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Multiple-testing correction in metabolome-wide
association studies
Alina Peluso1, Robert Glen1,2 and Timothy M D Ebbels1*

Abstract

The search for statistically significant relationships between molecular markers and outcomes is challenging
when dealing with high-dimensional, noisy and collinear multivariate omics data. Permutation procedures allow
for the estimation of adjusted significance levels without assuming independence among the metabolomic
variables. Nevertheless, the complex non-normal structure of the metabolic profiles and outcomes may bias the
permutation results leading to overly conservative threshold estimates i.e. lower than a Bonferroni or Sidak
correction. Within a univariate permutation procedure we employ parametric simulation methods based on the
multivariate (log-)Normal distribution to obtain adjusted significance levels which are consistent across
phenotypes while effectively controlling the type I error rate at the α level. Next, we derive an alternative
closed-form expression for the estimation of the number of non-redundant metabolic variates based on the
spectral decomposition of their correlation matrix. The efficacy of our methods is tested for different model
parametrizations and across a wide range of correlation levels of the variates using both synthetic and real data
sets. Both the permutation-based formulation and the more practical closed form expression are found to give
an effective indication of the number of indipendent metabolic effects exhibited by the system.

Keywords: FWER; MWAS; MWSL; Multiple testing; Permutation; Correlated tests

1 Introduction
In omics studies many hundreds to tens of thousands
of molecular variables are collected for each individual,
leading to high-dimensional multivariate data which
are highly collinear. When analysing these data, thou-
sands of hypothesis tests are conducted simultane-
ously, thus effective methods to adjust for multiple
testing are a central topic, especially in the context
of Metabolome-Wide Association Studies (MWAS) [1].
The aim is the detection of statistically significant re-
lationships between molecular concentrations and dis-
ease phenotypes while minimising the risk of false pos-
itive associations. A widely used approach for multi-
ple testing is the false discovery rate (FDR) [2] which
controls the expected proportion of falsely rejected hy-
potheses among all those rejected. This approach is ef-
fective in the case of independent or positive dependent
tests. While there have been some attempts to deal
with correlated tests such as [3] that proposed a sim-
ple but highly conservative procedure, in general cor-
relation among tests is still a problem for FDR meth-
ods. Besides FDR corrections, family-wise error rate
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(FWER) procedures control the probability of making
at least one false conclusion (i.e. at least one Type I
error). The FWER provides a more stringent control
of Type I error compared to the FDR. Nevertheless,
FWER conventional methods such as the Bonferroni
[4] or Sidak [5] adjustment are known to be overly con-
servative when the tests are correlated. On the other
hand, resampling-based methods such as the permu-
tation test are a standard tool to simultaneously as-
sess the association of different correlated molecular
quantities with an outcome of interest. These proce-
dures can be conducted in both a parametric or non-
parametric fashion. Parametric approaches are the
preferred methods as they have relatively high power if
the assumptions (e.g. normality of the data) hold. Nev-
ertheless, in the context of MWAS the metabolic pro-
files are very rarely normally distributed nor present
a symmetric distribution, and this may bias the re-
sult of the chosen significance test. Thus, a first aim of
this study is to overcome this issue and derive a valid
yet stable metabolome-wide significance level (MWSL)
across phenotypes with diverse distributional proper-
ties. The proposed approach is based on a permuta-
tion procedure built from parametric approximation
methods via the multivariate Normal and log-Normal
distributions to describe, at least approximately, the
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set of metabolic profiles while retaining their complex
correlated structure up to the 2nd order moments,
and while effectively controlling the expected overall
type I error rate at the α level. While the proposed
re-sampling-based method is accurate and asymptoti-
cally consistent it demands intensive computation. In
the context of genomic studies there have been several
attempts to formulate the problem in terms of esti-
mating the number of non-redundant molecular quan-
tities as a closed-form eigenvalue-based measure from
the spectral decomposition of the empirical correlation
matrix of the molecular variables. The available mea-
sures proposed by [6], [7], [8], [9], and [10] are proven
to be not sufficiently accurate as a valid substitute for
the proposed permutation procedure. Therefore, a sec-
ond aim of this study is to derive a permutation-free
closed-form estimate of the MWSL to express the num-
ber of non-redundant molecular quantities. Both the
permutation-based MWSL formulation and the more
practical closed form expression are tested on synthetic
and real data.

