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Abstract  

Mammalian aging coincides with an accumulation of senescent cells. Depletion of 

senescent cells shows promise to treat age-related diseases. However, many of the 

senolytic drugs used to deplete senescent cells cause profound toxic side effects. Here we 

tested a prodrug form of a pan-cytotoxic drug and demonstrated dramatically reduced side 

effects in geriatric mice while gaining senolytic selectivity. Specifically, we employ a 

strategy that takes advantage of the greatly enriched expression of the lysosomal 

hydrolase β-Galactosidase in senescent cells as a tool to selectively convert the prodrug 

into the active parent drug. In young, old and geriatric mice this prodrug was well tolerated 

and proved capable of reducing the burden of senescence in multiple tissues without 

evident toxicity. Importantly, chronic systemic treatment of geriatric mice resulted in 

reduced frailty index, improved muscle tissue and stem cell functions, improved cognitive 

functions and overall improved survival. This work supports future senolytic prodrug 

designs, based on other metabolic functions characteristic of senescent cells, on different 

parent drugs and aimed at clinical development. This new class of senolytic prodrugs 

promises capabilities of targeting selectively and safely specific senescent cell types in 

multiple tissues to treat age-related diseases in geriatric people.  

 

 

 

 

 

 

 

 

 



Introduction 

Frailty is one of the most relevant clinical syndromes in geriatric patients 1,2, which 

entangles older adults in a vicious cycle of energy dysregulation3 leading to loss of weight, 

strength and balance, exhaustion, low exercise capacity, and slow, unstable walking.  The 

outcome is an increased state of vulnerability, which diminishes the ability of the body to 

respond to stress, thus reducing physiological reserves and impairing the ability of the 

body to maintain homeostasis4.  In frail individuals, an apparently small insult (e.g., 

introduction of a new medication; minor infection; or minor surgery) can result in a 

dramatic and disproportionate change in health state: from independent to dependent; 

mobile to immobile; postural stability to falling; lucid to delirious5–7.  Frailty is also linked 

with cognitive decline, dementia and Alzheimer’s disease (AD)4,5. Although Frailty has 

been recognized by the World Health Organization1  and the U.S. National Academy of 

Sciences8  as a major health concern among the elderly, an effective therapeutic solution 

is still not available. 

Frailty is connected to cellular aging, which in turn is connected to cellular 

senescence9. Senescent cells are permanently withdrawn from the cell cycle and generally 

develop a persistent pro-inflammatory phenotype called the senescence-associated 

secretory phenotype (SASP) which is comprised of proinflammatory cytokines and 

chemokines10. Accumulation of senescent cells has been observed at sites of many age-

related injuries11. Studies confirmed that injecting senescent cells into young mice 

increased frailty and mortality12. Inducing apoptosis of senescent cells in vivo delays 

deterioration of the vasculature, heart, and kidney, and it replenishes the hematopoietic 

stem cell pool restoring tissue homeostasis after chemotoxicity and aging13–16. The 

efficacy of this treatment strongly depends on the subtype of the senescent cells targeted, 

being most pronounced against senescent cells with a high inflammatory status17. 



Selective killing of senescent cells with therapeutics (i.e., senolytics) have gained 

attention as a new therapeutic approach for age-related diseases. Targeting of pro-

survival Senescent Cell Anti-apoptotic Pathways (SCAPs)18 has emerged as the primary 

strategy for senescent cell killing. Until now, the reported classes of senolytics include 

kinase inhibitors, Bcl-2 family inhibitors, natural products, a p53 binding inhibitor, heat 

shock protein 90 (HSP90) inhibitors, UBX0101, a histone deacetylase (HDAC) inhibitor, 

cardiac glycosides and bromodomain and extra-terminal domain (BET) family protein 

inhibitors19. The combined administration of dasatinib and quercetin (targeting BCL-2/BCL-

XL, PI3K/AKT, p53/p21/serpine and the dependence receptors/tyrosine kinase SCAP) by 

clearing senescent cells in the tissues has been shown to improve the pathologies of 

diverse age-related diseases, including cardiac aging19, atherosclerosis20, osteoporosis21, 

pulmonary fibrosis22, hepatic steatosis23, and Alzheimer’s disease24. However, the general 

lack of specificity towards senescent cells25,26 often leads to hematological toxicities 

including neutropenia27 and thrombocytopenia28. Moreover, mTOR inhibitors have found 

their way into senolytic application since an inhibitory action on SCAPS has been 

described29. Again, their translational value in vivo is limited due to their chronic toxicity, 

which leads to hyperglycemia, hyperlipidemia, insulin resistance and increased incidence 

of new-onset type 2 diabetes30. These specificity issues of current senolytics limits their 

application to local delivery and/or to acute treatments as opposed to chronic systemic 

administration. The identification of agents that selectively kill senescent cells while 

sparing other cell populations represents a scientific challenge. Current senolytic drugs 

target molecular pathways shared between senescent and proliferating cells, thus 

achieving cell killing but not specificity. As a matter of fact, many known senolytic agents 

were initially developed as cytotoxic anti-cancer agents and subsequently repurposed for 

‘selective’ removal of senescent cell populations. Because proliferating cells are frequently 

more sensitive to the cytotoxic or cytostatic effect of anti-tumor agents, dose-limiting 



toxicity, especially in rapidly replicating hematopoietic, skin or gut cells, is a frequently 

observed side-effect, which strongly limits the clinical utility of these anti-senescence 

therapies27. Pulsatile administration of senolytic drugs has been proposed as a 

mechanism to minimize exposure of non-senescent cells and therefore off-target effects31. 

However, this approach likely limits therapeutic efficacy due to restricted dosing regimens, 

particularly in elderly individuals affected by geriatric syndrome. Typically, this patient 

population is frail, affected by comorbidities and do not tolerate the side effects sustained 

by younger individuals. Currently, there remains an unmet need to identify senolytics that 

can be targeted to senescent cells safely, selectively and systemically. 

Senescent cells are characterized by a notable change in biological properties such 

as an increase in the levels of mitochondria, reactive oxygen species, lysosomal content, 

and upregulation of many lysosomal proteins, including the lysosomal enzyme 

senescence-associated β-galactosidase (SA-βGal)32,33. Increased activity of SA-βgal is 

detected not only in cells undergoing senescence in vitro, but also in the tissues from aged 

animals and humans34–36. Recently, a promising strategy has been proposed based on 

galactose-derivative prodrugs. These prodrugs are selectively activated in senescent cells 

upon conversion into the parent active drug by the hydrolase activity of SA-βGal. In 

particular, specific senotoxic compounds such as duocarmycin, gemcitabine and 

navitoclax have been modified into galacto-derivative prodrugs showing increased 

selectivity in targeting senescence cells and efficacy in treating cancer and aged mouse 

models37–39. 

Here, we report a novel prodrug design to target senescent cells, allowing systemic 

removal of senescent cells in geriatric mice without noticeable side effects. We took 

advantage of the senescence-specific activity of SA-βGal in the design of a non-toxic 

senolytic prodrug derivative of the compound 5-Fluorouridine, a metabolic precursor of the 

clinically approved anti-cancer medication 5-Fluorouracil. We first tested the specificity of 



this prodrug on senescent cells in vitro. We then confirmed safety and efficacy of the 

prodrug in young (5 month-old), aged (22 month old) and in geriatric (30 month old) mice. 

Importantly, we showed that geriatric mice that received the prodrug treatment for four 

weeks altogether improved significantly: 1) frailty profile; 2) skeletal muscle function; 3) 

muscle stem cell function; 4) cognitive function; and 5) survival. Prodrug senolytic 

pharmacological treatments are a promising strategy to overcome the current limitations in 

chronic and systemic treatments of older individuals affected with neurodegenerative 

diseases, age-related diseases and geriatric syndromes.  

 

Results 

Generation of 5FURGal Prodrug. 

