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Abstract
We investigated the effects of unipolar magnetic fields (N or S polarity) on the physical properties of
deionized water. Long-term experiments revealed significant pole-dependent changes in water absorption
in the UV range (180 – 350 nm). In the case of water in open vessels, the order of absorption values was
C-N-S. That is, control (C) water absorbed the most, N-pole-influenced water absorbed less, and S pole the
least. The differences in absorption between N and S waters were substantial. In the case of closed
vessels, the differences in absorption spectra substantially diminished, and the arrangement of the
absorption values became C-S-N (highest to lowest). A correlation between UV absorption values and
evaporation rates was also found. The relative order of evaporation rates, C-N-S (highest to lowest), was
the same as the order of the absorption values, also C-N-S. The differences in UV absorption spectra of
the N- and S-treated waters persisted for several months after removing the magnets. Hence, the effects
of magnetic fields were long term. The interaction of magnetic fields with water is of interest not only
from a physical sciences perspective, but also in the context of the significant applications in medicine
and biology. 

Introduction
Throughout evolution, the Earth’s magnetic field (MF) has been a feature present in the environment of
living organisms. Nowadays, those fields are augmented by many artificial MFs — from various electronic
devices, electrical power lines, electric transport systems (trams, trolleys, trains), and so on. Studies have
revealed a wide variety of biological effects in living organisms exposed to MFs1,2,3,4. Nevertheless,
despite abundant, and diverse, experimental data, the mechanisms underlying magneto-reception have
yet to be identified.

Since water is the predominant component of most biological tissues, the biological effects of MF may
conceivably lie in water, particularly if water has diamagnetic properties5,6,7. It follows that any changes
in the physical and chemical properties of magnetized water could affect the biology of living organisms.
Therefore, the interaction of MF with water is of interest, not only from a fundamental science
perspective, but also in the context of applications in biology and medicine.

The properties of MF-influenced water have been widely investigated. However, many questions remain
controversial and poorly understood. The molecular dynamics simulation revealed that the structure of
the water gets more stable and the ability of the water molecules to form hydrogen bonds is enhanced
when a magnetic field is applied8. Some results imply that the average size of water clusters increased in
response to magnetic treatment9. It was found experimentally that the externally applied magnetic fields
cause displacements and polarization of molecules and atoms and result in changes of dipole moment
in the transition and vibrational states of molecules10. No generally accepted physical mechanism of MF
influence on water has been demonstrated up to now.
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Multiple experimental studies have shown an increase in water evaporation and a small decrease in the
surface tension of air/water interface during magnetic treatment11,12,13.14,15, although contrary results
can also be found for the surface tension. The evaporated amounts depended on which pole of the ring
magnet was directed up13.

Deformation of the air/water interface by magnetic fields and dissolved gases plays an important role in
many phenomena related to the water ‘s magnetic treatment15,16. It has been shown17,18 that the
magnetization of pure water required dissolved gas (oxygen or air). In magnetically treated oxygenated
water, infrared and Raman spectroscopic evidence indicated the formation of quasi-stable oxygen
clathrate-like hydrates18. No change in properties of pure water distilled from ultrapure water in vacuum
was observed by magnetic treatment17.

Most researchers pay no special attention to MF polarity, i.e., to whether the surface of the magnet
nearest the object of interest was the north (N) or south (S) pole. Nevertheless, fundamental differences
have been identified in the biophysical effects of the respective poles19. Since the appearance of the
latter work, many studies have investigated the effect of a MF on water, but the results have often proved
contradictory. Some studies showed that each pole produced effects that were quite different from the
other.

For example, the differing properties of opposite polarity magnetic fields were demonstrated in long-term
experiments connected with the biological treatment of organic wastes in water20. In that study, the N and
S poles of a magnet were applied, respectively, to a bioreactor for more than 10 days. The MF of the S
pole increased biological oxidation activity by a factor of two relative to the N pole. However, the increase
occurred only after four days of exposure.