2 Permutation-based MWSL estimation
2.1 Permutation algorithm
Suppose the data consists of n observations, and
let Y be the response variable or phenotype, X =
(X1, . . . , XM )T the vector of M predictors or features,
and Z = (Z1, . . . , ZP )

T the vector of P fixed effects
covariates. The permutation-based MWSL estimation
can be described as follows.
• Step (1): Shuffle i.e. re-sample without replace-
ment, the outcome variable Y together with the
set of fixed effects confounders Z if any. In this
way, the n subjects are re-sampled under the null
hypothesis of no association.

• Step (2): To estimate the relationship between the
outcome and the set of features while accounting
for possible confounding effects, compute M re-
gression models in a univariate approach, that is
by using one feature at a time. From each model
store the p-value associated with the feature of in-
terest. When appropriate, other approaches than
regression methods can be used for testing of as-
sociation e.g. correlation or t-test.

• Step (3): Extract the minimum of the set of M p-
values as this indicates the highest threshold value
which would reject all M null hypotheses.

• Step (4): Repeat Step (1)-(3) for K times, where
K is at least n/2 times [11]. The K minimum p-
values are the elements of the new vector q.

• Step (5): Sort the elements of q, and take the
(αK)-value of this vector. This value is the
MWSL estimate. An approximate confidence in-
terval can be obtained by treating the true po-

sition of the MWSL estimate as a Binomial ran-
dom variable with parameters K and α. Then,
using the Normal approximation to the Bino-
mial, we obtain the z(1−α)% confidence limits
by extracting the elements of q in positions
(αK)± {(1− α)

√

αK(1− α)}.
• Step (6): Compute the effective number of tests
(ENT) defined as the number of independent
tests that would be required to obtain the same
significance level using the Bonferroni correction
ENT= α

MWSL . The ENT estimate measures the
extent that the M markers are non-redundant.
Therefore, the ratio R=ENT

M
% of the effective and

the actual number of tests (ANT or M) is a mea-
sure of the dependence among features, which it
is expected to be closer to 0% when highly corre-
lated features are considered.

Similar versions of this procedure have been previously
applied in different studies e.g. by [12] to approximate
the genome-wide significance threshold for dense SNP
and resequencing data, or by [13] for urinary metabolic
profiles. Recently in the context of NMR metabolic
profiling studies [14] employed the permutation algo-
rithm to perform a series of MWAS for serum levels
of glucose. Counterintuitively ENT estimates greater
than the ANT were found, with an R ratio for glucose
over 400%.

2.2 Parametric simulation methods
The underlying assumption of the permutation proce-
dure is that the p-values are properly calibrated, that
is, every metabolite-specific p-value is uniformly dis-
tributed, i.e. p-valuem ∼ U(0, 1) where m = 1, . . . ,M ,
when the null hypothesis is true. Because the MWSL
is the minimum p-value across the metabolite specific
tests, all it takes is one poorly calibrated test with an
erroneous small p-value to bias the MWSL estimation.
In metabolomics studies very often the features are not
normally distributed. Nevertheless, normality matters
but only sometimes. It matters when both the feature
and the outcome have a skew distribution [15], while
it has very little effect when either the feature or the
outcome is normally distributed. In this context, we in-
vestigate the properties of the permutation approach
for significance level estimation by employing the mul-
tivariate Normal and the multivariate log-Normal dis-
tributions to describe, at least approximately, the set
of correlated features and to obtain stable estimates of
the MWSL while effectively controlling the maximum
overall type I error rate at the α level. We assume that
the data are already centred so that the means equal
zero. Therefore, X ∼ NM (µ,Σ∗) is the multivariate
Normal distribution employed to simulate the set of
features where µ = E[X] = (E[X1], . . . ,E[XM ])T = 0
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is the M -dimensional mean vector of zero means, and
Σ∗ is the (M ×M) shrinkage estimator of the covari-
ance matrix as described by [16]. The shrinkage es-
timator is always positive definite, well-conditioned,
more efficient and therefore preferred to the unbiased
estimator Σ, or to the related maximum likelihood esti-
mator ΣML. Where the probability density of a feature
is right skewed, we use the multivariate log-Normal ap-
proximation. In such cases, the features are first trans-
formed i.e. the absolute value of their minimum, plus
one unit, is added to their original value. The algo-
rithm is applied to real-data and simulated scenarios to
illustrate the results for different model parametriza-
tions and distributional features of the outcome, as
well as to investigate different correlation levels across
features and between the features and the phenotype.