Design of the senolytic prodrug employed in this study begins with a small molecule 

having intrinsic senotoxicity, and then chemically conjugates at an appropriate site within 

the molecule the hexose sugar galactose to generate a β-D-galactopyranosyl adduct such 

that the cytotoxicity of the parent molecule is masked. The inactive prodrug is therefore 

transformed into its cytotoxic parent only within senescent cells after hydrolytic cleavage of 

the β-D-galactosyl promoiety by the abundantly expressed SA-βGal enzyme (FIG 1a). A 

small library of cytotoxic chemotherapeutic compounds amenable for chemical 

modification as described was assembled. In vitro screening was performed to verify the 

ability of these small molecules to induce apoptosis in human senescent fibroblasts. 5-

Fluorouridine (5FU) is a well-characterized chemotherapeutic agent, which exerts its 

cytotoxic action on cancer cells by interfering with DNA replication through inhibition of 

thymidylate synthase. Interestingly, 5FU also showed the ability to induce apoptosis in 

senescent cells by interfering with RNA synthesis40. This compound is known for its high 

level of toxicity in vivo and was chosen to test the capacity of the prodrug derivation to 

prevent its side effects while retaining senolytic efficacy. Following our prodrug design 



concept, we modified 5FU into the inactive prodrug 5-fluorouridine-5′-O-β-D-

galactopyranoside (5FURGal) and proceeded to validate its senolytic activity and safety in 

vitro and in vivo (Fig. 1b). 

5FURGal prodrug selectively kills senescent cells in vitro.  

We first tested the specificity of the 5FURGal prodrug. In particular, we evaluated 

whether the pro-apoptotic effects of the parent drug 5FU against proliferating or quiescent 

human fibroblasts were blunted for prodrug 5FURGal, while maintaining senotoxic efficacy 

of the latter against senescent fibroblast cells. 

As anticipated, while the cytotoxic potency of 5FU was greatest against proliferating 

human IMR90 fibroblasts (IC50 ~ 0.0015 mM), substantial toxicity of the parent drug was also 

observed against quiescent or senescent fibroblast cells (IC50 = 0.07 and 0.039 mM 

respectively).  By contrast, we found that 5FURGal showed minimal toxicity against either 

proliferating fibroblasts (IC50 ~ 4.4 mM) or quiescent fibroblasts (IC50 > 10 mM) but retained 

pro-apoptotic activity toward senescent IMR90 cells (IC50 ~ 0.30 mM) as intended (Fig 1c-

e). To confirm the hypothesized mechanism of action that 5FURGal is specifically 

hydrolyzed by SA-βGal, we employed human fibroblasts where the gene GLB1 encoding β-

Gal has been knocked out. As predicted, we found that β-Gal deficient senescent cells were 

significantly less sensitive to 5FURGal (IC50 > 10 mM) than β-Gal proficient senescent cells 

(IC50 ~ 0.30 mM), suggesting loss of their ability to convert 5FURGal into parent drug 5FU 

(Fig. f-g). Finally, to explore non-specific effects of 5FURGal on the cell cycle, we cultured 

proliferative or senescent fibroblasts, with or without 5FURGal and in the presence of EdU, 

a thymidine analog that is incorporated during the S Phase of the cell cycle. We found that 

5FURGal had no impact on cell cycle phases in either cell population (Supp. Fig. 1). Taken 

together, these results show that 5FURGal is efficiently converted into 5FU in senescent 

cells but not in proliferating or quiescent cells, suggesting that prodrug 5FURGal might be a 



suitable candidate senolytic molecule with high selectivity for senescent cells and minimal 

toxicity for non-senescent cells.  

5FURGal is well tolerated in vivo. 

To evaluate whether the selectivity of 5FURGal can prevent the toxicity of the parent 

drug 5FU, we tested the effects of both compounds in vivo in four month-old C57/b6 mice. 

We found that 5FURGal did not replicate the severe acute toxicity of 5FU observed after IP 

administration. In particular, dosing mice with (100 mg/kg) 5FU resulted in: a) loss of body 

weight (Fig. 1h); b) loss of spleen mass (Fig. 1i), loss of bone marrow cell count (Fig. 1l), 

and c) thrombocytopenia, neutropenia, and lymphocytopenia (Figure 1m). Conversely, mice 

treated with an equimolar dose of 5FURGal (160 mg/Kg), similar to vehicle-treated control 

mice group, showed no deleterious impact on any of the parameters analyzed, suggesting 

that 5FURGal is not acutely toxic in the tissues tested. Moreover, pharmacokinetic studies 

demonstrate that mice dosed intravenously with 5FURGal show low levels of systemic 

conversion of prodrug to the parent drug 5FU (~2% on a dose-adjusted basis) (Supp Fig. 

2). Taken together, these results indicate that 5FURGal could be safely administered 

systemically with minimal toxicity and high tolerability in young mice.  

 

A luciferin prodrug is employed to assess senescence-associated bioluminescence 

in aged mouse models. 

To test the senolytic efficacy of 5FURGal, we investigated its ability to target 

senescent cells in vivo. First, we developed a novel preclinical murine model to assess 

senescence levels non-invasively using a prodrug strategy similar to 5FURGal. Young (4 

months) and aged (22 months) transgenic mice constitutively expressing the bioluminescent 

enzyme Luciferase (FVB-Tg(CAG-luc,-GFP)L2G85Chco/J or FVB-LucGFP) were used to 

develop a method of senescence-associated bioluminescence imaging (SA-BLI). To 



achieve this, we employed LUCGal, a β-D-galactosyl conjugated prodrug version of luciferin 

(the luciferase substrate). Similar to 5FURGal, LUCGal is hydrolyzed selectively in cells 

where expression and activity of SA-βGal are highly enriched (Fig. 2a). Bioimaging of these 

mice showed that aged mice have ~6 fold higher levels of bioluminescence compared to 

young mice, suggesting increased levels of SA-βGal+ cells associated with age (Fig. 2b and 

c). As a positive control, we treated a cohort of young mice with the chemotherapeutic agent 

Doxorubicin (‘chemo mouse’ model), reported to induce cellular senescence in vivo and 

capable of promoting an accelerated aging phenotype in cancer patients41,42. We found that 

the levels of SA-BLI in chemo mice were similar to naturally aged mice (Fig. 2b and c). Next, 

from the same mice previously employed for the SA-BLI studies we isolated liver tissue to 

confirm levels of senescence histologically. We performed colorimetric staining for SA-βGal 

in sections of liver and we found that, similar to the SA-BLI results, young mice exhibited 

only baseline levels of SA-βGal. Conversely, both chemo mice and naturally aged mice 

showed ~800-fold higher levels of SA-βGal compared to baseline, indicating accumulation 

of senescent cells (Fig. 2d and e). These results were consistent with gene expression levels 

of Cdkn2A (p16INK4A), another reported marker of cellular senescence. We performed qPCR 

in liver samples isolated from the same mice, and we found that p16INK4A was upregulated 

~16 fold in naturally aged mice and young chemo mice compared to untreated young mice 

(Fig. 2f). Taken together, these results suggest that a prodrug derivative of luciferin can be 

effectively employed to achieve selective SA-BLI in aged mice as a preclinical model to 

study cellular senescence.  

 

5FURGal shows senolytic and functional efficacy in aged mice. 

To test efficacy of the prodrug 5FURGal for senolytic and functional activity in vivo, 

we evaluated the overall physical performance for aged FVB-LucGFP mice and correlated 



this with SA-BLI levels. To this end, we measured grip strength, endurance, balance and 

spatial learning memory and combined the results into a performance score. We found that 

this performance score inversely correlates with SA-BLI levels in aged FVB-LucGFP mice, 

suggesting that in aged mice higher levels of senescence are associated with lower 

physiological performance (Fig. 3a). Next, we treated aged FVB-LucGFP mice via 

intraperitoneal (IP) injections with two doses (separated by two days) for two weeks of: a) 

5FURGal at 140 mg/Kg; or b) saline. Mice treated with 5FURGal showed a reduction of SA-

BLI when measured 3 days following the last injection (Figure 1b and c). Next, the day after 

SA-BLI was measured we tested the effect of 5FURGal treatment on physiological functions. 