It has been shown21 that magnetically generated water structures produced by different polarities of a
magnet produce differential effects on oestrous cycles and body weight of mice. In the catfish Clarias
batrachus, different water structures produced by S or N poles induced different and significant changes
of liver (hepatic cell density, size, and nuclear diameter)22. Male 9- to 10-week-old mice were exposed to
different polarities MF of 128 mT for 1 h/day during a 5-day period. It was found that MF affected
various organs and these effects were dependent on MF polarity23. A recent study24 showed a different
impact of opposite polarity magnetic fields on hematological parameters of spontaneously hypertensive
rats. Another recent study25 found that long-term exposure (88 h) of a MF of 9.4 T (Tesla) strength
(planned for use in magnetic resonance imaging) significantly inhibited tumor growth (up to 41%) in mice
with lung cancer. This effect was observed only with exposure to the magnetic north pole. These results
are in accordance with the earlier study26 results where a MF of 0.2–1 T was used for treatment of
different cell lines. It was found that the north magnetic field could effectively reduce the cell numbers of
all human tumor cell lines, but a south magnetic field did not produce significant effect. In contrast, most
non-cancer cells were not affected by N or S magnetic fields.
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The obtained results have revealed the high sensitivity of some bacteria and seeds to permanent
magnetic fields1. A study27 has revealed that the only north pole MF of a magnet (0.1 T) inhibited the
growth of E. coli and Staphylococcus epidermidis bacteria. The effect of a magnetic field (62 mT) on
chilli seed germination, growth and development has been investigated28. It was found there that the
seeds treated with south pole were showing maximum growth status as compared to north pole and
untreated control.

Perhaps the most impressive polarity-dependent effect is related to the human perception of the
geomagnetic field. Biophysical tests29 showed that the people's neural response was sensitive to static
components of the magnetic field. Moreover, the neural response was also sensitive to the polarity of the
magnetic field. It is interesting that the human cardiovascular system did not react to the polarity of a
MF30,31.

The present study focused on the effects of unipolar magnetic fields (N or S) on the physical properties
of water. We supposed that any changes in physicochemical characteristics might be reflected in the
spectral content of light absorption. Especially over the long term, we found significant pole-dependent
changes in water absorption in the UV range (185 – 300 nm) and, also, in evaporation rates. We also
noted a definite correlation between differences in UV absorption levels and differences in evaporation
rates of the control (C) water and waters treated with magnetic fields of N and S polarity (N and S water).
The differences in water-absorption spectra remained measurable up to and beyond six months post-
exposure.

Methods
Experiments were performed under laboratory conditions, at a room temperature of 21 ± 1°C. The MF was
produced by disc-shaped neodymium magnets, 45 mm in diameter and 3 mm thick. Magnetic field
strength at the flat surface was 0.4 – 0.5 T. We used de-ionized (DI) water, obtained from a Barnstead
D3750 Nanopure Diamond purification system. The purity of water from this system was certified by a
resistivity value up to 18.2 MΩ cm. For the magnetic treatment, glass Petri dishes, diameter 50 mm,
height 14 mm, containing DI water (5 ml) were positioned on the surface of each of two magnets (N or S
pole facing up) for a fixed duration. To avoid cross-interference, the dishes were kept 1.5 m apart from
each other. An additional Petri dish with control water was placed also at 1.5 m from the other two, under
the same lighting conditions. We carried out two series of experiments: short-term (20 minutes)

and long-term (20 – 28 days). For short-term experiments, the above-mentioned covered and open Petri
dishes were used. For long-term experiments with open vessels 50-ml glass beakers (diameter 40 mm,
height 55 mm) were used. Conical glass flasks (diameter 42 mm, height 70 mm, capacity 25 ml) plugged
by rubber stoppers were used for long-term experiments with closed vessels. To determine the differences
between the treated and untreated water, control DI water was contained in the same type of vessel as
water for treatment by N and S magnetic field, but with no magnetic field applied.
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For water-absorption spectral measurements, a Cary 5000 UV-Vis-NIR Spectrophotometer (175 – 3300
nm) was used. A series of scans (N-treated, S-treated, and control water) from 180 nm to 350 nm took
less than 10 min to complete for 0.4 nm wavelength intervals. Spectrosil® Quartz 1.4-mL cuvettes with
10 mm path length were used (Starna Cells, Inc. Catalog Number: 9-Q-10, Useable range: 170 to 2700
nm). Absorbance does not have special units and was measured in dimensionless absorbance units, or a.
u. The latter is a logarithmic ratio between the light intensity before and after the beam of light passes
through the sample.

