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The paper analyzes a model of optical transmittance of ultra-diluted gas, considering gas parti-
cles' non-locality and the quantum e�ect of their wave function spreading derived from solving the
Schrödinger equation for a free particle. The analysis does not depend on a particular form of the
wave function, but it assumes the reality of wave function. Among others, we show conserved mass
gas clouds may become signi�cantly more transparent than predicted by classic transmittance laws.
This unexpected phenomenon is possible because mass conservation is governed by the sum of prob-
abilities, while the Markov chain's product of probabilities controls the transmittance. Furthermore,
we analytically derive the upper limit the closed system transmittance may grow and demonstrate
a boundless, open gas cloud transmittance may grow up to 100%. Finally, we show the impact on
interpretations of quantum mechanics. The model is naturally applicable in deep space conditions,
where the environment is sparse. Furthermore, the model responds to dark matter requirements.

I. INTRODUCTION

The Beer-Lambert exponential transmission law [1] [2] describing attenuation of monochromatic
light by the homogeneous, the not very dense medium is well known for almost three centuries.
Despite developing newer, more advanced transmittance models, today it still applies to quantitative
spectroscopy [3], rare�ed gases, and astrophysical measurements. All these models rely on an
assumption of attenuating particle locality. However, an increasing number of experiments [4]
[5] convince us that the underlying theory of Quantum mechanics is not a local realistic theory
[6] [7]. There is one more assumption in most �classic� transmittance models: a light detector
is a macroscopic apparatus. Quantum mechanics is one of the most fundamental theories, so it
is necessary to check whether these two assumptions limit the scope of applicability of classic
transmittance models.

Quantum spreading is an e�ect that involves spontaneous spatial smearing of the	 wave function
over time. It leads to the spreading of the j	 j2 probability density of any reaction of a physical
object described by such a function. It comes directly from the free particle Schrödinger equation
solution [8]. Assuming wave function reality [9] [10] we apply this solution to each gas particle
independently during its free time between successive collisions. We proposed a kind of �smeared
gas� model. It leads, together with the assumption of non-locality, to a new model of electromagnetic
transmittance of thin gases. One of the predictions of this model is that the measured optical
transmittance depends, among others, on the size of the detector used and the duration of the
particle mean free time. The classic �local� approach to transmittance, e.g., the Beer-Lambert law,
does not predict such dependencies.

This paper presents a deeper analysis of the smeared gas transmittance model [11]. We analyze
open and closed systems. We show that transmittance may rise, thanks to spontaneous particle
spread, even in the closed system but only up to some limit. We analytically derive this limit. We
show that displacement of the measurement axis in relation to the cloud mass center may a�ect

� Visit: http://www.smearedgas.org/
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transmittance measurement. TheG parameter of the smeared gas transmittance model is analyzed
more thoroughly. In the end, we brie�y address the possibility of distinguishing quantum mechanics
interpretations using the outcome of the model.

This analysis is not quantum mechanical per se. It is just a statistical analysis of the system
employing quantum mechanical properties.

II. ASSUMPTIONS

There are just a few assumptions for the model. Gas particles are independent of each other,
and they are non-local wave functions (not necessary) of the same type. Gas is not relativistic, so
the Schrödinger equation applies. Particle distribution is homogenous, and wave functions di�er by
position only. The light detector is of some �nite size. The paper [11] describes those assumptions
in detail.

In this paper, we take a two-dimensional cloud model, which we cast along the measurement axis.
It makes a one-dimensional particle distribution we analyze. We show later how the two-dimensional
case upgrades to three dimensions, not a�ecting conclusions drawn.

Most of the analysis considers a detector of some constant diameter equal to2r . The detector
radius r is used as a length unitr = 1 across the paper. In real-world cases, r may be from microns
to meters. We assume 100% detector e�ciency without loss of generality.

We assume a simple measurement setup. Monochromatic light propagates perpendicularly to the
detector from a source of precisely identical shape and size as the detector. The volume between
them is called a �visibility tunnel�. This tunnel is the only area where photon absorption may
a�ect the number of photons (not) counted by the detector. We assume the detector is big enough
(macroscopic), so the visibility tunnel doesn't get wider due to non-classic photon trajectories. Both
the source and the detector are far from the cloud. See the �astronomical setup� considerations in
[11].

We interpret each individual gas �particle� wave function realistically: � 	( x) is a spatially ex-
tended �eld representing the probability amplitude to interact at x rather than an amplitude for
�nding, upon measurement, a particle.� [9]. We don't constrain the exact form of the wave function.
The normal distribution is used later in the text. It ful�lls the above requirement, and it is the free
particle Schrödinger equation solution. Also, it provides a convenient spread measure, namely the
standard deviation (stdev).