Compared to aged mice treated with saline, aged mice treated with 5FURGal showed 

improved grip strength, running time and learning spatial cognitive functions (Fig. 3 d-f). To 

confirm prior SA-BLI results, we histologically assessed SA-βGal and we found lower levels 

in livers of aged mice treated with 5FURGal (Fig. 3h, i). Similarly, p16INK4A gene expression 

levels were reduced in kidney and liver tissues (Figure 1g and l), further suggesting that 

5FURGal treatment results in clearance of senescent cells in vivo. To confirm these results 

in a different model of in vivo senescence, we employed the chemo mouse model. Chemo 

mice that received a treatment with 5FURGal 4 and 6 days after the last Doxorubicin 

injection presented reduced levels of SA-βGal staining in the liver compared to chemo mice 

treated with saline (Supp. Fig. 3a,b). Taken together, these results suggest that 5FURGal is 

capable of reducing senescent cell levels in vivo in multiple tissues and following different 

senescence induction stimuli. Finally, to test the beneficial senolytic effects of 5FURGal in 

a model different from natural aged mice, chemo mice were employed as a model of 

accelerated aging. When treated with saline, chemo mice showed significant weight loss 8 

days following Doxorubicin dosing. However, 5FURGal treatment increased the tolerability 

for Doxorubin treatment with a significant attenuation of weight loss (Supp. Fig. 2c). Taken 

together, these results suggest that the beneficial senolytic effects of 5FURGal in aged mice 



models lead to recovery of youthful healthy physiological traits.  

 

5FURGal reverts physiological traits of Frailty in geriatric mice. 

Next, we aimed to test whether 5FURGal was able to reduce the burden of Frailty in 

geriatric mice. With this goal in mind, we chose a model of aged-related Frailty Syndrome 

which includes loss of certain skeletal muscle functions. In particular, we employed a cohort 

of geriatric (30 month-old) Pax7CreER/flox-YFP mice, that express the yellow fluorescent 

protein (YFP) specifically in muscle stem cells upon induction with Tamoxifen.  We employed 

this cohort of geriatric mice for extensive longitudinal studies on physiological and cognitive 

functions. To comprehensively study the effects of 5FURGal on geriatric mice, the 

experiment was designed in three phases: 1) Frailty Assessment; 2) Cognitive Assessment; 

3) Skeletal Muscle Function Assessment (Fig. 4a). The mice were randomly divided into two 

groups, one to be treated with saline (vehicle control) and one with 5FURGal (dose 140 

mg/Kg), twice per week for four weeks in total, with a week of rest in between (Fig. 4a). In 

Phase One, we assessed the mice functionally before and after the treatment. A 

characteristic of Frailty is exhaustion and overall weakness, which results in decreased 

mobility that is considered to be one of the best predictors of age-related loss of functions43. 

To test this, mice were housed individually in cages with access to computer-controlled 

running wheels during the entire duration of Phase One. We found that geriatric mice treated 

with 5FURGal significantly improved their spontaneous activity, quantified as total distance 

run over time. Conversely, geriatric mice treated with saline showed the opposite trend (Fig. 

4b and Supp Fig. 4a). These results suggest that 5FURGal treatment improves activity 

levels in geriatric mice. 

To generate a Frailty index, we measured 10 different parameters in young mice to 

set the youthful baseline level (defined as 100% score, where each parameter was weighted 



for 10% of the score). In particular, we measured: 1) body weight; 2) motor coordination; 3) 

endurance; 4) dystonia; 5) ataxia; 6) grip strength; 7) spontaneous activity; 8) cognitive 

functions; 9) gait; and 10) coat condition. Frailty score was assessed in the geriatric mice 

cohort before treatment, and we found that they scored an average ~30% (geriatric level) 

compared to the youthful basal level. However, when we repeated the measurements 

following treatments, we found that geriatric mice receiving 5FURGal improved their Frailty 

Score, averaging ~60%, while saline-treated geriatric mice did not show improved scores 

(Fig. 4c). Moreover, despite the small cohort analyzed, geriatric mice treated with 5FURGal 

showed a trend of ~40% higher survival and lower mortality compared to mice treated with 

saline (Fig. 4d). Taken together these results suggest that systemic senolytic treatment with 

prodrug 5FURGal results in amelioration of the Frailty profile and decreased mortality in 

geriatric mice. 

 

Prodrug treatment improves cognitive functions in geriatric mice. 

Loss of memory and loss of spatial orientation are two aspects characteristic of age-

related dementia and Alzheimer’s disease (AD) which are often comorbid with Frailty 

Syndrome44,45. In Phase Two, we investigated 5FURGal properties in reversing cognitive 

decline. To measure spatial learning, we employed the Y Maze test. Mice were tested before 

and after treatment. Treated mice with 5FURGal improved their spontaneous alternation 

performance significantly compared to mice treated with saline, suggesting improved spatial 

learning functions (Fig. 5a and Supp Fig. 5a-b). We then performed the Morris Water Maze 

test to measure learning memory and memory retrieval. Geriatric mice treated with 5FURGal 

showed shorter latencies to escape onto the hidden platform and spend more time in the 

target quadrant in the probe test performing more similarly to young mice, suggesting 

improved memory functions (Fig. 5b, c). The loss of cognitive functions associated with age 



is linked to morphological changes in the hippocampus, where microglial cells’ activation 

increases46,47. Brains of mice were fixed, sectioned and immune-stained with antibodies 

against IBA-1 (marker of microglia cells) and CD68 (marker of activated microglia). We 

found that increased levels of microglia and activated microglia observed in the hippocampal 

brain regions of geriatric mice treated with saline were significantly reduced after 5FURGal 

treatment and more similar to brains of young mice (Fig.5 d-f). Taken together, these results 

show that systemic senolytic treatment with 5FURGal improved cognitive functions and 

reduced neuroinflammation in geriatric mice.  

 

Prodrug treatment restores skeletal muscle regenerative capacity and stem cell 

functions in geriatric mice. 

Frailty Syndrome is associated with loss of muscle strength and sarcopenia, which is 

associated with loss of muscle stem cell (MuSC) function48,49. In Phase Three, we measured 

skeletal muscle functions, including MuSC functions and muscle regenerative capacity after 

inducing an injury performing intramuscular injections of Cardiotoxin (CTX) into tibialis 

anterior (TA) muscles. First, to trace MuSCs over time, we injected young and geriatric mice 

with Tamoxifen to induce the recombination and expression of the YFP protein driven by the 

Pax7CreEr locus, which is selectively expressed by MuSCs. Then, to assess muscle 

contractile properties, we performed ex vivo electrophysiological biomechanics 

measurements of dissected TA muscles 10 days after CTX injury.  We found that TA 

muscles from geriatric mice treated with saline generated ~60% less contractile tetanic force 

compared to muscles from young mice treated with saline. Conversely, geriatric mice treated 

with 5FURGal significantly improved tetanic force generation compared to saline treatments 

(Fig. 6a). We then asked if the improved functionality of skeletal muscle was associated with 

improved regenerative capacity. To that end, we performed immunohistochemistry on 



sections of the left TA muscles analyzed previously for contractile properties. Morphometry 

analysis showed that the cross-sectional area of YFP+ centrally nucleated myofibers, a 

hallmark of regenerated myofibers, was significantly increased in geriatric mice treated with 

5FURGal compared to geriatric mice treated with saline (Fig. 6b, c).  

