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Abstract

Background: Computer Aided Diagnostics (CAD) can support medical
practitioners to make critical decisions about their patients’ disease conditions.
Practitioners require access to the chain of reasoning behind CAD to build trust
in the CAD advice and to supplement their own expertise. Yet, CAD systems
might be based on black box machine learning models and high dimensional data
sources such as electronic health records, magnetic resonance imaging scans,
cardiotocograms, etc. These foundations make interpretation and explanation of
the CAD advice very challenging. This challenge is recognised throughout the
machine learning research community. eXplainable Artificial Intelligence (XAI) is
emerging as one of the most important research areas of recent years because it
addresses the interpretability and trust concerns of critical decision makers,
including those in clinical and medical practice.

Methods: In this work, we focus on AdaBoost, a black box model that has been
widely adopted in the CAD literature. We address the challenge – to explain
AdaBoost classification – with a novel algorithm that extracts simple, logical
rules from AdaBoost models. Our algorithm, Adaptive-Weighted High Importance

Path Snippets (Ada-WHIPS), makes use of AdaBoost’s adaptive classifier
weights. Using a novel formulation, Ada-WHIPS uniquely redistributes the
weights among individual decision nodes of the internal decision trees of the
AdaBoost model. Then, a simple heuristic search of the weighted nodes finds a
single rule that dominated the model’s decision. We compare the explanations
generated by our novel approach with the state of the art in an experimental
study. We evaluate the derived explanations with simple statistical tests of
well-known quality measures, precision and coverage, and a novel measure
stability that is better suited to the XAI setting.

Results: Experiments on 9 CAD-related data sets showed that Ada-WHIPS
explanations consistently generalise better (mean coverage 15%-68%) than the
state of the art while remaining competitive for specificity (mean precision
80%-99%). A very small trade-off in specificity is shown to guard against
over-fitting which is a known problem in the state of the art methods.

Conclusions: The experimental results demonstrate the benefits of using our
novel algorithm for explaining CAD AdaBoost classifiers widely found in the
literature. Our tightly coupled, AdaBoost-specific approach outperforms
model-agnostic explanation methods and should be considered by practitioners
looking for an XAI solution for this class of models.

Keywords: Explainable AI; Computer Aided Diagnostics; AdaBoost; Black Box
Problem; Interpretability

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

mailto:julian.hatwell@bcu.ac.uk
https://www.editorialmanager.com/midm/download.aspx?id=112357&guid=66c57ca6-277b-4784-8592-4a1a8b88dad8&scheme=1
https://www.editorialmanager.com/midm/download.aspx?id=112357&guid=66c57ca6-277b-4784-8592-4a1a8b88dad8&scheme=1


Hatwell et al. Page 2 of 32

Background

Introduction

Medical diagnosis is a complex, knowledge intensive process. A medical expert must

consider the symptoms of a patient, along with their medical and family history in-

cluding complications and co-morbidities [1]. The expert may carry out physical

examinations and order laboratory tests and combine the results with their prior

knowledge. These activities are time intensive and, increasingly, considered sources

of Big Data [2, 3]. Suitably experienced, available practitioners and experts are

needed to orchestrate and interpret the results, yet these experts are a scarce re-

source in many healthcare settings. As healthcare needs grow and the sources of

medical data increase in size and complexity, the diagnostic process must scale to

meet these growing demands.

State of the art machine learning (ML) methods underpin many computer aided

diagnostics (CAD) systems. CAD can address the aforementioned scalability chal-

lenges and may improve patient outcomes [4, 5, 6]. These ML methods demonstrate

exceptional predictive and classification accuracy and can handle high dimensional

data sets that often have very high rates of missing values. Examples of such chal-

lenging data sets include high throughput bioinformatics, magnetic resonance imag-

ing scans, microarray experiments, and complex electronic health records (EHR)

[7, 8], as well as unstructured, user-generated content (e.g. from social media feeds)

that have been used to learn individuals’ sub-health and mental health status out-

side of a clinical setting [9, 10]. Unfortunately, however, many state of the art ML

models are so-called “black boxes” because they defy explanation. The complex-

ity of black box models renders them opaque to human reasoning. Consequently,

experts and medical practitioners are reluctant to accept black box models in prac-

tice since they need to reason about, verify and approve the model’s output before

making a final decision. In the clinical setting, the model’s output should facilitate

professional decision-making alongside their expert clinical training and experience.

A standalone classification from a black box model does not serve this purpose well,

if at all. This barrier to adoption is evident, even when the black box models are

demonstrably more accurate [1, 11, 12, 13, 14, 15, 16, 17]. There is also a legal

right to explanation for high stakes decisions, which includes medical diagnosis and

treatment recommendations [18, 5].

Some might argue that a black box model is no less transparent than a doctor

[19]. Nevertheless, a doctor can be asked to justify their diagnosis and will do so

from a position of domain understanding. In contrast, providing explanations for

black box models is a very complex challenge. These models find patterns in data

without domain understanding. Yet we wish to communicate explanations to a

variety of levels of domain expertise: patient, practitioner, healthcare administrators

and regulators. Additionally, we set higher standards of statistical rigour before

granting our trust to ML derived decisions and explanations [20, 21].

Recent studies found that classification is the most widely implemented ML task

in the medical sector and solutions using the AdaBoost algorithm [22] form a sig-

nificant subset of the available research. Clinical applications include the diagnosis

of Alzheimer’s disease, diabetes, hypertension and various cancers [23, 24, 25, 26].

There are also non-clinical assessments of self-reported mental health, and subhealth
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status. The latter is characterised by chronic fatigue and infirmity that often leads

to future ill-health. These non-clinical approaches used unstructured, user gener-

ated content from online health communities [9, 10]. AdaBoost has also been used

as a preprocessing tool to select automatically the most important features from

high dimensional data [27, 28]. Yet, AdaBoost is considered a typical black box

as a consequence of its internal structure: an ensemble of typically 100s to 1000s

of shallow decision trees. The ensemble uses a weighted majority vote to classify

data instances; a system that is difficult to analyse mathematically. The widespread

adoption of AdaBoost in medical applications, coupled with its black box nature

leads to the challenge; to make AdaBoost explainable.

We present Adaptive-Weighted High Importance Path Snippets (Ada-WHIPS), a

novel method for explaining multi-class AdaBoost classification through inspection

of the model internals; a collection of adaptive weighted, shallow decision trees. The

method proceeds by extracting the decision path from each tree that is specific to

the data instance requiring an explanation (the explanandum). Only the paths that

agree with the weighted majority vote are retained. These paths are disaggregated

into individual decision nodes (which we call path snippets), and the weights are

reassigned according to depth within the tree and frequency within the ensemble.

The most important snippets are filtered and sorted by the newly applied weights.

These adaptive-weighted, high importance path snippets are then greedily added to

a classification rule. The final rule is tested for quality metrics and counterfactual

conditions against the training (or historical) data.

To demonstrate our contribution, we now present four illustrative examples of

Ada-WHIPS explanations. These examples have been drawn at random from the

data sets used in our experiments, which are all CAD or medically relevant ML

problems. An Ada-WHIPS explanation is a simple, conjunctive classification rule,

presented alongside confidence and counterfactual (contrast) information. This in-

cludes: generality (coverage), specificity (precision), and how much precision de-

creases (% points) when any single rule term is violated. The end user can immedi-

ately determine the essential attributes (the features and decision boundary) that

led to the model’s confident classification:

Table 1 Explanation of a classifier for foetal heart abnormalities.

Decision: Explanation: Contrast: Confidence:

Normal

Prior 79.0%

DP ≤ 0.0013 ∧
ALTV ≤ 7.7 ∧
Min ≤ 113.15

−74.5%
−43.2%
−34.58%

Coverage: 60.0%
Precision: 98.2% of covered

DP: Number of prolonged decelerations per second.
ALTV: % time with abnormal short term variability.
Min: Minimum of baseline foetal heart rate histogram.

In Table 1, statistical features computed from foetal cardiotocograms are used to

diagnose heart abnormalities. In Table 2, an online health community (self-selecting)

responded to a twenty-four question survey on their mental health. The classifica-

tion model identifies those individuals who have actually sought treatment. The

individual shown in the examples has responded that they are experiencing prob-

lems at work and that there may be a family history of mental illness. Table 3 shows

attributes from an EHR that were critical in determining the risk of readmission for
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Table 2 Explanation of a non-clinical mental health assessment classifier.

Decision: Explanation: Contrast: Confidence:

Has sought
treatment
Prior 54.9%

work interfere ≤ 1.5 ∧
family history > 0.9

−45.6%
−23.3%

Coverage: 24.9%
Precision: 94.6% of covered

work interfere: If you have a mental health condition, do you feel it interferes with your work?
Answers: 0 = Often, 1 = Sometimes, 2 = Not Sure, 3 = Rarely, 4 = Never

family history: Do you have a family history of mental illness?
Answers: 0 = No, 1 = Not Sure, 2 = Yes

Table 3 Explanation of automated 30-day hospital readmission risk assessment.

Decision: Explanation: Contrast: Confidence:

Risk: Low

Prior 65.0%

# inpatient ≤ 1.0 ∧
# emergency ≤ 0.5 ∧
# outpatient ≤ 0.5 ∧
# diagnoses ≤ 5.5

−58.1%
−46.7%
−41.8%
−39.6%

Coverage: 16.5%
Precision: 98.1% of covered

# xxxx: number of e.g. hospital visits of type xxxx

one particular patient. Table 4 shows the results of a classifier for abnormal thyroid

conditions. Full details of the data sets used can be found in Table 6.