We assume the same spread for all particles in the cloud for simplicity. It means the same
standard deviation for all probability distributions. This requirement is not vital and may be
relaxed if necessary.

For a free particle Schrödinger derived distribution, the standard deviation depends on particle
free time (e.g. (4) in [11]). However, we don't focus on this property in the paper. We assume
cloud density and environment are sparse enough to let particles evolve free for some time, so they
reach some spread spontaneously.

For text simplicity, we describe as �absorption� all types of events that may happen to a photon
on its way to a detector, namely either scattering or absorption.

A single particle cross-section (� ) must be smaller than the detector area� � r 2, which is the
case for any atomic or molecular gas and common macroscopic detectors.
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A. The G coe�cient revisited

The G coe�cient is a normalizing constant of the smeared gas transmittance model introduced
in [11]. However, we present the more precise de�nition here.

It normalizes absorption probability to a real case. It depends on the physical properties of the
scattering medium, including wavelength-dependent particle cross-section, cloud density, etc. It
doesn't depend on detector size and particle spread, however. It matches quantitative spectroscopy
experimental results (for the classic limit) in the following way. Its value re�ects how much of the
detector's surface is �covered� by the obscuring cloud if particles are localized and the detector is
macroscopic (r � stdev): G = 1 � T Rcl . T Rcl is the classic transmittance of a cloud:T Rcl = e� nl� ,
wheren is the particles number density, l is the cloud thickness in the measurement direction (light
length) and � is particle attenuation cross-section [2]. We may expressG in terms of other popular
ways of quantifying opacity, namely optical depth (� ) or absorbance (ABS ): G = 1 � e� � =
1 � 10� ABS . It is clear the G coe�cient is limited: 0 < G � 1.

In the following examples, we assumeG = 0 :7. It is a case of a cloud with 30% transmittance
T Rcl = 1 � 0:7 or optical depth � = � ln (T Rcl ) � 1:20 or absorbanceABS = � log10(T Rcl ) � 0:52.
We chose such value because it corresponds to the typical transmittance in the conducted experiment
[12].

III. A SINGLE PARTICLE TRANSMITTANCE

This section shows how a single particle spread a�ects the absorption detection rate depending on
the detector position. Consider it a super simple, single-particle gas cloud. We introduce probability
distribution, detection rate and illustrate. The particle 1D normal distribution P reads as usual:

P(x) = j	( x)j2 =
1

p
2�stdev

exp
�

� x2

2stdev2

�
; (1)

where stdev is particle standard deviation.
The probability Pv (o) of �nding a particle in a given volume (o� r ) < x < (o+ r ) is the integral:

Pv (o) =
Z o+ r

o� r
P(x)dx =

1
2

�
erf

�
o � r

p
2stdev

�
� erf

�
o + r

p
2stdev

��
; (2)

where erf () denotes the Gauss error function. But this probability (of �nding a particle in some
volume) is not equivalent to the probability of absorbing a photon by this particle in this volume.
We need to bring the G coe�cient to adjust the probability of passing a photon from the source do
the detector. This probability is, by de�nition, the transmittance ( T R):

T R(o) = 1 � G Pv (o) = 1 �
G
2

�
erf

�
o � r

p
2stdev

�
� erf

�
o + r

p
2stdev

��
; (3)

as measured by ther -radius detector o�set from the particle by o.
Fig. (1) illustrates all three equations for a couple di�erent standard deviations. The following

columns present the relationships for ever wider standard deviations of the particle distribution.
The �rst column corresponds to a well-located particle (stdev � r ), i.e., the classical situation of
an ideal gas. With the increasing spread, we can see that i) the transmittance for the detector in
line with the particle is always the lowest, ii) the transmittance for the detector o�set further from
the center increases. For an open, in�nite system, the detector can be moved as far as possible.
There will also be some probability of being obscured by the non-local particle.



4

FIG. 1. Sample graphs for i) a single particle probability distribution, ii) probability of �nding a particle
within a detectability tunnel, and iii) transmittance as measured by a �nite detector. The detector radius
r = 1 . Each column graphs for a di�erent stdev value. i) The �rst row shows particle distribution P(x) after
Eq. (1). The solid red line is a sample detector position at o = 0 . The dashed red lines show detectability
tunnel (volume) boundaries. ii) The middle row shows the probability Pv (o) of �nding a particle within
a detectability tunnel that is a volume constrained by the detector position o according to Eq. (2). iii)
The last row plots the transmittance T R(o) = (1 � G Pv (o)) that would be measured by the 100% e�cient
detector set at o, see Eq. (3) with G = 0 :7. The green dashed line shows classic transmittanceT Rcl .