Next, we wanted to explore whether the improved muscle regenerative capacity was 

associated with improved MuSCs functions. Following muscle function assessment, YFP+ 

MuSCs were isolated from the right TA muscles by fluorescence-activated cell sorting 

(FACS). With age, MuSCs decline in number and in their proliferative potential50. We found 

that MuSCs isolated from geriatric mice treated with 5FURGal were higher in number 

compared to treatment with saline (Fig. 6d). Moreover, when these MuSCs were cultured in 

vitro, they exhibited enhanced proliferative capacity analyzed in a single cell myoclonal 

formation assay and by quantification of EdU+YFP+ MuSCs, after culturing them with EDU 

(Fig. 6e-f). Taken together, these results indicate that systemic senolytic treatment of 

5FURGal in geriatric mice improves skeletal muscle functions, MuSC functions and 

regenerative capacity.  

 

Chronic systemic treatment with prodrug is well tolerated in geriatric mice. 

Finally, we determined the tolerability profile of 5FURGal dosed chronically in 

geriatric mice. We thus performed toxicology studies in a separate cohort of geriatric mice 

(C57/b6 mice 28-30 months old).  Geriatric mice received a total of five tail vein injections 

with 130 mg/Kg of 5FURGal or saline over a three-week period. Similar to the 

Pax7CreEr/YFP mice cohort, no significant difference in body weight was detected in the 

two groups (Supp. Fig. 6a). Additionally, 5FURGal treatment did not negatively affect mice 

survival over the course of the three-week treatment (Supp. Fig. 6b). Spleen was dissected 

and analyzed at the end of the experiment (day 21). Although no statistical difference was 



measured between 5FURGal or saline treatments, the former showed a trend toward 

smaller spleen sizes, similar to young mice. Conversely, geriatric mice treated with saline 

showed aged-related enlarged spleen sizes (Supp. Fig. 6b). The hematology profile of blood 

isolated from both groups at day 21 did not show significant differences across a multitude 

of hematopoietic cell types (Supp. Fig. 6c). Taken together, these results suggest that, 

regardless of the elevated toxicity of the parent drug 5FU, the prodrug 5FURGal is well 

tolerated in geriatric mice and can be safely administered systemically and chronically 

without evident side effects.  

 

Discussion  

Frail old individuals often present with one or more comorbidities, including 

myocardial infarction, peripheral vascular disease, stroke, cancer, diabetes mellitus, 

arthritis, and chronic lung disease51. Due to their altered health status they cannot tolerate 

the side effects previously described for current senolytic therapies. For this reason, most 

of the current senolytic drugs are under development for single aged-related conditions. We 

explored a prodrug-based approach to increase the selectivity and the tolerability of a 

senolytic agent, with the goal of developing strategies for safe systemic therapeutics. In 

particular, we took advantage of the well-known SA-β-Gal, an hydrolase enzyme enriched 

in the lysosomal compartment of senescent cells and employed as a marker for cellular 

senescence. To this end, we employed a 5′-O-β-D-galactopyranosyl modification of the toxic 

nucleoside 5-fluorouridine 5FUR to generate the selective senolytic prodrug 5FURGal, and 

have investigated this molecule in various rodent models of age-related pathologies. We 

found that the prodrug 5FURGal was able to kill human senescent cells but spared 

proliferative or quiescent cells in vitro. When tested in vivo, young, old and geriatric mice 

tolerated the prodrug well with no evident toxic effects. Conversely, the parent drug 5FU, a 



toxic chemotherapeutic agent, is poorly tolerated in young mice and not tolerated in aged 

mice. As a senolytic, prodrug 5FURGal reduced the level of senescence analyzed through 

multiple methods, including a non-invasive in vivo bioluminescent assessment based on the 

same galacto-derivative prodrug strategy. Finally, efficacy studies of 5FURGal in geriatric 

mice demonstrated that the prodrug reduces the frailty profile while improving: 1) muscle 

tissue and stem cell functions; 2) cognitive functions; 3) and overall mouse survival. Taken 

together, our results show that using a sugar derivative prodrug-based strategy we can turn 

a pan-cytotoxic drug into a safe and effective senolytic. This strategy supports a new 

generation of senolytic drugs to overcome current limitations in treating elderly individuals 

with geriatric syndromes.   

Aging is often characterized by skeletal muscle catabolism leading to sarcopenia and 

frailty. Sarcopenia is a syndrome characterized by progressive loss of skeletal muscle mass 

and function related to aging, disease, starvation or disuse, and typically precedes frailty. 

Frailty is an age-related syndrome comprising states such as exhaustion, weakness, and 

slowness, and more broadly, cognition. Recent studies indicate a significant relationship 

between age-associated declines in both physical and cognitive function52. Importantly, 

frailty can be considered to be a state of diminished resolution of homeostasis following a 

stressor event that increases the risk of adverse health outcomes, including fall-related 

injuries and even delirium. 

Accumulation of senescent cells in aging and the resultant release of SASP-

associated factors (pro-inflammatory cytokines, chemokines, growth factors, immune 

modulators and proteases) have been linked with various diseases of aging53. Increases in 

IL-54,55, MCP-156,57, and p16INK4a58,59 are associated with frailty in humans. Notably, in 

preclinical studies of aging and function, transplantation of small numbers of senescent cells 

(autologous ear fibroblasts, non-autologous preadipocytes or human preadipocytes) into the 



abdominal cavity was sufficient to induce physical dysfunction in young mice12.  Senescent 

cells were also detected in skeletal muscle, suggesting that senescence can spread to 

distant tissues, possibly induced by the SASP factors. The impairments in maximal walking 

speed, hanging endurance, and grip strength that occurred following the senescent cell 

transplantations lasted for months. Using the combination of the senolytics, dasatinib plus 

quercetin (D+Q), senescent cell burden was decreased in the mice, and treatment of 

senescent cell-transplanted mice with even a single 5 day-course of D+Q improved physical 

function in the mice for several months. When D+Q was administered to aged mice (20 

months old) the expression of SASP factors was decreased and physical function was 

improved (increased muscle strength, walking speed and physical endurance, daily activity 

and food intake). The combination of the senolytics D+Q has further been shown to 

decrease the number of naturally-occurring senescent human adipose cells in tissue 

explants and their secretion of pro-inflammatory cytokines related to frailty12. 

Building on preclinical data supporting senolytic therapy for frailty-related parameters, 

senolytic therapy has advanced to an ongoing clinical evaluation in healthy postmenopausal 

women60. Oral dosing of the natural product Fisetin, a weakly potent, yet safe senolytic 

flavonoid compound, is being evaluated for the ability to help reduce markers of 

inflammation, insulin resistance, bone resorption and physical dysfunction in elderly women 

displaying gait disturbances. The primary outcome measures include: a) Improved six-

minute walk time; and b) Improved gait speed. Positive findings in this pilot study could set 

the stage for larger clinical studies exploring the effects of Fisetin and other future senolytic 

drugs on age-related dysfunction. 

Despite promising advancements with the early clinical trials to test effects of 

senolytic drugs in elderly individuals, potent and safe drugs to be administered chronically 

in geriatric patients are still an unmet need. Existing drugs that have been previously FDA 



approved for cancer-related clinical indications and employed in treating younger patient 

populations have been proposed for senolytic treatments. However, despite their proven 

senolytic potency in vitro for certain cell types, these drugs pose significant risks for older 

individuals, especially in the case of systemic exposure. In particular, small molecules such 

as kinase inhibitors or Bcl-2 family inhibitors present limitations including side effects that 

are not well tolerated in the elderly. Moreover, the lack of sufficient selectivity for cellular 

senescence poses additional risks of safety and efficacy. To overcome these limitations, 

new classes of small molecules based on prodrug strategies have been proposed as 

senolytics. In particular, the use of galactose-derivatized warheads has been suggested as 

a viable strategy to increase selectivity of small molecules toward senescent cells. Different 

prodrugs have been recently suggested based on this strategy: 1) a galactose-modified 

version of duocarmycin, a DNA-alkylating agent, has been proposed to increase the 

senolytic selectivity37; 2) galacto-conjugation of the senolytic agent ABT-263 also called 

Navitoclax, a Bcl-2 class inhibitor developed for cancer therapy, has been shown to increase 

the parent drug senolytic specificity and reduce the platelet toxicity39;  3) a galacto-derivative 

prodrug of gemcitabine, another chemotherapeutic agent, has been reported to reduce 

inflammation and restore physical function in 20 month old mice38. These reports are 

consistent with our findings that a galacto-derivative prodrug is a viable strategy to turn a 

pan-cytotoxic small molecule into a selective agent capable of killing senescence cells. With 

this goal in mind and focusing on the need of minimizing the side effects and toxicity of 

drugs in geriatric patients, we tested the prodrug 5FURGal, derivative of the cytotoxic agent 

5FU. Our results show that this is possible. Importantly, not only young or older mice but 

also geriatric mice tolerated 5FURGal without noticeable side effects. That allowed us to 

treat geriatric mice, typically frail and very sensitive to compound side effects, dosing them 

with chronic systemic regimens that resulted in improved physiological functions at 

multiple levels, including cognitive and muscular functions, and overall improved survival.  