We proceed with a walk through of the interpretation of Table 1: The model has

classified the instance as "Normal." This is on a prior of 79.0% Normal in the training

(historical) data. However, the given instance has a set of readings that raises the

precision to 98.2%. If an almost identical instance were found with a point change

in any one of the features listed (taking the instance outside the decision boundary),

precision would decrease by the amount shown on the adjacent Contrast column.

The new values would be worse than a random guess on this prior, with a raised

number of prolonged decelerations per second returning a different outcome code

altogether. These conditions hold on 60% of the historical data, making this a high

quality rule that can inform the clinician’s decision on whether any intervention is

necessary – most likely not, in this case.

The rest of this paper is organised as follows: We continue this Background sec-

tion with an in-depth review of the current state of the art in XAI, related work in

CAD and a recap of the Multi-Class AdaBoost algorithm. We introduce our novel

algorithm and describe our experimental setup in the Methods section. We report

our results and elaborate on their significance in the Results section. Further im-

portant points are presented in the Discussion section. The article finishes with a

section on Conclusions and future work.

XAI and Interpretable Models - Current State of the Art

Medical practitioners making safety critical decisions need explanations of ML clas-

sification results that provide the required level of accountability. The current re-

search seeks to address the challenge posed by the use of AdaBoost models in

healthcare applications. In contrast to model-agnostic methods that operate on in-

put sensitivity to synthetic data, our approach is to “open the black box” of an

already trained and well performing AdaBoost model. This approach provides ex-

planations that directly relate to the model internals. In the following paragraphs,

we outline the state of the art and the novelty of our approach.

The decompositional approach [29] to interpretability is well established. “Decom-

positional” refers to the process of querying directly the smallest information unit of
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Table 4 Explanation of a classifier for thyroid condition.

Decision: Explanation: Contrast: Confidence:

Abnormal

Prior 26.0%

TSH > 6.83 −78.5% Coverage: 8.2%
Precision: 98.2% of covered

TSH: Thyroid Stimulating Hormone level test result.

a model, e.g. the set of all decision nodes within each decision tree of an ensemble.

Examples in the literature include: DefragTrees [30], Forex++ [31], RF+HC [32],

inTrees [33], RuleFit [34], Brute [35]. All these methods generate a cascading rule list

(CRL) as a simpler, surrogate of the original classification model. The prevalence of

CRL as interpretable models indicates the importance of logical rules for explain-

ability. Logical rules are intuitive to understand, being the standard language of

reasoning [20, 36] and are the paradigm that we have adopted in our method.

The above mentioned methods are examples of globally interpretable proxy mod-

els; they allow the user to infer some understanding of the black box model’s overall

behaviour. However, with such proxy models there is always a trade-off; increasing

interpretability but also increasing classification error and giving no guarantees of

fidelity with the original model. Anything less than perfect fidelity means that, for

some instances, proxy and model do not agree. Explanations that refer to a different

class than the model’s predicted class are of no use in a safety-critical setting, such

as CAD. Ada-WHIPS uses logical rules and is a decompositional method but unlike

the above mentioned methods, Ada-WHIPS explains one classification instance at

a time rather than the global model behaviour described. The method is local and

post-hoc [37]. Ada-WHIPS also has perfect fidelity by design. That is, the explana-

tion generating process begins with the black model’s classification as its starting

point and is, therefore, guaranteed to match.

Several post-hoc, per instance explanation methods have been proposed as model-

agnostic frameworks (also known as didactic methods [29]). The model-agnostic

assumption is that any model’s behaviour can be explained given unfettered access

only to the model inputs and outputs (that is, to make an unlimited number of

calls) but no access to the training data nor the model internals. Model-agnostic

methods probe the model’s behaviour by generating a large, synthetic input sample.

Each explanation is inferred from the effect of different input attributes on the

outputs. Local Interpretable Model-agnostic Explanations (LIME) [21] generates

a sparse linear model, SHapley Additive exPlanations (SHAP) [38] uses a game

theoretic approach for a similar result: a set of non-zero coefficients for the input

attributes. The coefficients are additive and their magnitude is proportional to the

importance in the classification of the attributes they represent. As a result, these

methods are categorised as Additive Feature Attribution Methods (AFAM) [38].

The main disadvantage of AFAM is that it is difficult to know when to apply an

AFAM explanation to another previously unseen instance that does not share all of

the same attribute values associated with the coefficients. Anchors [36] and LOcal

Rule-based Explanations (LORE) [39] also use synthetic samples but generate a

single classification rule (CR) as an explanation (as opposed to the many rules in a

CRL). A CR-based explanation resolves the main disadvantage of AFAM because

it is trivial to generalise a CR to another instance; the rule either covers or does
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not. Anchors uses the same synthetic sampling technique used by LIME since it

was developed by the same research team to overcome the shortcoming of AFAM.

LORE uses a genetic algorithm to generate the synthetic sample but this requires a

very large number of calls to the black box model, and is computationally expensive

to run in its own right.

Model-agnostic techniques, while effective in image and text classification, have

disadvantages on tabular data sets. For one thing, they require additional checks;

variance in the sampling process can cause variance in the resulting explanations

over repeated trials [40, 41]. Furthermore, for tabular data, a realistic synthetic dis-

tribution must be estimated from the training data set or a large i.i.d. sample. This

requirement violates the model-agnostic assumption of accessing only the inputs

and outputs of the black box model. LIME, Anchors, and SHAP sample from the

marginal training distribution, while LORE explores the marginal input domains.

Clearly such synthetic samples have no guarantees to represent the underlying pop-

ulation because they do not use the joint distribution. In most real-world problems,

the joint distribution is unknown or intractable. Yet, these methods explicitly ac-

cess the training data but there is no rationale given in the relevant articles for not

using the empirical distribution, for example by the bootstrapping method used

in Brute [35]. Consequently, these model-agnostic methods are thought to put too

much weight on unlikely or impossible examples. Moreover, LIME and Anchors re-

quire all features of tabular data to be categorical. Continuous features must be

discretised in advance of training the classification model. To this end, quartile

binning [36] is proposed by the authors. This is an arbitrary procedure and a sig-

nificant compromise that puts constraints on the model of choice and potentially

loses important information from the continuous features.

Ada-WHIPS, in contrast, assumes access to both the model internals and the

training data. By decomposing the internals, using the adaptive weights and exe-

cuting a greedy heuristic against the bootstrapped training data, the output expla-

nation is an open-the-box method, and uses the empirical distribution instead of a

synthetic distribution. Furthermore, Ada-WHIPS exploits the information-theoretic

discretisation of the continuous features that occurs when the individual decision

trees are induced during the AdaBoost model training. This information preserving

approach is an advantage over the methods that require discretisation as a prepro-

cessing step. Model-agnostic methods can also be slow to compute. For example,

computing Shapley Values entails solving a large combinatorial problem which lim-

its the scalability [42], while LORE’s synthetic samples are generated by a genetic

algorithm that is not parallelisable in the currently available version[1]. Ada-WHIPS

is fast, as our experimental study shows.

We suggest that the model-agnostic assumption should be taken with caution.

There is a prevailing view in the XAI research community that model-agnostic

methods are a very active research area while model-specific methods may be in

decline. Yet, in a recent, comprehensive literature review [43] the following methods

were categorised as model-agnostic when, in fact, they are model-specific: Saliency

Maps, Activation Maximisation, Layer-wise Relevance Propagation. These methods

all require access to the internal neurons in an Artificial Neural Network and their

[1] https://tinyurl.com/qlyxzlv
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categorisation as model-agnostic may be a sign of confirmation bias in the research

community. We also argue that model-agnostic methods are only required for a

subset of ML problems, such as model auditing by an external third party. This

scenario does not apply in CAD system development where the capability to add

explanations would come from the owners themselves of the model and data. With

access to both the training data and the model, decompositional methods should

always be considered since they do not rely on synthetic data and can deliver expla-

nations that are more representative of the model’s internals [43]. Treeinterpreter

[44] is possibly the earliest model-specific explanation method, applicable to regres-

sion problems with Random Forest models. TreeSHAP [42], based on the SHAP

method, assumes an underlying XGBoost model and queries the internal decision

nodes. This model-specific design provides faster and more consistent results than

the original SHAP algorithm for XGBoost models. Thus, model-specific methods

are and should remain an active and relevant research area.

Finally, very few XAI methods have so far implemented counterfactuals, which

are “what if” scenarios that indicate minimal changes to the inputs that would yield

a different classification. LORE is the only well-cited example to the best of our

knowledge and applies a strict change-of-class counterfactual paradigm and only

works for binary classification. Ada-WHIPS provides a more flexible counterfactual

solution that shows how the confidence (specificity) of a classification changes, as

opposed to a discrete change of class. This novel, probabilistic approach allows

the expert user to control and interpret the results since a decreasing confidence

has ramifications even if the outcome code does not change. For example CAD

may involve rare conditions in very unbalanced data sets, thus simply decreasing

the probability that the individual is disease free may be enough to suggest an

intervention. The method works just as well for multi-class problems.

As a minor contribution, we also provide a novel method to avoid over-fitting

explanations that could potentially be applied elsewhere.