IV. THE SMEARED GAS TRANSMITTANCE

Let us study a system of many particles. Suppose an odd number of evenly spaced particles
exactly 2r apart. The detector is placed symmetrically in the middle. We will release those
conditions later. An identical probability distribution gives the probability of locating each particle.
Although we illustrate using the Gaussian distribution any probability distribution works, becauseR1

�1 P(x)dx = 1 . This way, we do not get attached to any particular form of a wave packet.
Fig. (2) shows such a con�guration for N = 9 particles. The solid red line marks the detector, and
the dashed red lines are the visibility tunnel boundaries.

We de�ne dilute gas cloud transmittance TR as proposed in [11].Transmittance is the probability
that a photon that the detector would have detected in the absence of a cloud passes not-absorbed
the entire N -element cloud and is detected by the detector.Collisions with individual particles are
independent, so we may consider this process as a Markov chain:

T R =
NY

n =1

�
1 � G P(on )

�
; (4)

where G P(on ) is probability of photon absorption by n-th gas molecule, which is o�set byon from
the detector, see Eq.(5) in [11].

Now we take advantage of the periodicity. Identical chunks (of the same shape and number) of
the probability distribution both leak out and �ow into the visibility tunnel. Thus, we can �unfold�
a single distribution periodically instead of considering all distributions in one place. Next, we
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FIG. 2. A sample con�guration of 9 identical particles distributed evenly every 2r . The solid red line marks
the detector, and the dashed red lines are visibility tunnel borders

FIG. 3. The idea of dividing a probability distribution into many chunks, periodically every 2r as required
by Eq. (5). Values of n, o, Pv (o), G Pv (o) and 1 � G Pv (o) are superimposed for every part for convenience.

virtually �shift� the detector N times (by a period of 2r ) and take the product of all its positions.
This way we may substitute on = r (2n � N � 1)=2, and Eq. (4) turns into:

T R =
NY

n =1

�
1 � G P

�
r

2n � N � 1
2

��
: (5)

Fig. (3) shows this idea. One distribution is divided into many chunks, periodically every 2r .
Values of n, o, Pv (o), G Pv (o) and 1 � G Pv (o) are superimposed for every part for convenience.

As expected, all probabilitiesPv (o) sum up to 1, which means that the analyzed interval contains
the entire particle. We may interpret it as the mass in the system is preserved as the probability is
not "leaking" sideways. For constantG, the following holds:

NX

n =1

Pv (on ) = 1 )
NX

n =1

G Pv (on ) = G = const : (6)

The transmittance is the product of 1� G Pv (on ), see Eq. (4). The sum of its components is always
constant

P
(1 � G Pv (on )) = const. But it doesn't guarantee the value of the product is constant

because:
NX

n =1

an =
NX

n =1

bn 6)
NY

n =1

an =
NY

n =1

bn : (7)

It shows that even for closed systems with mass conserved, the transmittance may change. In
general, the transmittance depends on how the distribution is divided. This division depends on i)
the shape of the probability distribution and ii) the width of the detector.
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FIG. 4. The charts show the sample dependence of transmittance on the standard deviation for the
measurement with a �xed size detector. The solid line is the measurement in the cloud axis, and the dashed
line denotes some o�-axis measurement. The length unit is equal to detector radius r . The detector width
is 2 (r = 1 ). A 1D cloud is N = 61 particles in total, and they are evenly spaced every 2r . The G coe�cient
is set to 0.7 (after T Rcl = 30%). The particles have a 1D normal distribution where the standard deviation
is denominated in detector radius units ( r ). The detector o�set for o�-axis detection is 20r from the cloud
axis. The upper chart shows the magni�cation of the left part of the bottom diagram.

The shape of the normal distribution depends only on its standard deviation. For r � stdev
or r < stdev , the detector sizer has a signi�cant in�uence on the individual product components
values. Thus on the value of the product and the measured transmittance.

In the classical case, for well-located ideal gas particles and macroscopic detector, we have
stdev � r . This way, all non-zero probability always gets to some single chunk. It may be any
chunk, but only one Eq. (4) product component gets not equal to 1. It doesn't matter which one,
the product doesn't change. In this case, detector size can't a�ect the transmittance measurement.
It explains why we don't observe such dependence in classic systems.

This analysis applies to any number of particles (N ). For even N the on substitution leading to
Eq. (5) should be just slightly di�erent.

Fig. (4) shows the dependence of transmittance on the standard deviation for the measurement
with a �xed size detector. The following section describes the chart details.