To measure the weights of N, S and C waters remaining in the beakers during evaporation, an Acculab
VIC-123 digital scale with repeatability +/- 0.001 g and capacity 120 g was used. At the beginning of each
experiment the water weight of each beaker was 40.00 g. Weight measurements were carried out one
time per day in the morning (approximately 10 AM). On weekends, the measurements mostly were not
carried out, with several exceptions.

Results
Spectral range of measurement. Preliminary, short-term measurements of treated (N and S) and control
(C) waters revealed distinct differences in UV absorption spectra, while the IR spectra showed no
immediately obvious changes. Hence, we focused on UV absorption spectra, in the range between 180
and 350 nm. We first determined consistent features of water absorption in that wavelength range, by
examining three types of water: DI, ultrapure distilled, and tap water. Fig. 1 shows that all three spectra
had a consistent absorption peak (185.5–186.0 nm), with similar falloff at longer wavelengths. Hence,
the particular type of water had little impact on the shape of the spectrum. As will be shown later, the
characteristic spectral shape, including the peak, continues to exist for treated N and S waters.

It should be noted that this absorption peak has been observed earlier in water and water
solutions32,33,34. UV radiation at λ ~ 185 nm is the effective method of water puriଁcation35. Our
experiments show that the magnetically sensitive spectral region lies beyond that peak, to longer
wavelengths, where N- and S-treated waters show the largest changes.

Short-term experiments.

DI water was used for all experiments. A series of experiments was carried out to clarify the influence
of unipolar MF on DI water’s absorption spectrum. After the water (5 mL in every PD) had been
exposed (t = 20 min) to the MF, we immediately measured the spectra. We studied three types of
exposure: control water (C), water exposed to N pole (N) and water exposed to S pole (S). Typical
results showed differences of absorption that depended on polarity (Fig. 2).

It is seen that the absorption of S water was the highest. (For brevity’s sake, the order is written as S-N-C.)
Differences were not large (0.01 – 0.02 AU), which translated to differences of transmittance of only 4 -
5%. We found that these differences were inconsistent: the order of absorption of N, S and C waters could
change from experiment to experiment. Therefore, it was not possible to conclude that the results
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reflected any real physical phenomenon. The same experiments carried out with the covered PDs gave no
visible differences in the UV spectra of N, S, and control water.

Long-term exposure.

The results above implied that longer-term exposure to magnetic fields might possibly increase the
spectral differences between N and S waters and the repeatability of the results. The experimental
conditions remained the same except that the duration of continuous MF exposure was increased
significantly, to nearly four weeks. Two types of experiment were conducted: with open and closed
vessels (beakers and flasks, respectively).

Experiments with open beakers. During experiments with long-term MF exposure, absorption spectra were
measured every 2 – 3 days. For the first several days the differences between N, S, and C waters
remained small, and the order of absorption magnitude remained inconsistent. After approximately 18 –
20 days, however, the differences between N and S water grew larger, and the order of the absorption-
spectra amplitudes remained stable. During the subsequent period, the differences in absorption of N and
S water increased further and reached values up to 0.1 – 0.3 a. u. near the peak wavelength. The absolute
values of absorption also increased – i.e., the waters became more absorptive.

Figure 3. Representative UV absorption spectra of the N, S and C waters measured on 18th day of
magnetic field treatment. DI water samples were contained in open beakers (40 mL in every beaker), as
shown in the photo.

As indicated above, the absorption curves for experiments conducted in open beakers were consistently
ordered C-N-S, from highest to lowest, with one exception that showed N-C-S order (n = 5). After 18-20
days of the magnetic treatment, the repeatable result was that S water always showed less absorption
than N water, while C water had the largest absorption. These differences persisted for some time, even
after the end of MF exposure. A representative example is shown in Fig. 5. The figure demonstrates that
even at 70 days following the end of MF exposure, some differences in the absorption between S and N
waters remained.

Experiments with closed flasks. In theory, the absorption spectra could be impacted by physical and/or
chemical processes occurring during evaporation. To determine if such processes influence the
phenomena under study, particularly in long-term experiments with open beakers, we substituted closed
flasks. Conical flasks were filled with water up to approximately 2/3 of their volume and closed with
rubber stoppers. This minimized any impact of the evaporation during the experiment. We conducted five
experiments. Representative results are shown in Fig. 6.