Related Work

CAD is an active research area. Yet, the safety critical nature suggests that it is

unethical to make diagnoses without human intervention [45, 46]. XAI in healthcare

offers the paradigm to assist rather than replace the medical expert. Hence, we

present recent research that aligns to this paradigm. We focus on methods that

predict or classify from non-image based clinical data. Table 5 summarises our

review.

Lamy et al. [47] uses a case-based reasoning (CBR) approach to recommend

treatments for breast cancer patients. Using a combination of weighted k-nearest

neighbours (WkNN) and multidimensional scaling (MDS), the user is presented

with a visual interface making recommendations based on similarities/differences

with historical cases. CBR provides the medical expert with several comparison in-

stances/cases to evaluate, while Ada-WHIPS presents one classification rule directly

extracted from the model internals that must be true of the explanandum instance

while coverage statistics measure the rule’s generalisation to other instances.

Kwon et al. [48] presents RetainVis, a visual analytics application for predicting

health status from health insurance data. Feature attribution values and t-SNE
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clustering are used to provide an interactive interface. The paper demonstrates the

benefits and deeper insights available from tight coupling to a specific model; a

recurrent neural network (RNN), in this case.

Adnan and Islam [31] uses a novel algorithm to simplify an existing tree ensemble.

The compact, surrogate model is a rule list that can be used for classifying unseen

instances. The authors claim that the global behaviour of the compact model is

easier to interpret than the black box ensemble but the rule list can itself be long and

time consuming to interpret. In contrast, our method is concerned with generating

a single rule to explain a single instance at a time.

Jalali and Pfeifer [8] use an ensemble of linear support vector machines (L1-SVM)

to predict cancer diagnosis and identify important patterns of gene expression.

This novel approach is tightly coupled to the data domain (genetic biomarkers)

whereas Ada-WHIPS could feasibly be applied to any tabular data including those

not related to medicine or healthcare.

Turgeman and May [12] propose a simple ensemble of a C5.0 decision tree and a

support vector machine (SVM). The easiest to classify instances can be explained

by traversing the tree, while hard to classify instances are left to the SVM which

remains a black box. Consequently, this method cannot produce a straightforward

explanation for all instances, unlike our method.

Jovanovic et al. [11] implement a Tree-Lasso system for introducing domain knowl-

edge about serious disease conditions into a sparse logistic regression model that is

easy to interpret. Lasso based methods discover a small set of important features

using L1-norm regularisation but the tree-lasso requires domain knowledge to be

provided apriori. Ada-WHIPS rule conditions are discovered by information theo-

retic tree induction during the AdaBoost model training, and does not require any

apriori inputs.

Letham et al. [13] proposes a novel interpretable model, the Bayesian Rule List

(BRL). The model is used in stroke prediction. The predictive results are competi-

tive with state of the art, but in common with cascading rule lists, interpretability

decreases with rule depth as all previous rules must be considered and excluded.

Ada-WHIPS generates one rule for one instance from a pre-trained AdaBoost model.

Caruana et al. [6] uses generalised additive models (GAM) allowing second or-

der interaction (GA2M) to predict pneumonia risk and and hospital readmission.

GAMs inherently provide partial independence (PI) plots, giving insight into the

global model behaviour, and excellent predictive results. Domain knowledge was

required apriori to discretise several features and to determine which second order

interactions to include. However, interpretation of the non-linear components re-

mains a challenge. Our method is a completely different approach that provides an

explanation for individual cases and requires no apriori domain expertise.

Kästner et al. [49] integrates expert knowledge into a neural gas. Interpretability

arises from the activation of the explicitly incorporated fuzzy rules. The outputs

of this novel method includes scored rule conditions but the fuzzy rules must be

introduced apriori, again in contrast to Ada-WHIPS that requires no apriori domain

knowledge.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Hatwell et al. Page 9 of 32

Table 5 Summary of Related Work.

Author(s) Date Medical Model XAI
Condition(s) Mechanism

Lamy et al. [47] 2019 Breast Cancer WkNN and MDS CBR
(treatment)

Kwon et al. [48] 2018 General health RNN t-SNE and
Visual Analytics

Adnan and Islam [31] 2017 Heart disease, Tree ensembles Logical Rules
dementia

Jalali and Pfeifer [8] 2016 Cancer L1-SVM Feature
biomarkers ensemble importance

Turgeman and May [12] 2016 Hospital C5.0 Tree and SVM Logical Rule
readmission ensemble

Jovanovic et al. [11] 2016 Hospital Tree Lasso Regression
readmission Coefficients

Letham et al. [13] 2015 Stroke BRL Bayesian Rules
Caruana et al. [6] 2015 Pneumonia risk GA2M PI plots
Kästner et al. [49] 2012 Breast cancer Neural Gas Fuzzy Rules

Multi-Class AdaBoost

In this section, we describe multi-class AdaBoost, with which our method is tightly

coupled. Boosting is a method for generating a strong classifier by sequentially

combining weak, base classifiers. It is one of the most significant developments in

Machine Learning [50, 51]. AdaBoost [52] was the first, widely used implementation

of boosting and is still favoured for its accuracy, ease of deployment and fast train-

ing time [53, 54, 55]. It uses shallow decision trees as the base classifiers. On each

iteration, the training sample is re-weighted such that the next decision tree focuses

on examples that were previously misclassified, while previously generated classi-

fiers remain unchanged (the details of this iterative re-weighting are not central to

this research so we refer the interested reader to [52, 56]). AdaBoost also adaptively

updates its base classifier weights based on their individual performance, which

we discuss now in further detail. Two algorithms, Stagewise Additive Modeling

using a Multi-class Exponential loss function (SAMME) and real-valued SAMME

(SAMME.R) [56] have emerged as the standard [57] for extending the original Ad-

aBoost algorithm from binary classification to multi-class problems. The following

formulations are based on [56].

Let f : X 7−→ Y be an unknown classification function that we would like to

approximate, where X is an R
d input space and Y = {C1, . . . , CK} is the set of

possible classes. Let X be an input data set and our multi-class AdaBoost model

be g(X) ≈ f(X). To classify an instance x, the output of a SAMME model is the

weighted majority vote of all the base classifiers.

g(x) = Ck, k = argmax
k∈K

M
∑

m=1

α(m) · T (m)(x),

T (m)(x) = [c1, . . . , cK ],
∑

T (m)(x) = 1

(1)

where [c1, . . . , cK ] is a one dimensional (1D) vector indicating the position of the

output class and is the output of a single tree T (m) at iteration m. Within this 1D

vector, ck = 1, cj = 0, j ̸= k indicates that Ck is the predicted class. The whole

model g =
{

{T (1), . . . , T (M)}, {α(1), . . . , α(M)}
}

is the combination of a set of
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M base decision tree classifiers and a set of M classifier weights. These weights are

calculated during the training phase as:

α(m) = log
1− err (m)

err (m)
+ log(K − 1), 0 < err (m) ≤ 1−

1

K
(2)

where err (m) is the error rate at iteration m.

To classify an instance x with SAMME.R, each base classifier returns a vector

of the conditional probabilities that the class of x is Ck. This is the distribution

of training instance weights in the terminal node of the decision path taken by x

through each tree:

T (m)(x) = [PT (m)(C1|x), . . . , PT (m)(CK |x)],
∑

T (m)(x) = 1, y ∈ Y (3)

and confidence weights are calculated at run time as:

α
(m)
k |x = (K − 1)

(

logPT (m)(Ck|x)−
1

K

K
∑

j=1

logPT (m)(Cj |x)
)

. (4)

The output of the whole model is the majority vote based on the additive contri-

bution of these confidence weights per class:

g(x) = Ck, k = argmax
k

M
∑

m=1

α
(m)
k |x. (5)

where g = {T (1), . . . , T (M)} (weights α
(m)
k evaluated at run time).

Method

Ada-WHIPS

We now present Ada-WHIPS, our algorithm for generating a CR based explanation

for the classification of an explanandum instance x by a previously trained AdaBoost

model g. The algorithm begins by initialising a rule as an empty antecedent and

the classification outcome g(x) as the consequent. Thus, the CR always agrees with

the black box, by design. The algorithm then proceeds through the steps shown

in Fig 1, to identify a small set of antecedent terms, or logical conditions. These

conditions must be true of x and must exert the most influence on the classification

result. The source of these logical conditions is the ensemble of decision trees that

make up g. The influence is determined by the classifier weights within the internals

of g, which themselves are derived from the error rates (weights increase as errors

decrease).
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Extract

Decision Paths

Redistribute

Adaptive

Weights
Generate Rule

Generate

Counterfactuals

Figure 1 Conceptual diagram of Ada-WHIPS.

Extract Decision Paths

An AdaBoost model typically comprises 100’s-1000’s of shallow decision trees, po-

tentially resulting in a very large search space. For a given x ∈ X, we can reduce this

space logarithmically by considering only decision paths of that x in each decision

tree and ignoring all other branches. The paths retain all the information about

how g(x) was determined. A conceptual example of extracting the decision path is

shown in Fig 2. Here, x = {. . . , xi = 0.1, xj = 10, . . . }, where xi is the attribute

value of the ith feature. The decision path starts from the root node Q1, following

the binary split conditions down to a leaf node. The decision path contains node

detail triples of the following form (j, ν, τ), where j is a feature index and ν ∈ R

is the threshold for the inequality xj < ν and τ ∈ {0, 1} is the binary truth of

evaluating the inequality. Note that for this instance, all other nodes are irrelevant.

For example, even though Q7 applies (xi < 1.0), it cannot be reached by x because

of the evaluation at Q5.