3 Practical approximation of the ENT
The empirical method of computing the permutation
test p-value is hampered by the fact that a very large
number of permutation is required to correctly esti-
mate small, and therefore interesting p-values. Thus,
we now present a more efficient alternative to a stan-
dard permutation test to derive the MWSL. To dis-
tinguish from the effective number of non-redundant
variates from the permutation procedure which has
been defined as ENT in Section 2, here we refer to the
estimate from this practical approximation approach
as Meff. It has previously been shown that the collec-
tive correlation among a set of variables can be mea-
sured by the variance of the eigenvalues (λs) derived
from a correlation matrix ([6], [17]). In particular, high
correlation among variables leads to high λs, that is,
when all variables are completely correlated, the first
λ equals the number of variables in the correlation
matrix (M) and the rest of the λs are zero. Vice versa
in the case of no correlation among variables, all the
λs will be equal to 1 with zero variance. Hence, the
variance of the λs will range between zero, and M .
Based on this concept, within the genomics field sev-
eral methods have been proposed for estimating the
ENT from the correlations between variates. Among
the first, [7] proposed to use the variance of the λs
to estimate the ENT for the limiting cases of none/
fully correlated variables, and a ratio of the eigen-
value’s variance to its maximum M for intermediate
situations. [8] suggested summing the λs, after substi-
tuting 1 for the λs that are greater than 1. [9] sug-
gested defining ENT as the number of λs which can
explain a certain percentage of the variation within
the data. However, it is unclear how the percentage
should be chosen as overly large or small value of it
would result in an FWER that is overly conservative
or liberal. [10] proposed a measure of ENT based on

a λs ratio function. In the context of our analyses,
the Meff measures proposed by these authors were not
sufficiently accurate as a valid substitute of the per-
mutation procedure, hence we propose an empirical
closed-form expression directly related to the correla-
tion among metabolomics variates as follows

MeffMWSL =
(∑

M

m=1

√
λm

log(λ1)

)2 / (∑
M

m=1
λm

λ1

+
√
λ1

)

.

This formulation balances the information from the
λm with m = 1, . . . ,M estimated eigenvalues from the
correlation matrix of the metabolites concentrations,
with the contribution of the first eigenvalue λ1 which
measures the primary cluster in the matrix, its num-
ber of variables, and the average correlation among
the features [18]. This formulation is of interest in the
context of correlated variates, that is when at least all
variates but one are independent, i.e. for λ1 > 1, and
therefore log(λ1) > 0.
To summarize the full algorithm as an alternative to
the permutation procedure, we propose the following.
• Step (1): Compute the MeffMWSL with the pro-
posed formulation.

• Step (2): Under the null hypothesis the p-value
of each metabolite follows a Uniform distribution,
i.e. p-valuem ∼ U(0, 1), where m = 1, . . . ,M . The
distribution of minimum p-values can be approx-
imated by the minimum order statistics (r=1),
that is U(1) ∼ Beta(1,M) in the case of not cor-
related molecular variates, and Beta(1,M ′) with
M ′ 6 M in the case of correlated features. The
limit case of very highly correlated features with
M ′ = 1(<< M) reduces to sampling from a
Beta(1, 1) which equals a U(0, 1). It follows that
the MeffMWSL can be used to approximate the
distribution of minimum p-values sampling from
a Beta(1,MeffMWSL).