 

Conclusions 

We believe that observations and strategies developed during this study will serve as 

a valuable precursor to generating novel and more potent prodrugs for systemic senolytic 

applications in the clinic. The galactose-derivative prodrug 5FURGal evaluated in this study 

as a tool compound has an improved safety profile due to its superior specificity against 

senescent cells. However, beyond SA-β-Gal, we have identified other metabolic functions 

that are preferentially enriched in senescent cells. In our drug development endeavours, we 

are currently employing these activities to produce a new generation of prodrugs designed 

for clinical use. Importantly, these novel prodrugs are based on parent drugs, different from 

5FU, that we found to have intrinsic selective senolytic activity and superior potency prior to 

the prodrug derivation. By implementing these compounds through additional medicinal 

chemistry optimization we aim to eliminate specific senescent cell types accumulated during 

aging and pathogenic processes without affecting other cell populations, including 

proliferative or non-senescent quiescent cells (such as many stem cells located in their 

niche). This approach could allow reduction of the chronic inflammatory process associated 

with senescent cells, which in future clinical developments will be tested for the efficacy in 

reducing the burden of physical pathology (such as fibrosis or cancer), cognitive decline 

(such as dementia or Alzheimer’s disease) and the degeneration associated with Frailty 

Syndrome and other age-related diseases.  

 

 

 



Figure Legends 

 

Fig.1 5FURGal targets senescence without affecting proliferation and quiescence in 

vitro and toxicity in vivo. a. Schematic model of the strategy employed to generate 

prodrug strategy. b. Molecular structure of the prodrug 5FURGal and the parent drug 5FU. 

c. experimental protocol employed to test senolytic efficacy in vitro. d. IC50 values 

reported for human fibroblasts cell line cultured in the following conditions: 1) proliferative; 

2) senescence; 3) quiescence with either 5FU or 5FURGal. e. Quantification of cell viability 

as indicated in panel (e) at different concentrations of either 5-FUR (left panel) or 5FURGal 

(right panel). f. IC50 values reported for human fibroblasts cell line KO for the hydrolase 

Galactosidase cultured in the following conditions: 1) proliferative; 2) senescence with 

either 5-FUR or 5FURGal. g. Quantification of cell viability as indicated in panel (f) at 

different concentrations of either 5-FUR (left panel) or 5FURGal (right panel). h-m. 

Tolerability study. Three separate cohorts of WT C57/B6 mice received two IP injections 

separated by two days of respectively: 1) saline; 2) 5FU; or 3) 5-FUR-Gal. At the terminal 

time point animal body weight was measured (h) before isolating and quantifying: 1) 

spleen weight (i); Bone marrow (l); hematopoietic cells (m). n = 5. Data are±s.e.m. For 

statistical analysis, t-tests were used. ***P<0.0001, ****P<0.00001. 

 

Fig. 2. Prodrug based bioluminescence shows that chemotoxicity and aging are 

associated with senescence burden. a. Molecular structures and enzymatic reaction 

steps of the prodrug Galacto-Luciferine into Oxyluciferin. b. Representative images of 

bioluminescence measured from mice constitutively expressing Luciferase and injected 

with Galacto-luciferine prodrug at: 1) 4 months of age (Young); 2) 24 months of age 

(Aged); or 4 months of age treated with Doxorubicin. Mice received one IP injection of 

Galacto-luciferine and immediately imagedc. c. Quantified results of non-invasive 



bioluminescence imaging (n = 6). d. Representative SA-β-Gal images from cross-sections 

of liver tissue after receiving treatments with saline or doxorubicin (Doxo) at different ages. 

e. Quantification of SA-β-Gal positive cells in liver tissue (n = 6). f. Quantification by qPCR 

of Cdkn2A gene expression from liver tissue (n = 6). Data are±s.e.m. For statistical 

analysis, t-tests were used. ***P<0.0001, ****P<0.00001. 

 

Fig. 3 Prodrug senolytic treatment reduces senescence and improves physiological 

functions in aged mice. a. Correlation between bioluminescence and performance. 

Bioluminescence in mice expressing Luciferase of 24 months of age were measured 

following injection of Galacto-Luciferin prodrug. Animals were then assessed for 

physiological functions. Specifically, measurements for grip test for limb voluntary force 

measurement, endurance on treadmill, balance on rotarod test, cognitive functions on Y 

maze test were collected and combined in a performance score. Each dot represents a 

mouse. b. Representative images of bioluminescence measured from mice constitutively 

expressing Luciferase and injected with Galacto-luciferine prodrug in mice of 24 months of 

age (aged) treated with saline or 5-FUR-Gal prodrug. c. Quantified results of non-invasive 

bioluminescence imaging (n = 6). Functional assessment in aged mice treated with 5-

FUR-Gal prodrug. Following bioluminescence imaging shown in (b and c), the same mice 

were assessed for: (d) voluntary limb force on grip strength test; (e) endurance on a 

treadmill test ; (f) spatial cognitive memory on a Y maze test. Mice were assessed before 

and after receiving treatment with either saline or 5-FUR-Gal. g. Quantification by qPCR of 

Cdkn2A gene expression from kidney tissue (n = 6). h. Representative SA-β-Gal 

 images from cross-sections of liver tissue after receiving treatments with saline or 5-FUR-

Gal at different ages. i. Quantification of SA-β-Gal positive cells in liver tissue (n = 6). l. 

Quantification by qPCR of Cdkn2A gene expression from liver tissue (n = 6). Data 

are±s.e.m. For statistical analysis, t-tests were used. *P<0.01, **P<0.001.  



 

Fig. 4 Prodrug senolytic treatment reverts frailty in geriatric mice. a. Schematic of the 

experimental design for the frailty study. Phase 1: Young or Geriatric mice were 

individually housed in cages with a computer controlled running wheel and acclimated for 

one week before being assessed for their frailty score baseline. Geriatric mice were then 

divided in two cohorts. One cohort of geriatric mice and the cohort of young mice received 

treatments with saline. The second cohort of geriatric mice received treatment with 

5FURGal. All animals received one IP injection with either saline or 5FURGal twice per 

week for two weeks, followed by a week of rest and another two-week of treatments. At 

the end of the treatments, all animals were assessed again for the frailty score. Phase 2: 

Following a week of rest, all mice were subjected for two weeks to Morris water maze to 

assess cognitive functions. Phase 3: following a week of rest, all mice received two 

injections of tamoxifen (TMX) separated by three days to induce recombination of the 

fluorescent protein YFP in MuSCs expressing Pax7. After 10 days all mice received an 

injection of Cardiotoxin (CTX) in both TA muscles to induce skeletal muscle injury, 

activation of quiescent MuSCs and the tissue regenerative process. After 10 days all 

animals were sacrificed, TA muscles immediately assessed for biomechanics (BM) to 

measure contractile properties. were then MuSCs isolated for in vitro studies or 

histological assessments. Black arrowheads indicate time of injections. b. Quantification of 

spontaneous activity measured with running wheels rotations. Total distance run is 

quantified for geriatric mice: 1) before initiating treatments (day 3); 2) three weeks of 

treatments (Day 21); 3) 5 weeks after treatments (day 35). c. Frailty Score. Young and 

geriatric mice were assessed for Frailty score before and after treatments with saline 

(young and geriatric mice) or 5FURGal (geriatric mice). Ten different parameters were 

measured, each weighing for up to 10% for a total of 100% based on young mice scoring 

(green broken line). d. Survival of geriatic mice during treatments. Geriatric mice were 



monitored during treatments with either saline or 5FURGal and their time of death 

recorded. Black arrowheads indicate beginning and end of treatments. Data are±s.e.m. 