Q1 xi < 2.0

Q2 xj < 8 Q3 leaf : Ck′

Q4 leaf : Ck′ Q5 xi < 0.5

Q6 leaf : Ck Q7 xi < 1.0

Figure 2 Conceptual diagram of a decision path for one instance through one tree.

The search space can be further reduced by considering only those trees that

agreed with the weighted majority vote. The rationale for this is based on the

application of maximum margin theory to boosting [58]. If x is an unseen instance,

the margin in SAMME is:

margin =
a+ − a−

∑T

m=1 α
(m)

, a+ =

|T +|
∑

n=1

α(n), a− =
1

K − 1

K
∑

k=1

|T −|
∑

u=1

α(u),

T + = {T : g(x) = Ck, k = argmax
k∈K

T (x)},

T − = {T : g(x) = Ck, k ̸= argmax
j∈K

T (x)}, T (m), α(m) ∈ g.

(6)

The quantity a+, represents the sum of weights from the classifiers that voted for

the majority class and a+ > a− is always true for the majority class. The set T + are
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the base classifiers that voted in the majority and thus contributed their weight to

a+, and T − are the remaining classifiers. T + completely determines the ensemble’s

output for a given instance because an ensemble classifier formed from the union of

T + and any subset of T − would return the same classification with a larger margin

because a−∗ < a−, T −
∗ ⊂ T −. We found no margin formalisation for SAMME.R

in the literature but we can define T + :=
{

(T (m), α
(m)
k ) : α

(m)
k ≥ α

(m)
j , k, j ∈

{1, . . . , K}
}

and, as a convenience, we can substitute the α terms in equation

(6) for the following Kullback-Leibler (KL) Divergence. The KL-Divergence (also

known as “relative entropy”) measures the information lost if a distribution P ′ is

used, instead of another distribution P to encode a random variable and is defined

as:

DKL(P ∥ P ′) = −
∑

x∈X

P (x) log

(

P (x)

P ′(x)

)

(7)

and we set P, P ′ as the posterior class distribution of each T (m)(x) given in equa-

tion (3), and prior class distribution in the training data, respectively. The KL-

Divergence will be larger for trees that classify with greater accuracy, relative to

the prior distribution. The DKL emulates the classifier weights yielded by equation

(2), which allows the rest of the algorithm to proceed in an identical manner for

SAMME and SAMME.R.

Redistribute Adaptive Weights

To avoid a combinatorial search of all the available decision nodes, we sort them,

prior to rule merging, according to their ability to separate the classes. To do this,

we disaggregate the entire set of decision paths into individual decision nodes and

redistribute the classifier weights onto the nodes. This procedure is illustrated in

Algorithm 1. The contribution of each node is conditional on the previous nodes in

the path and this sorting must take into account the node order in the originating

tree. To do this, we apply equation (7) to determine the relative entropies at each

point in a path. For each root node, we set P, P ′ as the class distribution when

applying that decision to the training data, and the prior class distribution respec-

tively. For subsequent nodes, P is the class distribution after applying all previous

decision nodes including the current node and P ′ is the distribution up to but not

including the current node. The relative entropy scores for nodes in a single path

are normalised such that their total is equal to that of the classifier weight α(m).

The scores are grouped and summed for nodes that appear in multiple paths. We

filter the nodes, keeping only those with the largest weights (e.g. top 20%). Finally,

all nodes from all paths are sorted by this score in descending order.

Generate Classification Rule

It is trivial to convert the node detail triples (j, ν, τ) into antecedent terms of a CR

[59]. We use nodes and terms interchangeably from here on. The objective is to find

a minimal set of terms that maximises both precision and coverage while mitigat-

ing the problem of over-fitting. Over-fitting can occur if we maximise precision as
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Algorithm 1 Get Term Weights
1: procedure Get Term Weights(x, g, (X)) ▷ instance, model and training set
2: Terms Weights ← {< term >,< weight >} ▷ initialise empty map of terms and weights

3: Y (idx0) ← g(X) ▷ training set classifications

4: for T (m) ∈ T +, T + ⊂ g do

5: Path(m) ← Get Decision Path(x, T (m)) ▷ See Fig 2

6: N ← length of Path(m)

7: for n = 1, N, n++ do

8: idxn ← set of indices from X covered by Q
(m)
n ∧Q

(m)
n−1 ∧ · · · ∧Q

(m)
1

9: dn ← DKL(Y
(idxn) ∥ Y (idxn−1))

10: Normalise all dn
11: for n = 1, N, n++ do

12: if Q
(m)
n /∈ Terms Weights < term > then

13: Append Q
(m)
n , < dn · α(m) > to Terms Weights

14: else
15: Terms Weights < weight > + = dn ·α(m) where Terms Weights < term >= Q

(m)
n

16: Select top N (or top n%) Terms Weights
17: Sort Terms Weights
18: Return(Terms Weights)

an objective function. We risk converging on “tautological” rules that provide no

generalisation. This is because precision is trivially maximised by single instances.

A tautological rule contains enough terms to identify a single instance uniquely. In

a noisy data set, there could be many such local maxima. Therefore, we propose

stability as a novel objective function, defined as:

ζ(x, g,Z) =
|{z : g(z) = g(x), z ∈ Z}|

|Z|+K
(8)

where Z is the set of instances covered by the current rule and K the number

of classes. The maximum achievable ζ is 1
K

for a single instance but approaches

precision asymptotically as |Z| → ∞. Stability, therefore acts as a brake on adding

too many terms and over-fitting. We proceed with a breadth first search, iteratively

adding terms to an initially empty rule. We always add the first term in the sorted

list. Then, we work down the list, greedily adding further terms if they increase

stability and discard them if they do not. The algorithm stops when a threshold

stability (e.g. 0.95) is reached or the list is exhausted. These steps are illustrated in

Algorithm 2

Algorithm 2 Merge Rule
1: procedure Merge Rule(x, g,X,Y, ρ) ▷ instance, model, training set and target ζ
2: Terms Weights ← Get Term Weights(x, g,X)
3: Consequent ← g(x)
4: Initialise empty Antecedent
5: s← P(Y = g(x)) ▷ prior class distribution
6: while Terms Weights is not empty ∧ s <= ρ do
7: Term ←< term > from Terms Weights where < weight > = max(< weight >)
8: Delete < term >,< weight > from Terms Weights where < term > = Term
9: Z← instances covered by Antecedent ∧ Term

10: if ζ(x, g,Z) > s then
11: Append Term to Antecedent
12: s← ζ(x, g,Z)

13: Return(Antecedent =⇒ Consequent)
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Generate Counterfactuals

Counterfactuals answer the question “what would have happened if... ?” They il-

lustrate minimal changes in the inputs that would give different results. Some au-

thors define counterfactual (sometimes called contrastive) explanations as a minimal

change set on the inputs that would return a different result [39, 60, 5, 15]. However,

discrete change-of-classification counterfactuals do not allow any uncertainty. We

suggest a fuzzy definition is better suited here; namely, if precision (specificity) de-

creases beyond a user-defined tolerance. The expert can better exercise their judge-

ment with this approach. For example, decreasing from high to low confidence in a

CAD or risk score can lead to requests for additional tests, a less aggressive clinical

intervention and so on. Since the definition of counterfactuals is a minimal change

set, it is not necessary (nor even practical) to provide every possible input scenario.

It suffices to show the effect of each point change and this is easy to do with CR

simply by changing each of the rule terms, one at a time. Any point changes that

do not decrease the precision beyond the user-defined tolerance represent a non-

counterfactual change and can be removed from the rule. This procedure provides

an intuitive pruning mechanism for removing redundant terms that might have been

added during the greedy rule merge algorithm. We illustrate this concept visually

in Fig 3. Here a model with a complex decision boundary is trained on a synthetic

data set (a Gaussian mixture model) which has two classes, shown as triangles and

circles. The model classifies an explanandum instance x as a triangle. The explana-

tion is found - the following CR: {z : a ≤ z1 ≤ b, c ≤ z2 ≤ d, z ∈ X} =⇒ triangle.

The counterfactual spaces are those spaces immediately adjacent to the four rule

boundaries, derived by reversing one inequality at a time:

{

{z : z1 ≤ a, c ≤ z2 ≤ d}, {z : b ≤ z1, c ≤ z2 ≤ d},

{z : a ≤ z1 ≤ b, z2 ≤ c}, {z : a ≤ z1 ≤ b, d ≤ z2}, z ∈ X
}

(9)

Even though the triangle class is still predicted for parts of these spaces, the ex-

pected precision decreases drastically for a CR that is formed from any one of

these counterfactual spaces for the antecedent and the same consequent. Thus, the

original rule provides a crisp boundary where the maximal precision holds. The

counterfactual rules communicate how much precision decreases when the rule is

violated in any one dimension.

Experimental Design

We compared Ada-WHIPS in an experimental study with the state of the art.