A. Dense or inhomogeneous clouds

If there are many more than one particle per detector (like in any real-world setup), then we repeat
the above reasoning many times in the following way. We divide the gas cloud into enough parts
so that each of them contains statistically only one particle per �detector area�. We calculate the
(partial) transmittance for each of these parts independently. From the property of independence
of the probability of absorption by individual gas particles, we calculate the product of partial
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transmittances, obtaining the total transmittance of the entire cloud.
The same approach works for analyzing inhomogeneous gas clouds. One should divide such a

cloud into homogenous parts, calculate separately (partial) transmittances, and take their product
to get total transmittance.

Alternatively, we can do the trick of adjusting the constant G. We can set it equal to 1 � T Rcl ,
where T Rcl is the classic transmittance of the cloud. Then we take a set of �arti�cial� particles
distributed exactly every 2r as requested above. Such an arti�cial particle represents all real
particles present in the visibility tunnel of a given chunk. Remember, however, the spread (e.g.,
the standard deviation) of this arti�cial particle is the same as any single cloud particle. I.e., we
don't sum individual particle masses to calculate spread speed. The latter method is very e�cient
for numerical computations.

B. 3D cloud

For a three-dimensional gas cloud, it �rst has to be cast onto the plane of the detector. For
such a 2D model, we demand to distribute particles evenly: one particle per detector area. The
straightforward way to analyze 2D is to consider normal distribution and a square detector with a
side equal to2r . For such a system: i) an analytical solution is available, see (11) and (18) in [11]
and ii) the square shape of the detector allows to cover the entire plane with adjacent detectors.
Then, we can perform the same periodic reasoning as given above for the 1D model.

An arbitrary shape of the detector makes reasoning more challenging and changes quantitative
equations. Yet, it is still possible as it only requires a �nite area of the detector. However, qualita-
tively the presented principle of the transmittance dependence on the detector area holds.

V. SCOPE OF APPLICABILITY

A. Classic system

The ideal gas is the classical limit of the model. Particles of such a gas have a negligible spread,
and a detector is of macroscopic size (r � stdev) [2]. The upper chart of Fig. (4) shows this limit
on the left, close to stdev = 0 . On the bottom chart of this �gure, the area of the classical system
applicability is practically invisible.

B. Open system

An open system is a con�guration where particle spread can reach a very high value, causing
probability to leak out far from the cloud. We know, however, that in real physical systems, the
maximum spread is limited. At least two factors limit stdev growth: i) the age of the Universe
and ii) the cloud environment causing particle decoherence (collapse of wave functions). It seems,
however, that there may be conditions in outer space where decoherence is negligible (darkness
and high vacuum), so the age of the Universe is the only upper limit. Particles of atomic size can
experience a very signi�cant spread there. Spread (e.g., measured withstdev) may be many orders
of magnitude greater than a detector size. As a result, a considerable transmittance increase may
happen there. The upper limit of transmittance growth in the open system is 100% simply because
probability (mass) leaks out of the system.
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C. Closed system

When the gas cloud is vast and the particles' spread is low, the probability doesn't leak out
beyond the cloud's outline. Let us call it a closed system because it is, in fact, similar to closed
systems with mass conserved.

In such a setup, the probability of distant particles �ows into the measurement region. E.g.,
the gas may be closed in a su�ciently large chamber, i.e., its diameterD chmb � stdev. Our
experimental setup [12], whereD chmb � 25 cm, stdev � 14µm and r � 25µm (stdev � 0:56r )
is such an example. A closed system can also mean an open system (e.g., in outer space) but
with a cloud diameter much larger than the spread: D cloud � stdev. The cloud diameter is the
diameter of the volume non-spread cloud occupies in a classical situation whenstdev ! 0. An
imaginary in�nite system, i.e., particles placed in�nitely far in all directions (perpendicular to the
measurement axis), should also be considered a closed system.

The classic ideal gas is a special case of a closed system.
The green dashed line marked �Close system/Open system� on Fig. (4) indicates the approximate

boundary between close and open systems.