For statistical analysis, t-tests were used. *P<0.01, ***P<0.0001. n = 7.  

 

Fig. 5 Prodrug senolytic treatment improves cognitive functions in geriatric mice. a. 

Spatial Learning. Geriatric mice were subjected to Y maze test before and after 

treatments. Graph shows fold changes of spontaneous alternation performance score (n = 

6). b. Learning Memory. Following treatment with saline or 5FURGal and Y Maze test, 

young and geriatric mice were subjected to Morris Water Maze. After one week of 

acclimation and training, mice swimming on a pool were assessed for their trajectory to 

learn the position of a platform hidden on a fixed position below the surface of the water (n 

= 6). c. Memory Retrieval. Following the learning memory test shown in (b), mice were 

tested for the capacity to remember the original position of the platform removed from the 

pool (n = 6). d. Representative images of immunofluorescence (IF) of brain cross-sections 

showing microglia in the hippocampal regions. Brains were isolated from the mice tested 

for cognitive functions assessments indicated in (a, b and c), (scale bar = 2000 µm). IF 

was performed to stain nuclei (DAPI) and markers of microglia (CD68 and Iba-1). 

Quantification of IF for total microglia (e) and activated microglia (f) in the hippocampal 

regions of young or geriatric mice that received treatments with saline or 5FURGal and 

assessed for cognitive functions (n = 4). Data are±s.e.m. For statistical analysis, t-tests 

were used. For graph of panel (b) 2-Way ANOVA was used. *P<0.01, **P<0.001, 

***P<0.0001, ****P<0.00001.   



Fig. 6 Prodrug senolytic treatment improves tissue and stem cell muscle functions 

in geriatric mice. a. Tetanic force production of young and geriatric mice treated with 

saline or 5FURGal. Following treatments and were tested for frailty, functional and 

cognitive functions, mice received an injection of CTX in the TA muscles to induce MuSCs 

activation and muscle regeneration. After 10 days, TA muscles were dissected and the 

tetanic force measured ex vivo (TA muscles from mice: young treated with saline n=9; 

geriatric treated with saline n = 5; geriatric treated with 5FURGal n = 6). b. Representative 

IF cross-sectional images showing centrally nucleated regenerated YFP+ myofibers. 

Muscles from young or geriatric mice were harvested after taking force measurements 

(scale bar = 500 µm). c. Quantification of the cross-sectional area of centrally-nucleated 

YFP+ fibers in regenerating TA muscles that received CTS injections (n = 4). d. 

Quantification using fluorescent activated cell sorting (FACS) of MuSCs YFP+ isolated 

from injured TA muscles that received CTW injections (biological replicates n = 4). e. 

Myoclonal assay of MuSCs YFP+ isolated from injured TA muscles that received CTW 

injections. Single MuSCs were isolated using FACS in a 96 well plate and quantified for 

their capacity to generate colonies (biological replicates n = 4). f. Cell cycle assessment. 

MuSCs isolated from injured TA muscles that received CTW injections were cultured in the 

presence of EdU and quantified (biological replicates n = 4). For statistical analysis, t-tests 

were used. *P<0.01, **P<0.001, ***P<0.0001, ****P<0.00001.  

 

 

  



Materials and Methods 

Preparation of 5-Fluorouridine-5′-O-β-D-Galactopyranoside (5FURGal) 

Step 1: 5-Fluorouridine (3.0 g, 11.4 mmol) and 2,3 dimethoxypropane (5.1 mL, 47.8 mmol, 

4.2 eq). was suspended in acetone (9 mL). To this was added p-toluenesulfonic acid, 

monohydrate (389 mg, 0.19 eq.) under a nitrogen atmosphere. After 30 min, the mixture 

was a clear solution. The reaction was stirred at room temperature overnight, after which 

time LC/MS analysis showed complete conversion of starting material. The mixture was 

concentrated to dryness, ethyl acetate was added, and the solution was extracted with 

water (3 x). The combined organic solvent was dried over sodium sulfate and then under 

high vacuum to give 5-fluoro-1-(6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)pyrimidine-2,4(1H,3H)-dione as a white solid (3 g, 86% yield) m/z 

=302.269 found 303.5 [M+H]+. 

Step 2: 5-Fluoro-1-(6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-

yl)pyrimidine-2,4(1H,3H)-dione (3.0 g, 9.9  mmol) was dissolved in dichloromethane (160 

mL). To this solution was added Ag2O (4.35 g, 19.3 mmol, 1.95 eq.), iodine (300 mg, 0.79 

mmol, 0.12 eq.) and (2R,3S,4S,5R,6R)-2-(acetoxymethyl)-6-bromotetrahydro-2H-pyran-

3,4,5-triyl triacetate (2.99 g, 1.18 mmol, 1.1 eq.) with stirring. The mixture was heated at 

reflux for 2 days and then filtered over a pad of Celite. The filter pad was washed with 

chloroform (3 x 110 mL) and the combined filtrate was washed sequentially with water, 

0.1M sodium thiosulfate solution and finally with water. The organic solution was dried 

over sodium sulfate, filtered and evaporated to dryness to give a brown residue (3.0 g). 

The product was subjected to normal phase chromatographic purification (80 g silica gel 

column) eluting with a gradient of 30% ethyl acetate in hexane to 100% ethyl acetate. The 

product fractions (eluting at ~85% ethyl acetate) were concentrated to afford 

(2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-((6-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-



yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)methoxy)tetrahydro-2H-pyran-3,4,5-

triyl triacetate as a solid white foam (2.0 g, 32% yield) m/z =632.56 found 633.5 [M+H]+.  

Step 3: To (2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-((6-(5-fluoro-2,4-dioxo-3,4-

dihydropyrimidin-1(2H)-yl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-

yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate prepared above was added TFA (70 

mL) and water (15 mL) and the solution stirred at room temperature for 30 minutes. The 

solvent was concentrated to dryness and it was azeotroped with toluene (4x100 mL) and 

toluene:methanol (4x100 mL). The product was dried under high vacuum to give as 

(2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-((5-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-

yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate  a 

white foam. (2.0 g, 91% yield) m/z =592.48 found 593.3 [M+H]+. 

Step 4: (2S,3R,4R,5S,6S)-2-(Acetoxymethyl)-6-((5-(5-fluoro-2,4-dioxo-3,4-

dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)tetrahydro-2H-

pyran-3,4,5-triyl triacetate (1600 mg, 2.7 mmol) was dissolved in methanol (70 mL). A 

solution of sodium methoxide (0.61 mL, 25% in methanol, 2.85 mmol, 1.05 eq.) was added 

slowly at ice bath temperature. The mixture was stirred at room temperature overnight, 

after which time LC/MS analysis showed the desired product. Resin 50 H (1.0 g) was 

added and the pH was checked (~6.0). The solution was filtered and the filtrate was 

washed with methanol (3 x 100 mL). The combined filtrate was concentrated to give an oil 

(1.3 g). The crude product was purified by HPLC to obtain the target compound 1-

((2R,3R,4S,5R)-3,4-dihydroxy-5-((((2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydrofuran-2-yl)-5-

fluoropyrimidine-2,4(1H,3H)-dione, aka 5-fluorouridine-5′-O-β-D-galactopyranoside (788 

mg, 68% yield) m/z = 424.1 found 424.9 [M+H]+.1H NMR (500 MHz, Deuterium Oxide) δ 

8.01 (d, J = 6.5 Hz, 1H), 5.81 – 5.77 (m, 1H), 4.36 (d, J = 7.7 Hz, 1H), 4.27 – 4.10 (m, 4H), 



3.83 – 3.79 (m, 1H), 3.79 – 3.73 (m, 1H), 3.72 – 3.65 (m, 1H), 3.62 (dd, J = 11.7, 4.1 Hz, 

1H), 3.60 – 3.55 (m, 1H), 3.53 (dd, J = 9.9, 3.4 Hz, 1H), 3.50 – 3.44 (m, 1H). 