Three metrics are used to measure effectiveness, namely, coverage, precision and

our new measure of stability. Efficiency, in terms of computing performance, is

measured using the average time to generate an explanation. Comparisons are made

against two other CR-based, per instance explanation methods: Anchors [36] and

LORE [39]. Both methods are model-agnostic. Readers who are familiar with XAI

research may question the omission of LIME [21] and SHAP [38], which are the most

discussed per instance explanation methods. LIME and SHAP fall into a different

class of methods, described as additive feature attribution methods (AFAM). AFAM
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Figure 3 Counterfactual spaces - conceptual diagram.

are, effectively, local linear models (LM) whose coefficients relate the importance of

various attributes to the original model’s classification of the explanandum. There is

no obvious way to apply the local LM for one instance to any other instances in order

to calculate the quality measures such as precision and coverage, and comparison

with CR-based methods is of limited value [36]. Fortunately, Anchors has been

developed by the same research group that contributed LIME and uses the same

synthetic sampling technique. Anchors can be viewed as a rule-based extension of

LIME and its inclusion into this experimental study provides a useful comparison

to best in class AFAM research.

Hardware Setup

The experiments were conducted using Python 3.6.x running on a standalone

Lenovo ThinkCentre with Intel i7-7600 CPU @ 3.4GHz and 32GB RAM using

the Windows 10 operating system.

Data Sets

We used nine data sets described in Table 6. These were sourced from the UCI Ma-

chine Learning repository [61] and represent specific disease diagnoses from clinical

test results, except; the mental health surveys (Kaggle) which represents case stud-

ies in detecting mental health conditions from non-clinical online health community

data; the hospital readmission data (Kaggle) which represents a large EHR; and

understanding society [62] which is from the General Population Sample of the UK

Household Longitudinal Study and used under license. We use the file from waves

2 and 3 where participants had a health visit carried out by a qualified nurse. At

least one study [63] has shown that the biomarkers measured in the survey may

be associated with the results from self-completion instruments measuring mental

health. We run a classification task for the SF-12 Mental Component Summary

(PCS) which has been discretised into nominal values "poor," "neutral" and "good."
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Table 6 Data sets used in the experiments.

Of which
data set Target Classes Class balance Features nominal N
breast cancer mb 2 0.63 : 0.37 31 1 569
cardiotocography NSP 3 0.78 : 0.14 : 22 1 2126

0.08
diabetic retinopathy dr 2 0.53 : 0.47 20 1 1151
cleveland heart HDisease 2 0.54 : 0.46 14 8 303
mental health survey ’16 mh2 2 0.50 : 0.50 46 44 1433
mental health survey ’14 treatment 2 0.51 : 0.49 24 3 1259
hospital readmission readmitted 2 0.54 : 0.46 65 1 25000
thyroid diagnosis 2 0.74 : 0.26 30 3 9172

understanding society[2] mh 3 0.22 : 0.62 : 330 246 11745
0.16

Limitations of the Study

Unfortunately, we discovered that LORE was not scalable after finalising our ex-

perimental design. The time cost of generating a synthetic distribution by means

of a genetic algorithm rendered the method unusable on some of the data sets.

The time per instance was on average twenty-five to thirty minutes for the hospital

readmission data set and more than two hours per instance on the understanding

society data set. The method generated system errors on the mental health sur-

vey ’14 data set and was not runnable at all. We thoroughly examined the source

code to look for opportunities to parallelise the operation, but the presence of a

dynamically generated, non-serialisable distance function rendered this impossible.

We have included the results where the method did run to completion.

AdaBoost Model Training and Testing

Each data set was split into training and test sets (70%, 30%) by random sampling

without stratification or other class imbalance correction. We trained AdaBoost

models using ten-fold cross-validation of the training set on number of trees ntrees ∈

{200, 400, . . . , 1600} and maximum tree depth parameter maxdepth was always 4.

We used the ntree setting that delivered the highest classification accuracy to train

a final model on the whole training set.

As mentioned in the section on related work, Anchors requires all features of the

data to be categorical [36]. For our experiments, we generated a copy of each data

set, and discretised them using Anchors’ provided quartile binning function. A sec-

ond AdaBoost model was generated from this discretised data set for Anchors to

explain. Training and test splits used identical indices as the undiscretised versions.

Each test set was then used as the pool of unseen instances to be classified by the

AdaBoost model and explained by Ada-WHIPS, Anchors and LORE. Thus, there

are three comparable explanations for each test instance. Generating explanations

is done instance by instance, not batch wise as in classification. So, for time con-

straints, the number of instances (test units) was limited to either the whole test

set or the first one thousand test instances, whichever was the smaller. For each

explanation, all the remaining instances from the entire test set were used to assess

the standard quality measures, precision and coverage, along with the novel quality

measure, stability (8), which is more sensitive to over-fitting. This leave-one-out

procedure ensures that test scores are not biased by leakage of information from

the explanation-generating instance. The entire procedure is repeated for SAMME

and SAMME.R AdaBoost models.
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We present the performance scores of the trained models in Tables 7. It is im-

portant to note that the model training is part of the experimental setup and not

to be taken as results per se. These training scores simply reflect the performance

of AdaBoost; critiquing the performance of AdaBoost itself is not the objective

of this work. We provide this level of detail only to demonstrate that the trained

AdaBoost models reasonably approximate the underlying data sets and are very ac-

curate. However, a true explanation by definition must stay faithful to the trained

model regardless of whether the model is accurate or not (though a poor model

would never be used in clinical practice). We show generalisation accuracy scores

and Cohen’s κ for the two models (discretised and undiscretised data set variants).

Cohen’s κ is a useful measure in multi-class problems and class imbalanced data

because this statistic corrects for chance agreement, which can be high in such cases.

Values close to zero indicate a high degree of chance agreement. See Appendix for

further details on Cohen’s κ.

Table 7 Final AdaBoost Model Scores. Accuracy and Cohen’s kappa on Held Out Data.

Undiscretised: used by Discretised: used by
Ada-WHIPS & LORE Anchors

data ntree Accuracy κ Accuracy κ

SAMME

breast cancer 200 0.98 0.96 0.96 0.92
cardiotocography 800 0.94 0.84 0.89 0.70
diabetic retinopathy 1000 0.68 0.36 0.66 0.33
cleveland heart 200 0.77 0.52 0.80 0.59
mental health survey ’16 200 0.88 0.76 0.88 0.75
mental health survey ’14 200 0.83 0.65 0.81 0.62
hospital readmission 800 0.62 0.22 0.60 0.18
thyroid 1200 0.97 0.92 0.80 0.45
understanding society 600 0.64 0.13 0.61 0.14

SAMME.R

breast cancer 1000 0.98 0.96 0.95 0.90
cardiotocography 1600 0.94 0.82 0.88 0.67
diabetic retinopathy 200 0.69 0.38 0.65 0.30
cleveland heart 400 0.76 0.50 0.82 0.63
mental health survey ’16 800 0.87 0.73 0.86 0.72
mental health survey ’14 200 0.80 0.60 0.81 0.63
hospital readmission 200 0.62 0.22 0.63 0.23
thyroid 1600 0.97 0.92 0.76 0.37
understanding society 200 0.62 0.13 0.62 0.15

Significance Testing

Our approach for the experimental study is based on the simulated user study

implemented in [36]. In that study, coverage represents the fraction of previously

unseen instances a user could attempt to classify after seeing an explanation and

thence how generally the rule applies to the whole population. Similarly, precision

represents the fraction of those classifications that would be correct if a user ap-

plied the explanation correctly, indicating the specificity of the rule. Real users

who were shown high coverage and precision rule-based explanations demonstrated

significantly improved task completion scores over those who were shown AFAM

explanations.

To determine statistical significance, we report differences between precision, sta-

bility and coverage among the algorithms using non-parametric hypothesis tests.

The reason for using these tests is that these measures are proportions; from the
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interval [0, 1] and very right-skewed by design since each method tries to generate

very high precision explanations. We use the paired samples Wilcoxon signed rank

test where we have results for just Ada-WHIPS and Anchors. The null hypothesis

of this test is that the medians of the two samples are equal and the alternative is

that the medians are unequal. We use the Friedman test where we have results for

all three methods. The Friedman test is a non-parametric equivalent to ANOVA

and an extension of the rank sum test for multiple comparisons. The null hypothesis

of this test is that there is no significant difference between the mean ranks of all

the groups and the alternative is that at least two mean ranks are different. For all

our three-way comparisons using the Friedman test, p-values were vanishingly small

≈ 0. So, in our report that follows, we proceed directly to the recommended pair-

wise, post-hoc comparison test with the Bonferroni correction (for three pairwise

comparisons) proposed in [64]. It is sufficient for this study to demonstrate whether

the top scoring algorithm was significantly greater than the second place algorithm

on our quality measures of interest. The critical value for a two-tailed test with the

bonferroni correction is 0.025
3 = 0.00833. See Appendix for further details on the

Friedman test applied here.

The three-way post-hoc tests and the two-way comparisons are shown in separate

tables to avoid drawing invalid comparisons. The mean rank, rather than the mean,

is given in the tables, as this is the statistic compared between groups by the chosen

tests. A significant result is indicated by ** and the winning algorithm is formatted

in boldface only if the results are significant.

Results

We begin by presenting the four worked examples from the introduction. Then, we

assess the aggregated quality measures for the test samples. For each measure, we

present dot chart showing the mean score (with standard errors) aggregated over all

the test instances. In several cases, the results are close, resulting in over-plotting

that could lead to confusion as to whether two or three results are returned for a

given data set. To assist the reader in distinguishing the scores, a guide line has

been added. However, each data set should still be viewed as a separate experiment.

