

projecting (the outcome is changed by intervention strategies). For example,  projections and 

forecasting models of various types have been used as early as February, 2020  to determine a 

reproductive number [13]. More generally multiple research groups have used them to estimate 

Case Fatality Ratios (CFRs) [22], to forecast and project the need for hospital beds  [23]  and to 

project and forecast mortality [24]. More specifically, among the many applications to COVID-
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19, four variable Susceptible-Exposed-Infective-Recovered (SEIR) models have been used to 

project the impact of social distancing on mortality [25],  three variable  Susceptible-Infective-

Recovered (SIR) models to estimate case fatality and recovery ratios early in the pandemic [26], 

and a time delayed SIR has been used to evaluate the effectiveness of suppression strategies [27]. 

One of the most ambitious dynamical models, which includes 8 state variables and 16 parameters 

was fruitfully applied to evaluate intervention strategies in Italy, in spite of the fact that 

parameter identifiability could not be assured [28].  

 

Our simplified version of the original SIR model [29] differentiates itself from the studies done so 

far by a unique methodological approach to rigorous identification of parameters, and by making 

a number of useful predictions very easily, such as the  duration of the pandemic in different 

countries and case fatality ratios, using only characteristics of the increasing portion of verified 

cases vs time, and the amplitude of the peak in the daily cases. Although it is sometimes said that 

using daily mortality data is more reliable than daily verified cases, we find that at least in the 

countries we analyzed, the patterns for these two quantities are virtually identical, differing only 

in amplitude and a rigid time translation.  

 

It is important to note that extrapolating our model predictions for daily cases and deaths past the 

peak assumes that control measures such as lockdown, social distancing, use of masks etc. and 

care given to Covid-19 patients remained the same after the peak in daily cases as before the peak. 

Observed deviations from our predictions are a measure of the extent to which loosening of control 

measures or changes in care of infected individuals impacted case-loads and deaths past the peaks 

in the number of cases and deaths. 

 

II. Methods 

 

We model the Covid-19 pandemic using a simplified version of the SIR model [29], which 

partitions the population into three compartments, Susceptibles (S), Infectious (I) and Removed 

R: Recovered or Dead after being infected. This and other models to study the global spread of 

diseases have been used in a variety of contexts (For some recent reviews, see [30-32]).  

 

So far, the Covid-19 pandemic, at least in the developed countries in Europe where we will apply 

this model, seems to have the following dynamics in the early stages of the pandemic: After being 

infected, an individual  remains able to infect others for an average of TL days. After a time TL, 

the infected individual becomes sick, gets tested, is identified as infected and is removed from the 

pool by quarantine or hospitalization. Thus, in our context, the SIR model dynamics can be defined 

as follows: At t=0, there is a pool of N interacting individuals, almost all of whom are in the S 

compartment, except for the few infected cases in the I compartment. The R compartment is empty 

at t=0. Over time, individuals move from S to I and from I to R. In R, they either recover or die.  

Since the Recovered pool is populated only from the Infected pool, on average, the number 

removed each day must equal the number infected sometime in the past; i.e. the two are related by 

a fixed time displacement and a “mortality probability” factor. We assume that the number of 

deaths and the number of individuals recovered each day are proportional to the number Removed 

each day by fixed probabilities, that remain invariant over the course of the epidemic; i.e. that the 

number dead or recovered each day are proportional to the number infected on some previous day, 

with different time delays and probabilities.  
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The Model 

Let,  

 X1 (t)  = number of Susceptible individuals at time t,    (1) X2 (t)  = number of Infected individuals at time t,      (2) X3 (t)  = number of individuals that are Removed at time t    (3) X1 (t) +  X2 (t) + X3 (t) =   N         (4) 

 

A fraction δ of the infected individuals will die after being identified as infected. On average, there 

will be a time delay TD between when a person is identified to be infected (tests positive) and when 

he/she dies of the disease. TD will depend on a variety of factors, such as quality of care, age, 

severity of disease, co-morbidities, immune status etc. 