 

Animals  

C57BL/6, ROSA26eYFP, CD-1 mice and FVB-Tg(CAG-luc,-GFP)L2G85Chco/J male mice 

were obtained from Jackson Laboratory. NOD/MrkBomTac-Prkdcscid female mice were 

obtained from Taconic Biosciences. Pax7CreER mouse were provided byDr Charles 

Keller, Oregon Health and Science University, Portland, OR, USA59.Tamoxifen injections 

for Cre recombinase activation were performed administering five doses (5 mg per mouse) 

every 2 days and waiting a minimum of 7 days before using the animals experimentally59. 

To control for tamoxifen injection toxicity, we injected all mice with tamoxifen. Mice were 

housed and maintained in the Veterinary Medical Unit at the Veterans Affairs Palo Alto 

Health Care Systems. Animal protocols were approved by the Administrative Panel on 

Laboratory Animal Care of Stanford University and of Molecular Medicine Research 

Institute (Sunnyvale, CA).  

 

Pharmacokinetic studies 

Concentrations of 5FU and 5FURGal were measured in plasma after IV dosing to male 

CD1 mice (N=3/dose group) at Pharmaron, Inc., Beijing, China. Compounds were 

formulated in 15% EtOH/15% PEG400/70% saline and dosed at 5 mg/kg and 40 mg/kg 

respectively. Blood was sampled at 8 time points over 24 hrs, quenched with an equal 

volume of 25 mM citrate buffer, and processed for plasma. Concentrations of compounds 

in plasma were determined using a specific LC-MS/MS method using a Shimazdu DGU-

20A5R HPLC, equipped with a 50 x 3 mm Phenomenex Synergi 2.5 mm Polar-RP column 

and an API 5500 LC-MS/MS detector. Compounds were eluted using a mobile phase 



gradient comprising water/MeOH/0.1% formic acid, and concentrations determined relative 

to calibration standards. Pharmacokinetics of 5FU and 5FURGal were calculated using 

WinNonlin (Phoenix, version 6.1). 

 

Voluntary running.  

Each subject was singly housed in cage with computer-controlled running wheels. All 

animals had access ad libitum to food, water and wheel running. Prior to the experimental 

period, subjects were given 3 days to acclimate to the cages and their surroundings. At 

day 3, the experimental group had internal ablations performed on both legs as described 

in ‘Ablation Model’ section in ‘Methods’. Mice were then returned to their cages with 

computer-controlled running wheels and allowed to run freely. Non-exercised controls 

were singly housed in cages with locked wheels. Cycles of 12-h day per night light were 

used in the rooms housing the mice and their cage bedding was changed once a week. 

Each cage wheel was attached to a counter motor that was then attached to data 

acquisition software that recorded the number of rotations that occurred during each 15 

min interval for 2 weeks. 

 

Treadmill running.  

Before each mouse began its exercise programme, it was acclimated to the Exer 3/6 

treadmill (Columbus Instruments) for 3 days with a 10 min running period at 10mmin each 

day. At the start of each training regimen, the mice slowly acclimated to the speed of the 

treadmill by beginning at 7 m/min and increasing the speed at 0.5 m/min until a speed of 

12 m/min was reached. On the fourth day, mice were tested for endurance, running at a 

speed of 13 m/minute, with subsequent increments of 1 m/minute every minute. A low 

voltage was applied to a grate at the end of the treadmill to encourage the mice to 



continue running for the duration of the protocol. Mice were removed from the treadmill at 

the point of exhaustion, which was defined as staying 5 seconds on the electric grid61. 

Grip test 

Mice were put on a BioSeb grip tester and their grip force measured for all four limbs. Mice 

were measured three-five times and the average was used to calculate grip strength. 

Values were normalized to mouse weight.  

 

Rotarod performance test 

Rotarod rotating cylinder (rod) (IITC Life Science Inc. Woodland Hills, CA, USA). The 

diameter of the rotating rod was 3.18 cm. A first “trial run” was performed, prior to the 

experimental test. Once all animals were on the rod, the motor was turned on at a starting 

speed of four RPM, and the rod rotation was continuously accelerated until it reached a 

maximum speed of 40 RPM after 300 s, which was the cut-off point to end the test. For 

each mouse, the trial was ended when the mouse fell from the rotating rod, or at the end 

of the cut-off point. The time it took the animal to fall from the rotating rod was recorded by 

a blinded experimenter. 

 

Y-Maze 

The Y-maze assesses spontaneous alternation as a readout for exploratory behavior and 

working memory in rodents. Our Y-maze consisted of 3 identical arms at 120° angles from 

each other. Mice were introduced to the test room 10 min or more prior to testing. The test 

room, lighting, and position of the Y-maze were the same each time. The paper floor of the 

maze was replaced fresh and wiped clean for each trial. The mouse was carefully placed 

into the center of the Y-maze and allowed to explore freely for 5 minutes. Each complete 



entry into one arm of the Y-maze labeled A, B, or C was scored manually if all 4 limbs 

crossed the threshold. Upon completion, each mouse was returned carefully to their 

respective cage. Total entries and triads were recorded for each mouse to determine 

changes in treated vs control.  Mice were tested before and after treatments and fold 

changes calculated accordingly.  

 

Morris Water Maze 

The mice were assessed post-injection with the Morris water maze for spatial learning and 

memory. The water maze was a steel circular pool 152 cm in diameter. It was filled with 

opaque white water at 21-22°C. A black, square platform (12.7 cm x 12.7 cm) was used 

for the training. Different shaped cutouts were placed just above the tank’s rim in each 

quadrant to be used as visual cues. Prior to the training sessions, the mice were handled 

for the first 3 days within the same room as the water maze to acclimate them to the 

handlers and the room.  On day 4-6, the mice were given 6 sessions to train with a 

platform that was raised 0.2 cm above the water level. During the visible platform training, 

both the platform and the drop location changed for each session. On day 7-11, there 

were 10 sessions with a hidden platform by submerging it 1.5 cm below the water level. 

Throughout all the hidden platform sessions, the platform remained stationary while the 

drop location was changed. On day 12, a probe test without the platform was performed 

for 2 minutes. The tests were recorded and analyzed for the time spent within each 

quadrant. 

 

In Vivo Scoring 

Animals were scored for the onset of symptoms including dystonia, coat condition, ataxia, 

body condition, gait disorders. The investigator recording onset and severity of symptoms 



was blinded as to treatment groups. All symptoms were scored on a scale of 0 to 10, with: 

a) 10 indicating no symptom; b) 5 indicating the symptom was detected but not 

consistently expressed; c) 0 indicating when the animal begins to express the symptom 

100% of the time. For fur conditions, a scoring was assigned for each of the following 

conditions: 1) alopecia; 2) dermatitis; 3) loss of pigmentation; 4) lucidity; 5) organization.  

 

Ex vivo force production 

An 800A in vitro apparatus (Aurora Scientific) was used to perform the ex vivo testing of 

the TA muscles. The testing chamber, along with the Krebs solution (Sigma), was kept at 

25 °C using an external water heater. To help ensure tissue viability, a 95% O2, 5% CO2 

mixture was used to oxygenate the testing chamber along with a petri dish containing 

Krebs solution. Mice were killed and the lower limbs excised from the ankle to B0.5 inches 

above the patellar tendon to ensure the entire TA muscle was removed. The legs were 

then pinned down in the petri dish coated with an elastomer (Sylgard-184, Dow Corning). 