• Step (3): The MWSL and its respective z(1−α)%
confidence limits can be derived as described in
Section 2.1, Step (5)-(6) of the permutation pro-
cedure.

4 Results
4.1 Study of experimental metabolomics data
The MWAS approach was employed to investigate the
association between human serum 1H NMR metabolic
profiles and various clinical outcomes in the Multi-
Ethnic Study of Atherosclerosis (MESA) [19]. The
data have been extensively described in [14]. Briefly,
the cohort includes participants (51% females, 49%
males), aged 44-84 years, (mean=63 years) from four
different ethnic groups: Chinese-American, African-
American, Hispanic, and Caucasian, all recruited be-
tween 2000-2002 at clinical centres in the United States
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and free of symptomatic cardiovascular disease at
baseline. Demographic, medical history, anthropomet-
ric, and lifestyle data, as well as serum samples were
collected, together with information on diabetes, and
lipid and blood pressure treatment. Metabolic profiles
were obtained using 1H NMR at 600 MHz and pro-
cessed as detailed in [20]. The outcomes of interest
are glucose concentrations and the body mass index
(BMI). Table 1 presents the descriptive statistics for
the clinical outcome measures, while Table 2 reports
the descriptive statistics for the fixed effects covari-
ates used in the study. Three sets of NMR spectra
are considered: (1) a standard water-suppressed one-
dimensional spectrum (NOESY), (2) a Carr-Purcell-
Meiboom-Gill spectrum (CPMG), and (3) a lower res-
olution version of the CPMG data (BINNED). The
BINNED version consists of M=655 features, while
the NOESY and CPMG contain M=30,590 features.
The BINNED data sample comprises of n=3,500 in-
dividuals, while the NOESY and CPMG data have
n=3,867 individuals. All MWSL calculations are per-
formed for α = 0.05.

From the conventional permutation procedure ap-
plied to the BINNED data shown in Figure 1, when
the real features are considered, there is instability in
the estimation of the ENT across the different out-
comes, and in particular the ENT estimate for glucose
is above the ANT. When the data are simulated from
a multivariate log-Normal or Normal as described in
Section 2.2 the ENT estimates are stable across the dif-
ferent outcomes and remain bounded below the total
number of features with an average ENT around 350
and an R ratio around 50%. To assess the validity of
this result in terms of redundancy of the set of features
we considered principal component analysis (PCA) as
an alternative method for estimating the ENT [6–8].
The cumulative proportion of variance explained by
the first 350 PCs is around 99%. This is consistent
with the interpretation that there are effectively 350
uncorrelated features in the data.

Figure 2 reports the ENT estimates for CPMG data.
Without any transformations applied, there is a very
large variation across the ENT estimates for the dif-
ferent outcomes, and in particular a very high and
meaningless estimate for glucose levels which goes be-
yond R=400%. On the other hand, when the set of fea-
tures is simulated from the multivariate Normal and
from the multivariate log-Normal distribution the cor-
responding ENT estimate is below the total number
of features, and stable across different outcomes with
an average ENT of around 16,000 features and an R
ratio around 50%. In this case the usefulness of the
proposed permutation method to estimate the ENT is

clear in a comparison with the PCA-based ENT esti-
mate would be constrained to the maximum number
of PCs (n = 3, 866 i.e. max no. PC is n-1).
Figure 3 reports the ENT estimates for the NOESY

data which are below R=100% but vary across out-
comes when the original set of features is considered.
When simulated features from the multivariate (log-)
Normal distributions are considered we obtain lower
ENT values than the ones from the CPMG data, with
an average ENT of around 2,700 features and an R
ratio around 9%. This result was expected due to the
reduced influence of broad signals in CPMG spectra
compared to NOESY, which is linked to a weaker co-
variance structure of the data. By applying a PCA to
the NOESY data the cumulative proportion of vari-
ance explained by the first 2,700 PCs is around 99%,
and this is in line with our findings.
Next, by exploiting the approximation method de-