 

Under these assumptions, the number of deaths X4(t) at time t is related to the number of Infected 

cases X2 by: 

 X4(t) =  δ X2(t − TD) = number of individuals that died on day t   (5a) 

 

Similarly, the number of Recovered at time t will be: 

 X5(t) =   X2(t − TRe) = number of individuals that recovered on day t  (5b) 

 

Let, 

   be the transmission rate, the probability of infection per day per contact.  (6) 

and let    be the rate at which individuals leave the infected population = 
1TL, (7) 

 with TL being interpreted as the latency, or the average time interval during  

which an infected individual can infect a naive individual. 

 

The equations governing the dynamics are: 

 dX1dt =  −αX1X2         (8) 

 dX2dt =  αX1X2 −  γX2         (9) 

 

The initial conditions at t = 0 are:  

 X1(0) = (N − a) ~ N and  X2(0) = a; with a ≪ N     (10) 

 

An equation relating the state variables X1 and X2 can be obtained by dividing (8) by (9) 

and integrating. This gives,          

 X2(t) =  N +  NR log (X1(t)N ) −  X1(t)       (11) 
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where R  αNγ           (12) 

 

Hence,  

 dX1dt =  −αX1 [ N + NR log (X1(t)N ) − X1(t)]      (13) 

 

From (9) the maximum in X2 is at X1 =   γα = NR     (14) 

 

Substituting this into (13) gives:  

 

Maximum value of X2  ≡ P =   N − NR [ 1 +  log(R)]    (15) 

 

At t = ∞, X2 = 0.  Hence, from (13), we get:    

 R = − log(S1(∞))[1−S1(∞)] ,  where S1(∞) = X1(∞)N       (16) 

 

as the fraction of susceptible individuals at  t = ∞.  

 

When S1(∞) → 1, log(S1(∞)) ~ − (1 − S1(∞)) and R → 1  
 

This says that when nobody is infected, S1(∞) = 1, i.e. there is no pandemic. This corresponds to R =  1. It is easy to show that if R < 1, there are no solutions to (16) that satisfy  0 ≤ S1(∞) ≤ 1.  

 

 

III. Results 

 

Fitting the Model to Data 

We focus on four North European countries, Netherlands, Denmark, Sweden and Norway, 

denoted by EN, four South European countries, France, Italy, Spain and Germany, denoted by 

ES, and  the United Kingdom (UK). Data for the number of confirmed cases and deaths were 

obtained from https://ourworldindata.org/coronavirus-source-data, from an EU agency 

established in 2005 and based in Stockholm with the aim to strengthen Europe’s defense against 
infectious diseases. The data for the number of tests was obtained from 

https://ourworldindata.org/coronavirus-testing  [33]. 

 

We note that the data identify the daily number of Confirmed cases, whereas the SIR model we 

described above requires the number of Infected cases. However, the number of confirmed cases 

at time t are derived from the infected cases at some previous time t’, where the time lag between 
t and t’ is fixed but unknown. Since Equations (1-5) are invariant under a time translation, we can 

use the data for daily confirmed cases to represent X2 with the understanding that there is an 

implicit shift in time between a person becoming infected and being identified as such in the data. 

This shift in time would depend on how quickly infected individuals are identified and included in 
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the case count, and hence may vary from country to country. However, we assume that within a 

given country, this time interval is fixed on average. With this caveat, in the results below, we will 

use the confirmed daily cases in our analysis to represent X2(t), and use either the term “infected” 

or “confirmed” when discussing  X2.    
 

The first date for which data was available for these countries was 12/31/2019, which we denote 

as day number 0 in our analysis and in the plots to follow. Among the countries considered here, 

the earliest cases were identified in France on 1/25/2020, which corresponds to day 25. In the other 

countries, the earliest cases were identified on the following days, counting from 12/31/2019: 

Netherlands: day 59, Denmark: day 58, Sweden: day 32, Norway: day 58, UK: day 31, Spain: day 

32, Germany: day 28, Italy: day 31.  