The TA muscles were carefully dissected from the legs under a microscope and held 

under tension until attached to the force transducer lever. The muscle was attached to the 

force transducer lever by directly tying a knot around the top of the patellar tendon. The TA 

muscle was then attached to the force transducer lever and the bottom of the testing 

apparatus to secure the TA muscle in place. The testing chamber was raised around it to 

immerse the muscle in Krebs solution. A similar testing procedure to the in vivo protocol 

was used ex vivo except no voltage recruitment testing was performed. Imaging was 

performed in bind: the investigators performing the imaging did not know the identity of the 

experimental conditions for the transplanted cells. 

 



Bioluminescence imaging 

Bioluminescent imaging was performed using the Xenogen IVIS-Spectrum System 

(Caliper Life Sciences). Mice were anaesthetized using 2% isoflurane at a flow rate of 2.5 l 

min_1 (n.4). Intraperitoneal injection of D-Luciferin (50 mg ml_1, Biosynth International 

Inc.) or LUCGal (80 mg/Kg, Promega) dissolved in sterile PBS was administered. 

Immediately following the injection, mice were imaged for 30 s at maximum sensitivity (f-

stop 1) at the highest resolution (small binning). Every minute a 30 s exposure was taken, 

until the peak intensity of the bioluminescent  signal began to diminish. Each image was 

saved for subsequent analysis. Imaging was performed in bind: the investigators 

performing the imaging did not know the identity of the experimental conditions for the 

transplanted cells.  

 

Bioluminescence image analysis 

Analysis of each image was performed using Living Image Software, version 4.0 (Caliper 

Life Sciences). A manually-generated circle was placed on top of the region of interest and 

resized to completely surround the limb or the specified region on the recipient mouse. 

Similarly, a background region of interest was placed on a region of a mouse outside the 

transplanted leg. 

 

Histology 

 TA muscles were fixed for 5 h using 0.5% electron-microscopy-grade paraformaldehyde 

and subsequently transferred to 20% sucrose overnight. Muscles were then frozen in 

optimal cutting temperature, cryosectioned at a thickness of 10 mm and stained. For 

colorimetric staining with Hematoxylin and Eosin (Sigma) or Gomorri Trichrome (Richard-

Allan Scientific) samples were processed according to the manufacturer’s recommended 

protocols. For SA-β-Gal, stock solution was prepared using Corp X-GAL (Fisher Scientific) 



and staining was performed in combination with Feulgen Stain Kit (American Mastertech) 

for nuclear staining.  

 

Immunostaining 

 A 1 h blocking step with 20% donkey serum/0.3% Triton in PBS was used to prevent 

unwanted primary antibody binding for all samples. Primary antibodies were applied and 

allowed to incubate overnight at 4°C in 20% donkey serum/0.3% Triton in PBS. After four 

washes with 0.3% PBST, fluorescently conjugated secondary antibodies were added and 

incubated at room temperature for 1 h in 0.3% PBST. After three additional rinses each 

slide was mounted using Fluoview mounting media. Photographs were acquired using 

standard fluorescent microscope and a CCD camera. Volocity imaging software. Was 

used to adjust excitation and emission filters and came with AlexaFluor filter settings, 

which were used whenever possible. All exposure times were optimized during the first 

round of imaging and then kept constant through all subsequent imaging. The 

immunoreactivity was quantified as the percent area covered by ImageJ (ref). For each 

staining, a total of three hippocampal brain sections per mouse were analyzed. 

 

Antibodies.  

The following antibodies were used in this study. The source of each 

antibody is indicated. Mouse: GFP (Invitrogen, #A11122, 1:250); Collagen I (Cedarlane 

Labs, #CL50151AP, 1:200); Laminin (Millipore, #MAB1903, 1:750); ADD CD68 (AbD 

Serotec, 1:50), and Iba1 (Wako Chemicals, USA, 1:1250). 

 

Muscle Stem Cell Isolation and purification  

Muscles were harvested from hind limbs and mechanically dissociated to yield a 

fragmented muscle suspension using a gentleMACS dissociator (Miltenyl Biotec). This 



was followed by a 90 min digestion in a Collagenase II-Ham’s F10 solution (500 units per 

ml; Invitrogen). After washing, a second digestion was performed for 30 min with 

Collagenase II (100 units per ml) and Dispase (2 units per ml; Invitrogen). For 

Pax7CreER/ROSA26eYFP mice, MuSCs were directly sorted by endogenous eYFP 

protein expression. Cell sorting was performed on calibrated BD-FACS Aria II or BD 

FACSAria III flow cytometers equipped with 488-nm, 633-nm and 405-nm lasers to obtain 

the MuSC population. A small fraction of sorted cells was plated and stained for Pax7 and 

MyoD to assess the purity of the sorted population 

 

Myogenic colony-forming cell assay for MuSCs   

Single treated and control MuSCs  were deposited into wells of collagen- and laminin-

coated plates at 1 cell per well by BD FACSAria III flow cytometer. Collagen/laminin 

coating was accomplished by overnight incubation of the plates rocking at 4°C with a 1:1 

mixture of laminin (10 μg/ml ThermoFisher 23017-015) and collagen (10 μg/ml Sigma 

C8919) in PBS. Coated wells were washed three times with PBS before use. The cells 

were cultured in grow media, F10 medium supplemented with 20% horse serum and 5 

ng/ml basic fibroblast growth factor (bFGF; PeproTech 100-18B). After 6 days of culture, 

plates were fixed with 4% paraformaldehyde (Electron Microscopy Services 15710), 

stained with DAPI (Invitrogen D1306), and scored by microscopy to determine the number 

of myogenic colony-forming cells (MCFCs), defined by wells that contained at least 8 cells. 

 

EDU staining 

Staining was done according to the manufacturer protocol using the Click-iT EdU kit. Cells 

were label with Edu after switching to growth media. Cells were allowed to grow one day 

before fixation with 4% paraformaldehyde and permeabilization with 0.5% Triton X-100 in 



PBST. Cells were the incubated in Click-It reaction cocktail for 30 min before washing in 

PBS and imaging. 

 

Complete Blood Counts 

Mice were anesthetized using isoflurane and blood was collected via cardiac puncture 

using a 1mL syringe with a 25 gauge needle. Blood was transferred immediately to a K2-

EDTA microtainer tube, inverted 8 to 10 times and placed it on a rocker at room 

temperature. Blood was tested on a VETSCAN HM5 Hematology Analyzer running a 

software VetScan HM5 v2.3.  

 

Quantitative PCR 

For RNA extraction, samples were collected in RNAlater solution (Sigma-Aldrich, USA). 

Total RNA was isolated by using Quick-RNA™ Miniprep Plus Kit (Zymo Research). For 

mRNA analysis, isolated RNA was reverse transcribed using the High-Capacity cDNA 

Reverse Transcription Kit (Life Technologies) and qPCR was carried out on  QuantSudio 5 

Instrument (Applied Biosystem) using PowerUp™ SYBR® Green (Thermo Fisher 

Scientific) and gene-specific primers (Invitrogen). Relative quantification of gene 

expression was calculated by using the comparative CT method. PCR primer pairs used 

were: Cdkn2a Fwd: 5′-CCCAACGCCCCGAACT-3′;  Rev: 5′-

GCAGAAGAGCTGCTACGTGAA-3′. 

 

Image analysis 

All other analyses were performed using Image J or Volocity software and manually 

counting fibres using the free draw tool and also counting the number of nuclei and CSA of 

myofibers.  

 



Statistical analysis 

Unless otherwise noted, all statistical analyses were performed using GraphPad Prism 5 

(GraphPad Software). For statistical analysis, t-tests were used. All error bars represent 

s.e.m.; *Po0.05; **Po0.001; ***Po0.0001. 

 

Data availability 

 The data that support the findings of this study are available from the corresponding 

author upon reasonable request.
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