Worked Examples

Tables 8-11 present the worked examples from our introduction. Readers are re-

minded that the paths taken by a single instance in a pre-trained AdaBoost model

are disaggregated into individual decision nodes. The most important of these nodes

are recombined into a high quality rule for explaining the model’s classification. Note

that models had different numbers of iterations, and trees can grow to any depth

up to the maximum of 4. It is also interesting to note a detail about the paths from

trees that disagreed with the majority classification; that is, while they covered the

instance (as they must), the boundary attributes are very distant from the instance

attributes in the input space. We suggest that this is in keeping with the theoreti-

cal principles of AdaBoost – each iteration focuses on misclassified instances of the

previous iteration, leading to a very different decision boundary in the next tree.
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Table 8 Worked example for foetal heart abnormalities data set

x = {. . . , DP = 0.0, ASTV = 24.0 ALTV = 0.0 Min = 74.0, Max = 185.0, Mean = 140.0, . . .
. . . , Median = 140.0, Mode = 140.0, MSTV = 1.5, MLTV = 11.2, LB = 136.0, . . . }

Extract Paths
Redistribute

Weights
Generate Rule

Tree Path Final Explanation

1 MSTV > 0.55 ∧ Mean > 107.5 ∧ LB ≤ 142.0 ∧ DP ≤ 0.0015 DP ≤ 0.0013 ∧
2 Median ≤ 150.5 ∧ DP ≤ 0.0017 ∧ ALTV ≤ 15.5 ∧ Mode > 105.5 ALTV ≤ 7.7 ∧
: : : : : : Min ≤ 113.15

200 MLTV > 7.0 ∧ Max ≤ 187.5 ∧ Max > 174.5 ∧ ASTV ≤ 63.5
DP: Number of Prolonged decelerations per second.
ASTV/ALTV: % time with abnormal short/long term variability.
MSTV/MLTV: mean value of short/long term variability.
Min, Max, Mean, Median, Mode: Statistics of FHR histogram.
LB: FHR baseline (beats per minute).

Table 9 Worked example for non-clinical mental health assessment data set

x = {. . . , gender = m, age = 32 work interfere = 1 family history = 2, self employed = no, . . . }

Extract Paths
Redistribute

Weights
Generate Rule

Tree Path Final Explanation

1 work interfere ≤ 1.5 work interfere ≤ 1.5 ∧
2 work interfere ≤ 1.5 family history > 0.9
: : : : : :

200 age ≤ 35.5
work interfere: If you have a mental health condition, do you feel it interferes with your work?
Answers: 0 = Often, 1 = Sometimes, 2 = Not Sure, 3 = Rarely, 4 = Never

family history: Do you have a family history of mental illness?
Answers: 0 = No, 1 = Not Sure, 2 = Yes

Coverage Analysis

We present a visual analysis of the raw data (see Appendix for results tables)

and tabulate the results of our statistical tests. A cursory inspection of the mean

coverage charts shown in Figs 4-5 indicates that Anchors has the lowest mean

coverage over all the data sets but the comparison between Ada-WHIPS and LORE

is less clear cut. The results of the hypothesis tests are given in Tables 12-13. The

Wilcoxon tests showed that Ada-WHIPS always has significantly higher coverage

than Anchors. Ada-WHIPS was the top algorithm in all but three of the post-

hoc tests for three-way comparisons and in the top two alongside LORE with no

significant difference for the remaining tests.

Precision Analysis

The mean precision chart, (Figs 6-7), show that LORE has the lowest precision in

all but one of the data sets where LORE results are available. It is harder to see if

there is a definitive lead between Ada-WHIPS and Anchors.

However, the complete picture – and the cost to Anchors of implementing a pre-

cision guarantee – can be seen in the distribution charts in Figs 8-9. Here we see

that a certain proportion of explanations have a precision of 0.0. The result shows

that Anchors (and LORE to a lesser extent) is over-fitting. Some explanations are

so specific that they only explain the explanandum and do not generalise to other

instances in the test set. We present the proportion of 0.0 precision explanations

that were returned by each algorithm in Table 14.
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Table 10 Worked example for automated 30-day hospital readmission risk assessment data set

x = {. . . , # inpatient = 0, # outpatient = 0 # emergency = 0 . . .
. . . , # diagnoses = 4, time in hosptial = 4, tolazimide = no, . . . }

Extract Paths
Redistribute

Weights
Generate Rule

Tree Path Final Explanation

1 # inpatient ≤ 0.5 ∧ # diagnoses ≤ 5.5 ∧ # inpatient ≤ 1.0 ∧
# emergency ≤ 0.5 ∧ payer code = bc # emergency ≤ 0.5 ∧

2 # outpatient ≤ 0.5 ∧ # diagnoses ≤ 5.5 wedge # outpatient ≤ 0.5 ∧
# inpatient ≤ 0.5 ∧ time in hospital ≤ 2.5 # diagnoses ≤ 5.5

: : : : : :

✟✟❍❍800 ✭✭✭✭❤❤❤❤tolazimide = no ∧✭✭✭✭✭❤❤❤❤❤# emergency ≤ 6.5

✭✭✭✭✭✭❤❤❤❤❤❤
time in hospital ≤ 119.5 ∧

✭✭✭✭✭✭❤❤❤❤❤❤
time in hospital ≤ 98.5

# xxxx: number of e.g. hospital visits of type xxxx
time in hospital: duration of hospital stay (days)
tolazimide: allergy to tolazimide?

✭✭✭✭❤❤❤❤This tree does not agree with the majority classification and is not used

Table 11 Worked example for thyroid condition data set

x = {. . . , Age = 35.0, TSH = 13.0, T3 = 3.0 FTI = 111.0 . . .
. . . , TT4 = 141.0, T4U = 1.27, TBG = 0.0, . . . }

Extract Paths
Redistribute

Weights
Generate Rule

Tree Path Final Explanation

1 TSH > 6.05 ∧ T3 > 2.85 ∧ FTI > 70 ∧ Age ≤ 51 TSH > 6.83
2 T3 > 1.15 ∧ T3 > 2.85 ∧ T4U ≤ 1.29 ∧ FTI > 157.0
: : : : : :

✘✘❳❳1200 ✘✘❳❳TBG ≤ 30.5 ∧✘✘❳❳TT4 > 11.5 ∧✘✘❳❳TT4 > 29.5 ∧✟✟❍❍Age > 13.5
TSH: Thyroid Stimulating Hormone level test result.
T3: Triiodothyronine level test result.
TT4: Total Thyroxine level test result.
T4U: Thyroxine Uptake level test result.
FTI: Free Thyroxine Index.
TBG: Thyroid Binding Glubulin level test result.

✭✭✭✭❤❤❤❤This tree does not agree with the majority classification and is not used

The proportions vary from around 0.5%−28%. There are important consequences

for methods that suffer this level of over-fitting. The most important consequence is

that 0.0 precision rules are so specific that they uniquely identify the explanandum

but cover no other instance. A unique identifier does not provide any useful new

information to explain the model’s classification. For the person requiring the ex-

planation, this outcome represents a failure of the system. The lowest failure rates

(0.5%) may be tolerable, depending on the criticality or compliance requirements

of the application. However, we do not foresee any circumstances where a failure

rate at the upper end of this range (28%) would ever be acceptable. Secondly, such

over-fitting is symptomatic of an algorithm that generates rules that are overly long;

having too many terms in the antecedent to be easily interpretable. To show the

link between over-fitting and rule length we present the rule length distribution in

Fig 10.

We present the results of the hypothesis tests in Tables 15-16. Clearly, Anchors

dominates out of the three algorithms on a statistical test of median differences.

However, we have shown that these results should be taken with caution. To begin

with, Anchors required us to discretise the data as a preprocessing step, which re-

sulted in alternative models that were less accurate classifiers. The difference was
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Figure 4 Mean Coverage for SAMME model explanations. Guide lines are added to mitigate
over-plotting.
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Figure 5 Mean Coverage for SAMME.R model explanations. Guide lines are added to mitigate
over-plotting.

two or more percentage points in 7/9 for SAMME models and 5/9 for SAMME.R

models. Moreover, Anchors has a long tail distribution of rule length, and some-

times a high proportion of critically over-fitting explanations. The tabulated means

of precision do not show a clear difference between Ada-WHIPS and Anchors (see

Appendix). Furthermore, precision (specificity) is in a trade-off with coverage (gen-

erality). Rules that are too specific only apply to a small fraction of other instances.

Ada-WHIPS makes a very small trade-off (just a percentage point or two in most

cases), and delivers much more generalisable rules that rarely, if ever, over-fit. This

behaviour is the result of optimising the novel stability function (equation 8).