 

The available data includes  

(a) The cumulative number I(t) and daily number X2(t)  of confirmed cases     (17)  

and  

(b) The cumulative number  D(t) and daily number  X4(t) of deaths    (18) 

 

These are related by:  

 X2(t) =  I(t) − I(t − 1)         (19) 

and,  X4(t) =  D(t) − D(t − 1) .         (20) 

 

It is worth noting that the dynamics of the number removed each day and the total number of 

removed do not enter our analysis explicitly. Some connection to the full SIR model [29] can be 

made by noting that the total number of removed individuals increases asymptotically at large 

times to  N(1 − S1(∞)). 
 

We determine and analyze the following parameters country by country: 𝐍, as defined in (4); 𝛂, 
the transmission rate; i.e. the number of infections per day per contact; 𝛄,  the average rate at which 

individuals leave the infected pool; 𝐑 , the average number of transmissions per individual; 𝐓𝐑,  
the time between transmissions;  𝛅 , the fraction of individuals in the infected pool who will, on 

average, die  𝐓𝐃 days later;  = 1 – 𝛅, the fraction of individuals in the infected pool who will, on 

average, recover 𝐓𝐑𝐞  days later; and  𝐓𝐋, the infective period. We also determine the duration of 

the infection, defined as the number of days from 12/31/19 until the number of deaths drops below 

5 per day.   

 The parameters N, α, γ, R were obtained using (5), (8) and (9) to do numerical fits.   Because of 

the definition of R (see (12)), only three of the parameters, N, α, γ, R, need to be determined from 

the data. Consequently, we proceed as follows:  

1. Using (12), we define α in terms of N, γ, R. This eliminates α. 

2. Estimating P = maximum value of X2(t) from the data, we determine N in terms of R using (15). 

This eliminates N. 
3.  γ(R − 1)  is determined as the coefficient of t in the exponential rise of X2(t) for small t (see 

Appendix A). This eliminates γ. 
4. Using a numerical solver, we vary R to fit the observed data for X2(t). 
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We emphasize that in determining the parameters, we are only using the ascending limb and the 

peak in the data for X2(t) and use these to predict how X2(t) will evolve in time past the peak. 

Using the data for X4(t) and the fitted model, we can also determine  TD  and δ using (5a) by a 

simple translation and scaling of the fitted model for X2(t).     
 

Furthermore, once N, α, γ, R are determined, (16) determines  S1(∞) = X1(∞)N , the fraction of the 

pool of interacting individuals who are naive (uninfected) at the end of the pandemic. 

 

Some other useful parameters we obtain are: 

 

The infective period: TL = 1γ,        (21) 

the average time between transmissions: TR = 1Nα,     (22) 

and the average number of transmissions while infective = NC =  TLTR = Nαγ = R (23) 

 

Data and Fitting Methodology 

Although data on deaths is unambiguous, the data for the number of cases is trustworthy only when 

a sufficient number of tests are performed. It is therefore important to determine whether adequate 

testing was done to ensure the reliability of case data.  Figure 1a and 1b show the cumulative 

number of tests performed in the countries analyzed, starting from 12/31/2019. We see that in the 

EN countries, the ratio of cumulative tests to cumulative cases always exceeded five, whereas in 

the ES countries and the UK, it always exceeded three. Consequently, we expect that the reported 

number of cases is reliable. It is also important to note that while replicate testing provides some 

assurance, it leaves unaddressed the problem of quality (reliability), breadth (the percentage of the 

population reached) and speed (the elapsed time between infection and identification of disease) 

of testing.  

 

One interesting observation from the testing data (Figure 1a, 1b) was that initially,  public concern 

spread more rapidly than the virus. As the disease spread and testing ramped up, the initial value 

of  TC (number of tests/case) was quite large (over 650 in the UK), suggesting that the exponential 

growth in infections was slower than the exponential public awareness of the disease, resulting in 

the testing of a large number of people with no disease. Later, as appropriate protocols to identify 

diseased individuals were established, TC decreased then flattened out when the testing capacity 

adequately accounted for new cases, and finally rose again as the pandemic waned.  