The figure shows that the absorption of C water was the highest, followed by S and then N. The
differences were relatively small, and the results differed from those obtained using the open beakers
(Fig. 4). On the other hand, the ordering, C-S-N, did not change from experiment to experiment (n = 5). C
showed the highest absorption, while N showed the lowest. This ordering differs from that obtained in the
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experiments with the open beakers, which showed mostly C-N-S ordering. Thus, exposure to the open
environment apparently plays a role in the way MFs impact water.

Evaporation of N, S, and C waters. The principal difference between experiments conducted with open vs.
closed vessels is the presence, or absence, of evaporation. Since magnetic fields are known to influence
the evaporation rate12,13,14, we explored whether the evaporation rate might show MF polarity
dependence, an issue not yet explored in earlier experiments. Therefore, long-term evaporation
experiments were carried out with S, N and C waters.

In addition to measuring the absorption spectra, each type of water (N, S and C) contained in the open
beakers was weighed daily to determine the amount of water that had evaporated. Fig. 7 shows
representative amounts of evaporated water as a function of MF-exposure duration (in days).

The level of evaporation differed for C, N, and S waters. The highest level was for C water. N and S waters
showed lower and lowest evaporation levels, respectively. That distribution (C-N-S) was observed in four
out of five experiments. In those experiments, the evaporation order was the same as that for the
absorption spectra. In other words, the C water showed the highest absorption and the highest rate of
evaporation. S water showed the least absorption and the least rate of evaporation. One experiment gave
the N-C-S distribution in UV absorption and the same order (N-C-S) in evaporation. An interesting feature
was observed during the experiments: the rate of evaporation gradually decreased for N and S waters in
comparison with C water. This decrease was not uniform: the gradual decrease was the biggest for S
water (Fig. 7). Therefore, by 25th day in vessels with C, N, and S waters remained respectively 10.0, 12.5,
and 17.5% of water (Fig. 7). These values are close to their averaged values over the results of all
experiments, i.e., 11, 13, and 21%.

A similar diagram constructed using the results of another experiment is shown in Figure 8. Here, we
plotted the weight of the evaporated water component that was caused solely by N and S magnetic fields
(δWN, δWS) relative to the same initial weight of each water (WI):

δWN (%) =100 (WN - WC)/WI and δWS (%) = 100 (WS - WC)/WI respectively, for N and S waters. Having thus
eliminated the changes in weight caused by the usual evaporation process, we can more easily see the
differences in the long-term impact of N and S magnetic fields. They agree with our previous conclusions,
namely the rate of evaporation gradually and differently decreased for N and S waters in comparison
with C water.

All experiments indicate a relationship between the evaporation of water and the corresponding UV
spectra. Moreover, they show a direct proportionality between the differences in water absorption and the
differences in their evaporation.

The findings also have good correlation with transient alterations in growth and size of GH3 cells, which
were cultured during long-term (up to 5 weeks) continuous exposure to a 0.5 T magnetic field36. MF
strength was the same as used in our experiments. Following one-week exposure, cell growth reversibly
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declined by 22%, returning to control levels in one week. This agrees with our results, as we could observe
that the one-week exposure was still insufficient to create the stable changes in water structure. But with
a four-week exposure, a decline in growth of 51% was observed, and return to control levels did not occur
until four weeks’ time. This observation resembles those obtained in our long-term experiments, where we
observed large, stable changes in the UV absorption after 25-28 days of magnetic exposure (Fig. 4 and
Fig. 5).

Discussion
The experimental results reveal three principal findings. First, the influence of north and south poles on
water are not the same. In terms of the UV absorption spectra, the impact of N and S poles differ in
magnitude. This finding supports the notion that the impacts of the two poles may not be the same, a
result supported by other studies.

The second finding is that exposure to the environment matters. The impact of magnetic field differed in
situations in which the experimental chamber remained open to the environment compared to situations
in which the chamber was cut off from the environment. Results obtained with closed chambers differed
from those obtained with open chambers.

The third finding of significance is that evaporation rate is sensitive to various aspects of magnetic fields.
First, the very presence of the magnetic field impacted the rate of evaporation; and second, that rate
depended on whether the exposure arose from the north pole or south pole.

The question is how to these observations may be interpreted in terms of what we know about magnetic
fields and about water.