Stability Analysis

Stability can also be used as a quality measure in the XAI setting. A precision of 0.0

for an explanation on a held-out test set can be caused by sampling artefacts (i.e. the

ground truth may be a non-zero probability of finding certain attributes and that

they are simply under-represented in the data set). For this reason, it can be argued

that a precision of 0.0 is a harsh penalty against the aggregate score. Yet, if the
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Table 12 Coverage: Top two by mean rank (mrnk) for three-way comparisons.

data 1st mrnk 2nd mrnk N z p.value

SAMME

breast LORE 1.54 Ada-WHIPS 1.61 170 0.41 0.3412
cardiotocography LORE 1.52 Ada-WHIPS 1.62 637 1.06 0.1442

diabetic retinography Ada-WHIPS 1.39 LORE 2.20 344 6.76 ≈ 0**
cleveland heart LORE 1.63 Ada-WHIPS 1.82 90 0.8158 0.2072

mental health survey ’16 Ada-WHIPS 1.51 Anchors 2.22 429 6.19 ≈ 0**
SAMME.R

breast Ada-WHIPS 1.48 LORE 1.70 170 1.29 0.0980
cardiotocography LORE 1.52 Ada-WHIPS 1.62 637 1.14 0.1269

diabetic retinography Ada-WHIPS 1.57 Anchors 2.17 344 4.98 0.0000**
cleveland heart LORE 1.50 Ada-WHIPS 1.86 90 1.52 0.0649

mental health survey ’16 Ada-WHIPS 1.68 Anchors 1.80 429 1.04 0.1492

Table 13 Coverage: Mean rank (mrnk) for two-way comparisons.

data 1st mrnk 2nd mrnk N V p.value

SAMME

mental health survey ’14 Ada-WHIPS 1.16 Anchors 1.84 377 66 ≈ 0**
hospital readmission Ada-WHIPS 1.01 Anchors 1.98 1000 782.5 ≈ 0**

thyroid Ada-WHIPS 1.10 Anchors 1.90 1000 14806 ≈ 0**
understanding society Ada-WHIPS 1.20 Anchors 1.80 1000 858 ≈ 0**

SAMME.R

mental health survey ’14 Ada-WHIPS 1.13 Anchors 1.87 377 119 ≈ 0**
hospital readmission Ada-WHIPS 1.33 Anchors 1.67 1000 174990 ≈ 0**

thyroid Ada-WHIPS 1.02 Anchors 1.98 1000 1754 ≈ 0**
understanding society Ada-WHIPS 1.07 Anchors 1.93 1000 6417 ≈ 0**

rule covers and is correct for just a single instance in the held out set, the precision

will be 1.0. This circumstance creates a discontinuity and gives a huge advantage to

undesirable, over-fitting explanations. Instead of precision, we can measure stability

while including the explanandum in the held out set. This condition results in the

formulation n+1
m+K

where n is the number of covered and correct instances, m is

the number of covered instances and K is the number of classes. See equation (8).

Thus, stability is very similar to the classical additive smoothing function (precision

with Laplace correction [65]). The minimum/maximum are both 1
1+K

for N = 1

but approach 0/1 asymptotically as N → ∞. We present the visual analysis of

stability in Figs 11-12 and the results of the hypothesis tests in Tables 17-18. The

post-hoc tests for the three-way comparisons show that Ada-WHIPS is the top or in

the top two with no statistical difference in all except mental health survey ’16 for

the SAMME model. For the two-way comparisons, Ada-WHIPS has a significantly

higher rank for hospital readmission (SAMME) and thyroid (SAMME.R) but lower

for the remaining results.

Efficiency Analysis

Finally, we show the distribution of computation time per explanation in Fig 13. A

brief visual inspection shows that Ada-WHIPS and Anchors are roughly comparable

for all data sets. The shortest run-times are fractions of a second and the longest

are two to three minutes. LORE runs at several orders of magnitude longer than

this. As we discussed in previous sections, it was prohibitive to run LORE for the

data sets mental health survey ’14, hospital readmission, thyroid and understanding

society with a single explanation taking over two hours to generate. We performed
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Figure 6 Mean Precision SAMME. Guide lines are added to mitigate over-plotting.
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Figure 7 Mean Precision SAMME.R. Guide lines are added to mitigate over-plotting.

both static and dynamic analysis of the LORE source code and discovered that the

bottle-neck was in a non-parallelisable, genetic-algorithmic step.

Discussion

Advantages of Ada-WHIPS

Our method improves on prior research in that it delivers explanations that have

high mean coverage (15%-68%). Ada-WHIPS explanations generalise well while

making only a very small trade-off to keep precision/specificity competitive (80%-

99%). At the same time, Ada-WHIPS is guarded against over-fitting while com-

peting methods have the tendency to present critically over-fitting explanations, in

0.05%-28% of cases. A critically over-fitting explanation is defined as an explana-

tion that uniquely identifies the explanandum and covers no other instances. Ada-

WHIPS does not make any assumptions about the underlying data distribution,

while some competing methods require continuous features to be discretised prior

to model training. This treatment of the data can result in a less accurate model,

detracting from the main benefit of using AdaBoost at the outset. By design, Ada-

WHIPS rules extract discrete, logical conditions from the base decision tree classi-

fiers of the AdaBoost model. These logical conditions have an information-theoretic
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Figure 9 Distributions of Precision SAMME.R

derivation and we speculate that this is what leads to Ada-WHIPS’s favourable

trade-off between precision and coverage. Ada-WHIPS is efficient. At its fastest,

explanations are generated in fractions of seconds. On high dimensional data sets,

we recorded times of up to three minutes per explanation. This is in line with com-

peting methods and could still be considered real-time in the context of a medical

consultation. As a minor contribution, we presented stability, a novel measure that

is a regularised version of precision. It gives more informative results in the XAI

setting as it penalises low coverage while correcting for sampling artefacts.

Limitations of Ada-WHIPS

By design, Ada-WHIPS is a companion method for AdaBoost models and the algo-

rithm is not transferable to other models without adaptation. In contrast, model-

agnostic methods, such as Anchors and LORE, can be applied to any black box

model with few restrictions. It is up to the end user to determine which approach

best suits their specific scenario. Ada-WHIPS is an heuristic method for finding a

short rule with high coverage and precision. Consequently, Ada-WHIPS will not

provide a feature attribution value for each attribute with theoretical guarantees.
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Table 14 Proportion of Over-fitting, 0.0 Precision Explanations.

SAMME SAMME.R

data Ada-WHIPS Anchors LORE Ada-WHIPS Anchors LORE

breast cancer 0 0.01 0.04 0 0.18 0.06
cardiotocography 0.00 0.07 0.09 0.00 0.08 0.09
diabetic retinopathy 0 0.15 0.19 0.00 0.13 0.28
cleveland heart 0 0.03 0.14 0 0.03 0.12
mental health survey ’16 0 0.00 0.01 0 0.04 0.06
mental health survey ’14 0 0.01 N/A 0 0.01 N/A
hospital readmission 0 0.15 N/A 0 0.01 N/A
thyroid 0 0.03 N/A 0 0.15 N/A
understanding society 0.00 0.01 N/A 0.01 0.08 N/A

hospital readmission thyroid understanding society

cleveland heart mental health survey 16 mental health survey 14

breast cancer cardiotocography diabetic retinopathy
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Figure 10 Distributions of Rule Length. Note the y-axis is log10 scaled.

If such values with guarantees are required, then the combinatorial calculation of

Shapley Values is the recommended method.

Challenges

Experimental studies of XAI are challenging in terms of their time cost. Each ex-

planation must be generated individually and, for all currently well-cited methods,

generation of explanations is a much more time consuming process than the classi-

fication step. Furthermore, each explanation must be evaluated individually, rather

than batchwise. For example, a trivial confusion matrix or AUC-ROC test is not

appropriate. We calculated scores for each explanation and then used the means, me-

dians and mean ranks to compare methods. Any experimental design for evaluating

XAI must allow for this time cost, and also consider how instances used to gen-

erate explanations can be separated from instances used to evaluate explanations.

Such designs may require three data partitions (training, explanation generating,

explanation evaluating). We opted for a leave-one-out procedure, training a model

on a training set then generating explanations one at a time and evaluating on the

remaining instances from a held-out set.

Conclusion & Future Work

Our main contribution is the novel algorithm Ada-WHIPS for explaining the classi-

fication of AdaBoost models with simple classification rules. AdaBoost models are

widely adopted as computer aided diagnostic tools and the non-clinical identifica-

tion of sub-health and mental health conditions using unconventional data sources
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Table 15 Precision: Top two by mean rank (mrnk) for three-way comparisons.

data 1st mrnk 2nd mrnk N z p.value
SAMME

breast Anchors 1.40 Ada-WHIPS 1.97 170 3.31 0.0004**
cardiotocography Anchors 1.39 Ada-WHIPS 2.09 637 7.89 ≈ 0**

diabetic retinography Anchors 1.62 Ada-WHIPS 1.96 344 2.85 0.0022**
cleveland heart Anchors 1.16 Ada-WHIPS 2.03 90 3.68 0.0001**

mental health survey ’16 Anchors 1.83 LORE 1.95 429 1.02 0.1539
SAMME.R

breast Anchors 1.35 Ada-WHIPS 2.08 170 4.38 < 0.0001**
cardiotocography Anchors 1.28 Ada-WHIPS 2.09 637 9.16 ≈ 0**

diabetic retinography Anchors 1.50 Ada-WHIPS 1.92 344 3.47 0.0002**
cleveland heart Anchors 1.24 Ada-WHIPS 1.90 90 2.77 0.0028**

mental health survey ’16 Anchors 1.83 Ada-WHIPS 1.84 429 0.08 0.4678

Table 16 Precision: Mean rank (mrnk) for two-way comparisons.

data 1st mrnk 2nd mrnk N V p.value
SAMME

mental health survey ’14 Anchors 1.11 Ada-WHIPS 1.89 377 45074 ≈ 0**
hospital readmission Anchors 1.24 Ada-WHIPS 1.76 1000 333580 ≈ 0**

thyroid Anchors 1.19 Ada-WHIPS 1.81 1000 405600 ≈ 0**
understanding society Anchors 1.08 Ada-WHIPS 1.92 1000 458060 ≈ 0**

SAMME.R

mental health survey ’14 Anchors 1.11 Ada-WHIPS 1.89 377 45281 ≈ 0**
hospital readmission Anchors 1.07 Ada-WHIPS 1.93 1000 480520 ≈ 0**

thyroid Anchors 1.47 Ada-WHIPS 1.53 1000 233670 0.1601
understanding society Anchors 1.31 Ada-WHIPS 1.69 1000 266150 ≈ 0**

such as online health communities. As a minor contribution, we propose stability

as a novel function for optimisation of explanation algorithms that explicitly avoids

over-fitting and can be used as a quality metric in evaluations of XAI experimental

research.