 

The values of X2(t) and  X4(t) were extracted from the data for the cumulative number of cases 

and the cumulative number of deaths. To reduce fluctuations in these quantities, the data was 

averaged over 7 days. Once   B = γ(R − 1) and P were determined from the exponentially 

increasing region and the peak in X2(t)  respectively (see discussion in previous section), the only 

undetermined parameter was R. Several values of R in the range R =  1.5 − 6.0 were then tested 

using the following procedure: For each parameter set, we fitting these data for X2(t) from small 

t to the peak and beyond, by finding numerical solutions of (8) and (9) using the Matlab Solver 

myode2 to determine [X1(t), X2(t)] as a function of time, with the initial conditions, [X1(t0) = N − a, X2(t0) = a], starting from a value t0 of t such that X2(t0) = a ~ 10.  
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To determine an error on the fitted parameters, the parameters were varied until a range of values 

was found that fit the data for X2(t) including fluctuations. Finally, δ, TD were emperically 

determined (see eq. (5a)) by scaling and shifting the numerical fits for X2(t) to fit the data for X4(t).  Using the fitted parameters, the numerical solutions  for [X1(t), X2(t)] were extended to 

estimate the number of days to the end of the pandemic or PD, the pandemic duration, which we 

define as the time from 12/31/2019 to when the number of daily deaths are less than 5 for the first 

time past the peak in daily cases. The fitted solutions for [X2(t), X4(t)] were also used to compute 

the  predicted total cases per million and the predicted total deaths per million population (CFR) 

and compared to their actual values in each country for the pandemic duration, i.e. from 12/31/2019 

to when the number of daily deaths first falls below 5. Finally, the values of  TL and  TR were 

determined from the fitted data using (21) and (22) respectively.  

 

It is important to note that the parameter values we determine are derived solely from: (i) the 

ascending (small t) limb of X2(t) and  (ii) the first peak value of X2(t). Using the fitted parameters 

to derive results past the peak allows us to: (i) predict how the pandemic would have continued 

beyond the peak, if control measures such as social distancing, use of PPEs and masks etc. had 

remained the same as before the peak; (ii) determine deviations of the actual data from our model 

predictions to estimate the effect of changes in control measures post peak to pandemic dynamics.   

 

The results obtained for N, α, γ, R, δ, TL, TR, TD  are given in Tables 1. Figures 2 and 3 and 

Supplementary Figure S1a-i shows the data and fits of our model for  X2  and X4 respectively.   

We note that for Sweden and the UK, there is no clear first peak in X2(t) but rather a plateau and 

a subsequent increase in the number of daily cases. For these countries, we estimated the value of P (Eq. 15) from the plateau in Fig. 2c and Fig 2e respectively. For all the other countries, there 

was a clear first peak in X2(t)  whose amplitude was used to estimate P. Unfortunately, for all 

countries, even those that had a well-defined first peak in followed by a decline over time, X2(t) 

showed significant increase soon after the peak. In some cases, subsequent increases in daily 

deaths surpassed these first peaks by factors of 2-6 (Figure 1, S1). These suggest that in spite of 

significant early efforts to control infection rates using social distancing, quarantine, use of masks, 

testing and other containment measures, there was poor success in limiting  the spread of the 

disease past the first peak in X2 (Figure 2 a-i), most likely because of a combination of premature 

lifting of quarantine, inadequate use of facemasks and difficulties in limiting physical contacts, 

exacerbated by the advent of summer weather and holiday travel.   

 

In contrast, for the number of daily deaths X4 (Figure 3 a-i), there were significantly smaller 

increases past the peak for all countries, suggesting that measures to save lives worked better than 

measures to contain the number of infections. This is likely due to the efficiency of the health care 

systems in these countries and the competence and professionalism of health care workers. 