1. Transmittance growth limit in a closed system

We found there is a limit of transmittance growth in a closed system. Generally, the increase is
possible thanks to Eq. (5) product components factorization getting more uniform with increasing
spread. All components tend to 1: (1� G=K ) ! 1( � ) because the probability distribution spreading
does not change the area under the curve.K is a number of chunks that hold P > 0. K grows
with the growth spread (stdev) so G=K ! 0(+) , becauseG = const. For large K we can rewrite
Eq. (5) considering only chunks with P > 0 in the following way:

T Rclosed = (1 � G=K )K : (8)

We �nd there is upper limit of the last equation:

T Rlimit = lim
K !1

(1 � G=K )K = e� G = e(T R cl � 1) ; (9)

because probability distribution gets divided into more and more (K ) intervals.
Reaching this limit is visible in Fig. (4) as a curve �attening in the middle of the chart. The

dashed green line labeledT Rlimit marks this limit.
We conclude with an example. An almost entirely opaque (classically) cloud withT Rcl = 0 , (i.e.,

G = 1 ) increases its transmittance (as a result of spontaneous spread but without mass escaping
beyond the original cloud outline) up to a maximum of T Rlimit = e� 1 � 36:8%.

2. Measurement axis

The boundary between the closed and the open system is not clearly speci�ed, especially when
the cloud is in an unlimited (deep) space. Carrying out the transmittance measurement in such
a closed system closer to one of the cloud edges (instead of centrally coaxial) a�ects results. Less
probability �ows into the visibility tunnel from either direction because there are fewer particles.
Therefore, the measured transmittance may be higher (for a speci�c particle spread) than when
measured centrally through the cloud.
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FIG. 5. Di�erent QM interpretations lead to di�erent smeared gas transmittance model predictions. The
solid line indicates the transmittance predicted with the assumption of �non-locality reality�. The dashed
line marks the transmittance assuming there are some small, ball-like objects absorbing-or-not photons,
i.e., according to the pilot-wave interpretation. The pilot-wave interpretation does not reveal any di�erence
from classic transmittance for systems with mass conserved (see �Closed system� range).

The dashed curve Fig. (4) shows such an o�-axis measurement sample. It coincides with the solid
line for the classic case (left-hand side). It is good. We don't expect any deviations of this type for
ideal gas. Also, both lines overlap on the right-hand side because the open system doesn't have any
speci�c axis. Only in the middle part of the chart, the dashed line is always above the solid line. It
means that the transmittance measured closer to the edge of the cloud gets higher sooner (asstdev
grows). This phenomenon may a�ect transmittance measurements of large deep space gas clouds.

VI. DISTINGUISHABILITY OF QM INTERPRETATIONS

The above analysis allows, among others, to experimentally distinguish some interpretations of
quantum mechanics. In particular, the pilot-wave interpretation [13] assumes the existence of some
localized objects that are only �controlled� by non-local functions. If it were so, if there were
some kind of �balls� in the system with a certain probability (aka cross-section) of absorbing-or-not
photons, then the dependence of transmittance on the spread would look di�erent. In particular, the
factorization of probabilities distributions would not a�ect the transmittance of a closed system. It
would not lead to an increase in transmittance and reaching theT Rlimit = e� G limit. Instead, in a
closed system, the transmittance would apply according to the classical law of transmittance (Beer-
Lambert law). A probability leak could be a cause of the only possible change in transmittance.
However, it happens only in an open system.

Fig. (5) shows this di�erence. The solid line indicates the transmittance predicted with the as-
sumption of �non-locality reality�. It doesn't expect any �nite size, ball-like objects to exist. The
dashed line marks the transmittance assuming some small, ball-like objects absorbing-or-not pho-
tons and that non-local wave functions just guide them. The dashed line shows the transmittance
according to the pilot-wave interpretation. One can see the distance between the two graphs, which
indicates the possibility of conducting experiments comparing the transmittances (such as [12]) and
thus di�erentiating the interpretations.
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VII. SUMMARY

This analysis is an extension of the transmittance analysis of ultra-diluted gases presented in [11].
It shows the non-obvious in�uence of particles quantum spread and detector area for transmittance
measurement. It predicts the optical transmittance of the smeared gas cloud may change (raise)
even when the mass of a system is conserved, like in some laboratory experiments. We found the
limit of such growth. The presented mathematical analysis does not depend on any speci�c form
of the gas-particle wave function. The paper also presents a brief analysis of the possibilities of
distinguishing between some interpretations of quantum mechanics. The model is falsi�able. We
propose possible experiments in [11] and report promising results of one of them in [12].

This model may help better understand phenomena occurring in deep space. A dark vacuum
has natural conditions for the spontaneous formation of smeared gas out of ideal gas. Diluted gas
is one of the most abundant forms of matter in the Universe. Observation of its transmittance,
such as spectroscopy, is one of the essential tools for studying its properties: composition, density,
changes, etc. This theory may be of some importance for the correct interpretation of astronomical
observations and astrophysical models. In addition, the demonstrated tendency for a spontaneous
increase in transmittance may be a part of the answer to the problem of the missing visible mass
in the Universe, the so-called dark matter.
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