Directions for future work include developing the method for Gradient Boost-

ing Machines such as XGBoost that use decision trees as the base classifiers, and

applying the proposed method on a variety of healthcare and medical data sets.
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KL: Kullback-Leibler (divergence)
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Figure 11 Mean Stability SAMME. Guide lines are added to mitigate over-plotting.
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LORE: LOcal Rule-based Explanations

MDS: Multi-dimensional scaling

ML: Machine learning

PI: Partial independence (plots)

RNN: Recurrent neural network

SAMME: Stagewise Additive Modeling using a Multi-class Exponential loss function

SAMME.R: Real-valued SAMME

SHAP: SHapley Additive exPlanations

SVM: Support vector machine(s)

TSH: Thyroid stimulating hormone

WkNN: Weighted k-nearest neighbours

XAI: eXplainable artificial intelligence
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2 Supplementary

2.1 Cohen’s κ

Cohen’s κ is calculated as:
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Table 19 Coverage of Explanations of AdaBoost SAMME

data Ada-WHIPS Anchors LORE

breast cancer 0.3635± 0.0068 0.1530± 0.0053 0.3914± 0.0156
cardiotocography 0.3867± 0.0092 0.0637± 0.0018 0.4417± 0.0120
diabetic retinopathy 0.3225± 0.0125 0.0636± 0.0039 0.1060± 0.0060
cleveland heart 0.2310± 0.0084 0.1101± 0.0079 0.3259± 0.0259
mental health survey ’16 0.4974± 0.0026 0.3915± 0.0083 0.3777± 0.0086
mental health survey ’14 0.3368± 0.0063 0.1483± 0.0030 N/A
hospital readmission 0.1809± 0.0040 0.0095± 0.0004 N/A
thyroid 0.3630± 0.0074 0.0636± 0.0015 N/A
understanding society 0.6679± 0.0108 0.2729± 0.0040 N/A

Table 20 Coverage of Explanations of AdaBoost SAMME.R

data Ada-WHIPS Anchors LORE

breast cancer 0.33502± 0.0055 0.1513± 0.0054 0.3574± 0.0157
cardiotocography 0.3894± 0.0093 0.0667± 0.0019 0.4765± 0.0128
diabetic retinopathy 0.1349± 0.0053 0.0759± 0.0040 0.0945± 0.0068
cleveland heart 0.2182± 0.0085 0.1180± 0.0078 0.3754± 0.0271
mental health survey ’16 0.3578± 0.0054 0.1778± 0.0072 0.3248± 0.0101
mental health survey ’14 0.2927± 0.0053 0.1444± 0.0030 N/A
hospital readmission 0.1598± 0.0038 0.1345± 0.0042 N/A
thyroid 0.3793± 0.0073 0.0224± 0.0008 N/A
understanding society 0.6891± 0.0107 0.1057± 0.0038 N/A

where K is the number of classes, N is the total number of instances, Nij is the number of instances in cell ij of

the confusion matrix of true vs. predicted class counts, and Ni+, N+j are the ith row and jth column marginal

totals, respectively.

2.2 Friedman Test

The original Friedman test produces an approximately χ2 distributed statistic, but this is known to be very

conservative. Therefore, we use the modified F-test given in [64], because we have very large values for N , i.e. the

count of instances in the test set. The null hypothesis of this test is that there is no significant difference between

the mean ranks R of all the groups and the alternative is that at least two mean ranks are different. The null

hypothesis is rejected when FF exceeds the critical value for an F distributed random variable with the first degrees

of freedom df 1 = k − 1 and the second df 2 = (k − 1)(N − 1), where k is the number of algorithms:

FF =
(N − 1)χ2

F

N(k − 1) − χ2
F

, χ
2
F =

12N

k(k + 1)

[ k
∑

j=1

R
2
j −

k(k + 1)2

4

]

(11)

The recommended pairwise, post-hoc comparison test with the Bonferroni correction (for three pairwise

comparisons) proposed in [64]:

z = diffij

/

√

k(k + 1)

6N
, diffij = Ri − Rj (12)

where Ri and Rj are ranks of two algorithms and z is distributed as a standard normal under the null hypothesis

that the pair of ranks are not significantly different. The critical value for a two-tailed test with the bonferroni

correction is 0.025
3 = 0.00833.
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Table 21 Precision of Explanations of AdaBoost SAMME

data Ada-WHIPS Anchors LORE

breast cancer 0.9819± 0.0022 0.9915± 0.0062 0.8405± 0.0179
cardiotocography 0.9369± 0.0039 0.9915± 0.0097 0.8209± 0.0109
diabetic retinopathy 0.8031± 0.0075 0.8016± 0.0188 0.6300± 0.0182
cleveland heart 0.8744± 0.0118 0.9644± 0.0189 0.6300± 0.0321
mental health survey ’16 0.9862± 0.0010 0.9873± 0.0035 0.9744± 0.0061
mental health survey ’14 0.9301± 0.0021 0.9798± 0.0056 N/A
hospital readmission 0.8973± 0.0016 0.8163± 0.0110 N/A
thyroid 0.9205± 0.0026 0.9441± 0.0055 N/A
understanding society 0.9643± 0.0016 0.9749± 0.0035 N/A

Table 22 Precision of Explanations of AdaBoost SAMME.R

data Ada-WHIPS Anchors LORE

breast cancer 0.9831± 0.0014 0.9793± 0.0103 0.8215± 0.0210
cardiotocography 0.9324± 0.0032 0.9117± 0.0107 0.7931± 0.0110
diabetic retinopathy 0.8272± 0.0073 0.8164± 0.0175 0.5481± 0.0203
cleveland heart 0.9059± 0.0105 0.9640± 0.0189 0.5971± 0.0293
mental health survey ’16 0.9849± 0.0013 0.9502± 0.0100 0.9129± 0.0124
mental health survey ’14 0.9030± 0.0043 0.9811± 0.0056 N/A
hospital readmission 0.9129± 0.0013 0.9811± 0.0032 N/A
thyroid 0.9481± 0.0015 0.8154± 0.0110 N/A
understanding society 0.8677± 0.0043 0.8903± 0.0081 N/A

Table 23 Stability of Explanations of AdaBoost SAMME

data Ada-WHIPS Anchors LORE

breast cancer 0.9500± 0.0024 0.8992± 0.0072 0.8226± 0.0137
cardiotocography 0.9067± 0.0044 0.8311± 0.0078 0.8113± 0.0085
diabetic retinopathy 0.7745± 0.0067 0.7196± 0.0114 0.6388± 0.0106
cleveland heart 0.7973± 0.0106 0.7671± 0.0145 0.5906± 0.0195
mental health survey ’16 0.9770± 0.0011 0.9706± 0.0053 0.9592± 0.0046
mental health survey ’14 0.9125± 0.0021 0.9283± 0.0053 N/A
hospital readmission 0.8930± 0.0017 0.7306± 0.0071 N/A
thyroid 0.9121± 0.0028 0.9033± 0.0047 N/A
understanding society 0.9594± 0.0017 0.9586± 0.0035 N/A

Table 24 Stability of Explanations of AdaBoost SAMME.R

data Ada-WHIPS Anchors LORE

breast cancer 0.9505± 0.0017 0.8885± 0.0089 0.8035± 0.161
cardiotocography 0.9020± 0.0038 0.8226± 0.0087 0.7844± 0.0086
diabetic retinopathy 0.7821± 0.0064 0.7436± 0.0109 0.5814± 0.0111
cleveland heart 0.8171± 0.0092 0.7807± 0.0143 0.5985± 0.0190
mental health survey ’16 0.9707± 0.0015 0.9051± 0.0073 0.9013± 0.0088
mental health survey ’14 0.8852± 0.0041 0.9293± 0.0051 N/A
hospital readmission 0.9075± 0.0029 0.9514± 0.0029 N/A
thyroid 0.9401± 0.0015 0.7716± 0.0071 N/A
understanding society 0.8616± 0.0043 0.8624± 0.0063 N/A
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Figures

Figure 1

Conceptual diagram of Ada-WHIPS.

Figure 2

Conceptual diagram of a decision path for one instance through one tree.



Figure 3

Counter-factual spaces - conceptual diagram.

Figure 4

Mean Coverage for SAMME model explanations. Guide lines are added to mitigate over-plotting.



Figure 5

Mean Coverage for SAMME.R model explanations. Guide lines are added to mitigate over-plotting.

Figure 6

Mean Precision SAMME. Guide lines are added to mitigate over-plotting.



Figure 7

Mean Precision SAMME.R. Guide lines are added to mitigate over-plotting.

Figure 8

Distributions of Precision SAMME



Figure 9

Distributions of Precision SAMME.R

Figure 10

Distributions of Rule Length. Note the y-axis is log10 scaled.



Figure 11

Mean Stability SAMME. Guide lines are added to mitigate over-plotting.

Figure 12

Mean Stability SAMME.R. Guide lines are added to mitigate over-plotting.



Figure 13

Distributions of Computation Time per Explanation. Note the y-axis is log10 scaled.