 

 

 

 

 

Results for TD,  and TL 

The fraction δ of identified cases who died after a time interval TD (Figure 4a, Table 1) also shows 

significant variation by country. Norway, Germany and Denmark have the smallest values: δ =
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0.03, 0.050 and 0.050 respectively, and the UK, France and Sweden have the highest:                    δ = 0.21, 0.20 and 0.18 respectively. Assuming that most of the deaths occurred in hospitals, the 

average time TD from case identification to death for those who died was highest (12, 15 days) for 

Germany and Norway respectively and lowest (2, 4 days) for Denmark and Italy respectively 

(Figure 4b, Table 1).   

 

IV Conclusions 

 

It is significant that in each country, the relation between the daily number of cases and the daily 

deaths is described by just two parameters, δ and TD (Eq. 5a), for the entire duration of the 

pandemic. This is not required a priori. For example, pressure on resources during a peak period 

of infectivity might have caused a transient increase in the number of deaths per day relative to the 

number of recovered per day. In such a situation, a single probability δ and a single value of TD need not have sufficed for the entire epidemic. The fact that there is little evidence of variations 

in these parameters over the pandemic, to within the quality of the data, suggests that although the 

effectiveness of life saving measures may differ between countries, these measures seem to be 

relatively insensitive to changes in the case burden. 

 

The average infective period TL̅̅ ̅ = 1/γ was approximately constant for all countries, with an  

average value: TL =  16.3 +/− 2.7  days. The average time between transmissions TR̅̅ ̅ = 1Nα was 

also remarkably uniform across countries, averaging : TR =  3.8 +/- 0.5 days. Finally, the average 

number of transmissions while infective or NC̅̅̅̅ =  TL̅̅ ̅̅TR̅̅ ̅̅ , which is also the average value of R, varied 

only in a narrow range for all countries, averaging:   NC = R̅   = 4.4+/- 0.5.  

 

 

The duration of the pandemic, the CFR (deaths/million) and cases/million.  

We define the end of the pandemic as the day when daily deaths becomes less than 5 for the first 

time after the first peak in the number of cases. The duration of the pandemic in each country is 

shown in Figure 4c as the number of days from 12/31/2019 till the day that daily deaths became < 

5.  With this definition, the predicted and actual dates are (Table 1) :  Netherlands: (6/18 +/- 10 

days, 6/17), Denmark: (5/11 +/- 4 days, 5/10);, Sweden: (6/28 +/- 10 days, 7/26), Norway: (4/26 

+/- 3 days, 4/28), UK: (8/5 +/-13 days, 8/21), Spain: (6/29 +/-10 days, 6/29), Germany: (6/24 +/- 

9 days, 7/14),  France: (7/12 +/-12 days, 7/19), Italy: (7/28 +/- 15 days 8/2). Note that the model 

predictions for pandemic duration are in quite good agreement with observation.    

 

The measured CFR (case fatality ratio)  or the total number of deaths per million population (Table 

1) ranged from low values of 36 and 89 for Norway and Denmark, to high values of 621, 604 and 

582, 562 for the UK, Spain, Italy and Sweden respectively. The model predicted values for this 

quantity are in good agreement with the actual values (Figure 4d and Table 1).  

 

The measured total number of cases per million population (Table 1) ranged from low values of 

1367 and 1774 for Norway and Denmark to high values of 7375, 5293, 4806 and 4092 for Sweden, 

Spain, Sweden, the UK and Italy respectively. In UK and Spain, the model predictions for this 

quantity were in sharp disagreement with the actual numbers (Figure 4e), likely the result of a 

significant relaxation of containment measures after the peak in the daily cases was reached.   
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SARS-Cov-2 may transmit less effectively at higher temperatures.  

As was also noticed in [34], an interesting finding was a weak “Temperature Effect” on the value 
of the infectivity parameter α. Figure 4f shows the average temperature in February 2020 for the 

principal cities in each country versus the fitted value of α, and suggests that SARS-Cov-2 may 

transmit less efficiently at higher temperatures. However, this result is far from final and needs 

further testing and validation because of many confounding factors, such as humidity, use of air 

conditioning and exhaust fans, crowding, population density etc. that may also have significant 

effects on α.   
 