scribed in Section 3, we derive the proposed MeffMWSL.
Table 3 provides this estimate compared to the avail-
able alternative methods proposed by [7], [8], [9], and
[10], and the ENT estimate from the permutation pro-
cedure which is the averaged estimate of the results ob-
tained via the multivariate and log-multivariate Nor-
mal transformations. Considering the complexity of
the eigenvalue structure in cases of very large data
sets, the proposed MeffMWSL in most cases seems
to be able to consistently quantify, at least approxi-
mately, the correlation structure of the metabolomic
variates. Based on this Meff estimate, to derive the
MWSL and its confidence limits we simulate from a
Beta(1,MeffMWSL) which let us obtain MWSL esti-
mate of the same order of magnitude as these from
the permutation procedure as shown in Table 4.

4.2 Simulation study
We now broaden the investigation by considering var-
ious correlation levels of the set of molecular variates
as well as cases of correlation between the outcome
and the variates. At first we generate various sets of
variates each of these with a specific and well bounded
correlation level. This has be done following the al-
gorithm described in Section 7.1. Specifically, we gen-
erated nine sets of variates covering the whole range
of positive correlation levels. Next, we generate out-
comes both correlated and uncorrelated to the variates
which we will employ within the permutation proce-
dure to estimate the ENT across the various sets of
correlated molecular variates. Uncorrelated outcomes

of different shapes are easily simulated via paramet-
ric distributions such as the Normal distribution for
a symmetric outcome, the Skew-Normal distribution
for a left skewed outcome, and a Weibull distribution
for a right skewed outcome. Figure 4 shows the ENT
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estimates in the case of correlated variates and uncor-
related outcomes. Simulated correlated outcomes can
be obtained as a linear combination of few randomly
chosen molecular variates with an added noise, or via
procedures based on Cholesky decomposition as done
when simulating correlated features following the algo-
rithm detailed in Section 7.1. Figure 5 show the ENT
estimates from the permutation procedure for the var-
ious sets of synthetic molecular variates and the cor-
related simulated phenotypes. We conclude that cor-
relation to the outcome makes no discernible differ-
ence to relationship between ENT and variate-variate
correlation. Lastly, we apply the MeffMWSL approxi-
mation to derive the results in Table 5 and Table 6.
The ENT from the permutation procedure is averaged
from the results in Figure 4 and Figure 5. In this simu-
lated environment, the MeffMWSL approximation out-
performs other available methods and well describes
the permutation-based ENT estimates.

5 Validation of the approach
A type I error (false-positive) occurs when a true null
hypothesis is being rejected. To check whether the per-
mutation procedure accounts for the FWER at the α
level, for each metabolic variate and across the per-
mutation replicates, we measure the type I error rate
as the number of occurrences of having a p-value less
or equal than the MWSL. Rather than the original
phenotypes we test the multivariate (log-)Normal per-
mutation procedure to calculate the MWSL using var-
ious synthetic outcomes which represent a wide range
of real-data phenotypes. In particular, we employ a
continuous outcome from a Normal distribution, a
discrete-binary outcome from a Binomial distribution,
a discrete-count outcome from a Poisson distribution,
and a time-to-event survival outcome from the Cox
proportional hazards model as in [21]. We benchmark
our result on the MESA BINNED data but also on a
set of synthetic variates obtained via a nonparamet-
ric approach using PCA (see Section 7.2). We divide
the data into test and non-test sets, compute a PCA
model of the non-test data, and predict the test data
based on this model. This approach allowed us to gen-
erate synthetic data based on the structure of the real
data without involving bootstrap/permutation meth-
ods [22] which we already employ to estimate the
MWSL. Following the algorithm of Section 7.2 applied
to the MESA BINNED data, we define the test and
the nontest set by randomly sampling nt = 1, 500 and
nt̄ = 3, 500−1, 500 = 2, 000 observations, respectively.
From the PCA on the nontest set we select 350 PCs
to be used to build the simulated test set of molecu-
lar variates X̂t. Table 7 and Table 8 confirm that the
MWSL procedure effectively controls the FWER at
around the (default) α-level of 5%.