Recently, we identified the presence of exclusion zones (EZs) in water exposed to magnetic fields. When
magnets were inserted into aqueous suspensions of microspheres, the microspheres moved dynamically
from regions adjacent to each pole, leaving sizable zones free of microspheres. These zones, on the order
of 0.5 to 1 mm wide, closely resemble those found next to many hydrophilic surfaces37. The water in
these EZs differs substantially from ordinary liquid water and has been termed water’s fourth phase6.

If magnetic fields create these aqueous zones, then taking them into account would seem necessary
when considering the impacts of magnetic fields on water. At present, the long-term behaviours of these
zones have not yet been studied in detail, but one may extrapolate from shorter-term behaviours in
seeking a rationale for the effects observed here.

One such impact in on the UV-Vis absorption spectrum. In the UV region, the spectrum is profoundly
impacted by the presence of EZ, especially in the wavelength region near 270 nm38. If the aqueous
solutions in question here contain EZ, then we anticipate changes in the spectrum, which are observed.
We cannot be certain of the presence of EZ over the long term. On the other hand, EZs are routinely
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observed over days, and hence there is reason to suspect that they might persist over times considerably
longer than that.

As for the second point, the impact of environment, several possibilities exist. The first is the availability
of oxygen supply in one case but not the other. That could play a role. The reason is that EZ water, as
H3O2, contains a higher oxygen to hydrogen ratio than ordinary water6. Over the long term, it is possible
that even modest oxygen diffusion through an opening in the flask might produce relatively more EZ
water.

Another possibility to explain the difference between open and closed flasks is the presence/absence of
infrared energy. Infrared (IR) energy is necessary for EZ build-up and sustenance39. Open flasks, even
modestly open, can pass IR, while closed flasks cannot, as glass does not ordinarily pass IR.
Consequently, the amounts of EZ may well differ in open vs. closed flasks, especially over substantial
periods of time.

As for the third aspect, evaporation rate, one may expect differences in evaporation between EZ and bulk
water. Multiple factors enter consideration here, as the two structures differ qualitatively. EZ water
evaporates in large macromolecular clusters, especially at elevated temperatures40, whereas bulk water,
consisting of individual water molecules acting more-or-less independently41,42, can be expected to
evaporate under different regimes43,44,45,46. Hence, the relative presence/absence of EZ water can be
expected to have substantial impact on evaporation rate, as observed.

The interaction of magnetic fields with water is of interest not only from a physical sciences perspective,
but also in biology and medicine, especially in cancer therapy2,3,4. Our findings imply that different poles
of a permanent magnet may create different effects in both realms. This conclusion has been supported
by the results of multiple independent medical and biological studies.

In sum, magnetized water undergoes substantial structural change when exposed to magnetic fields.
These structural changes may be responsible for the effects noted here, both the spectral changes and
the changes of evaporation rates. Further studies are planned to explore these features in more detail.
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Figure 1

UV absorption spectra of the three types of water: 1 – DI water; 2 – distilled water; 3 – tap water.
Measurements for each type of water were made three times (at 1-minute intervals). The resulting curves
(three superimposed curves for each type of water) are practically indistinguishable.

Figure 2
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Representative UV absorption spectra of C water and water exposed to the north (N) and south (S) poles
of the magnet for 20 min. DI water samples (V = 5 mL) were contained in covered Petri dishes, as shown
in the photo.

Figure 3

Representative UV absorption spectra of the N, S and C waters measured on 18th day of magnetic field
treatment. DI water samples were contained in open beakers (40 mL in every beaker), as shown in the
photo.



Page 16/18

Figure 4

Representative UV absorption spectra of the N, S and C waters measured on the 25th (final) day of
magnetic field treatment.

Figure 5
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Representative UV absorption spectra of N, S and C waters, measured 70 days after MF exposure had
ended. The MF-treated water had been saved in plastic tubes sealed with plastic stoppers until the time of
measurement.

Figure 6

UV absorption spectra of the N, S and C water, measured on the 26th day of magnetic field treatment.

Figure 7

Amount of evaporated water as a function of MF-exposure duration. The vertical axis label shows the
ratio of the evaporated water weight (WN, WS, and WC) to the weight (WI) of water that had been in the



Page 18/18

vessel just before the beginning of an experiment (in percent).

Figure 8

Amount of evaporated N and S water in comparison with C water.