In summary, the simple extension of the original SIR model [29] that we propose in this paper is 

able to identify the full set of pandemic parameters and fully characterize all three compartments 

S, I and R.  It would be useful to try to understand what policy measures would result in improved 

values for some of these parameters. However, it is also important to recognize that some of the 

parameters cannot be controlled by policy changes, and some that can be will not all respond to 

the same strategy. For example, TL can be shortened by increasing the frequency and number of 

tests, since both these  strategies increase the number of people removed from the infecting pool. 

On the other hand, the probability that an infected individual will die as opposed to recover might 

be affected by resources such as ventilators and masks. These considerations lead us to ask whether 

the degree of correlation between the parameters of the model, and features of the pandemic such 

as duration and deaths per million population, can account for the wide intercountry variation in 

pandemic features. A low degree of correlation for a particular parameter would indicate that it 

had little influence on variation of the feature, whereas a high degree of correlation would be 

informative.  

 

To estimate some dependencies that may have useful policy implications, we computed the 

Spearman Correlation between the derived parameters TL, N , and δ and some metrics of value 

in determining policy – namely “ PD = pandemic duration” and “CFR = case fatality ratio or deaths 

per million.” We found that N  was not correlated with these metrics (Correlation with PD: -0.20, 

p-value 0.60; Correlation with CFR: -0.02, p-value 0.98). However, TL was somewhat correlated  

(Correlation with PD: 0.64, p-value 0.07; Correlation with CFR: 0.533, p-value 0.15) and δ was 

highly correlated (Correlation with PD: 0.86, p-value 0.005; Correlation with CFR: 0.76, p-value 

0.02). These results suggest that the optimum method to decrease both the duration of the pandemic 

and the case fatality ratio would be to decrease the infective period TL and  δ, which are achievable 

by early case identification, contact tracing and quarantine (which would reduce TL) and improving 

quality of care for identified cases (which would reduce δ). Whereas these relationships may seem 

obvious, and indeed have been used as mechanisms to limit the impact of the pandemic in many 

countries, the fact that they are also readily identifiable in the data is, in our opinion, quite 

interesting.  

 

The value of N , the average number of new infections per day, has clear implications for the time 

it will take a randomized trial to establish therapeutic efficacy. While a statistical analysis is outside 

the scope of this manuscript, we note that the wide inter-country dispersion in this parameter 

indicates that the choice of population could have a pronounced effect on the time to establish 

efficacy, and it might therefore be best to select a test population deliberately from a  country or 
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countries with large and similar values of this parameter, rather than mix populations from 

different countries with no consideration of the average rate of infectivity. 

 

List of Abbreviations: 

 SARS-CoV and SARS-CoV-2 = Severe Acute Respiratory Syndrome – Corona Virus 2003 

and 2019 respectively. 

 Covid-19 =  SARS-CoV-2 related disease from 2019 

 CFR =  Case Fatality Ratio = number of deaths per million population 

 SEIR Model = Susceptible-Exposed-Infective-Recovered Model 

 SIR Model =  Susceptible-Infective-Recovered Model 

 EN = Netherlands, Denmark, Sweden and Norway 

 ES = Spain, Germany, France and Italy 

 UK = United Kingdom 

 PD = Pandemic Duration 
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Figure Legends 

 

Figure 1: Ratio of the cumulative number of tests to number of identified Covid-19 positive 

cases as a function of time: (a) In the EN countries and (b) in the UK and ES countries. The 

dashed lines in (a) and (b) represent 5 and 3 tests/case  respectively. 

 

Figure 2: Parameter fits for the number of daily cases: Blue circles are observed data for X2(t), the number of cases per day. Solid lines are fits obtained by solving (8) and (9) using the 

ODE solver ode45 in Matlab. The values of the parameters are shown in the insets and represent 

the fit shown as the solid red line. The method used for the fits was to find  γ(R − 1) from the 

exponential rise in X2  at early  times (Appendix A), estimate the peak value P of X2 (which gives 

the value of N using (15)) and find an R value that best fits the data (red solid line). The black lines 

represent solver results for R varying by 0.5 from the best fit value.  

 

Figure 3: Number of deaths per day and fits for 𝛅 𝐚𝐧𝐝 𝐓𝐃:  Red circles are observed data for X4(t), the number of deaths per day. The solid lines were obtained by shifting the fits for X2(t) in 

Figure 2 forward in time by an amount TD and scaling the results by δ (see  eq. 5a).  

 

Figure 4: Predictions from fits.  (a) Best fits for TD (see eq. 5a and Figure 3),  the average number 

of days from case identification to death, if death occurs. Values range from a high of 15 days for 

Norway and a low of 4 days for Italy and Denmark. (b) Best fits for δ, (see eq. 5a and Figure 3),  

the fraction of identified cases that died an average of TD days after case was recorded. Values 

range from low values 0.032, 0.05 and 0.05 for Norway, Denmark and Germany to high values 

0.21, 0.20 and 0.20 for UK, Sweden and France. (c) Predicted and actual number of days from 

12/31/2019 to when number of daily deaths < 5. Note that for all countries, our predictions are 

very close to the actual results. This is also evident from the extrapolation of the fits past the peak 

in Figure 3. This suggests that measures to limit fatalities were just as effective after the peak as 

before. (d) Predicted and actual case fatality ratios (number of deaths per million) from start of the 

pandemic to when daily deaths < 5. Actual values for the case fatality ratios range from lows of 

18 and 76 deaths/million population for Norway and Denmark and highs of 617, 604 and 579 

deaths/million population for UK, Spain and Italy. Note that the predicted values from the fits are 

in good agreement with the actual values for all countries, suggesting consistent medical care 

throughout the pandemic. (e) Predicted and actual cases per million population from start of the 

pandemic to when daily deaths < 5. Note that now, the predicted numbers are in reasonable  

agreement for all countries except UK and Sweden, where preventive measures such as partial 

lockdowns, use of masks and social distancing were not mandated/followed. (e) Identification of 

a possible temperature effect on the infectivity parameter α. The x-axis shows the temperature for 

February 2020 for the principal cities of the countries studied on a linear scale. The results suggest 

that the infectivity of SARS-CoV-2 decreases with increasing temperature (see also [34]).  

 

Supplementary Figure Legend 
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Supplementary Figure S1: Parameter fits for the number of daily cases plotted on a linear 

scale: These plots are the same as those in Figure 2 except that the y axis is shown in a linear scale, 

rather than a log scale. This is to show the accuracy of the fits which are shown as solid lines. Blue 

circles are observed data for X2(t), the number of cases per day. Solid lines are fits obtained by 

solving (8) and (9) using the ODE solver ode45 in Matlab. The values of the parameters are shown 

in the insets and represent the fit shown as the solid red line. The method used for the fits was to 

find  γ(R − 1) from the exponential rise in X2  at early  times (Appendix A), estimate the peak 

value P of X2 (which gives the value of N using (15)) and find an R value that best fits the data 

(red solid line). The black lines represent solver results for R varying by 0.5 from the best fit value.  

 

 

Table 1 Legend: 

Table showing a summary of all results for all 9 countries.  
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daily deaths < 5. Note that now, the predicted numbers are in reasonable agreement for all countries
except UK and Sweden, where preventive measures such as partial lockdowns, use of masks and social
distancing were not mandated/followed. (e) Identi�cation of a possible temperature effect on the
infectivity parameter α. The x-axis shows the temperature for February 2020 for the principal cities of the
countries studied on a linear scale. The results suggest that the infectivity of SARS-CoV-2 decreases with
increasing temperature (see also [34]).



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

FigS1.JPG

AppendixA.pdf

Table1.pdf

https://assets.researchsquare.com/files/rs-97697/v1/7b953da04ecfb84fcc253e11.JPG
https://assets.researchsquare.com/files/rs-97697/v1/5e2f5a55a46ad98c480db526.pdf
https://assets.researchsquare.com/files/rs-97697/v1/a064309b3ee4102abc4edc6f.pdf