6 Conclusions
In this paper we focus on assessing univariate test
significance in multi collinear omics data by estimat-
ing a significance level threshold controlling the fam-
ily wise error rate. The proposed procedure is based
on an iterative permutation approach via univariate
regression models while other measure of association
may be used when appropriate. The molecular vari-
ates are simulated via parametric methods such as
multivariate Normal and multivariate log-Normal dis-
tributions to retain the correlation structure in the
data, while controlling the false positive rate at the
desired level. When the permutation procedure is ap-
plied to the approximated data the MWSL is stable
across outcome measures with diverse properties. In
MWAS, the metabolic profiles often exhibit a high de-
gree of collinearity, and this is supported by our find-
ing that in all scenarios considered, when parametric
methods are applied to approximate the structure of
the data, the MWSL estimated through the permuta-
tion procedure is larger than the threshold obtained
via a metabolome-wide Bonferroni or Sidak correc-
tions. Therefore, the corresponding ENT is always less
than the actual number of tests as it mainly depends
on the extent of correlation within the data. The ex-
tent of collinearity is summarized by the R ratio (%)
of effective to actual number of tests. For the examples
in this paper, R was found to be around 50% for the
CPMG data (high-resolution and and BINNED ver-
sion), and around 9% for the NOESY resolution. This
is consistent with the expected higher degree of corre-
lations between spectral variables in the NOESY data.
As with other approaches, the proposed closed-form
Meff approximation to the permutation-based ENT
could be tentatively interpreted as the number of inde-
pendent metabolic processes exhibited by the system.
Both the MWSL or the Meff estimate can be employed
downstream of the analysis to identify differentially
regulated metabolites.

7 Appendix
7.1 Parametric algorithm to generate synthetic variates
• Step (1): Generate a square (M ×M) correlation
matrix A assuming all variables have unit vari-
ance, i.e. the M elements on the diagonal are 1s.
The [M(M −1)]/2 elements of the upper triangu-
lar matrix are sampled from Uniform distributions
bounded by a certain interval, e.g. high correla-
tion level within the interval [0.75,0.85], medium
correlation in [0.45,0.55], or low correlations in
[0.25,0.35]. The lower triangle elements are copied
from the upper triangle.

• Step (2): As the λs of A are required to be
greater than zero, compute S as the nearest pos-



Peluso et al. Page 6 of 8

itive definite to the correlation matrix A achiev-
ing {min ‖A− S‖F : S is a correlation matrix},
where ‖A‖2F =

∑

i,j a
2
ij as described by [23].

• Step (3): Derive the lower triangular L via
Cholesky decomposition of matrix S such that
S = LL’.

• Step (4): M multivariate Normal features with
zero means result from the product ZL between
the (n×M) matrix Z of M random N(0,1) i.i.d.
features, and the (M × M) lower triangular ma-
trix L. The correlations of the simulated features
are very close to those assigned in matrix A.

7.2 Nonparametric algorithm to generate synthetic
variates

• Step (1): By randomly sampling nt observations
from the original data matrix of variates X, con-
struct the (nt × M) test set of variates Xt, and
the (nt̄ × M) nontest set Xt̄, with nt < n and
nt̄ = n− nt.

• Step (2): Standardise the test and the nontest

set by subtracting its respective vector of column
means i.e. µt and µt̄, and dividing by its standard
deviations i.e. σt and σt̄, to respectively obtain Zt

and Zt̄.
• Step (3): Compute PCA over the nontest set
by applying singular value decomposition (SVD)
such that Zt̄ = Ut̄Σt̄V

T
t̄
, where V T

t̄
is the (M×M)

matrix of loadings, while the PC scores are ob-
tained as the product between the (nt̄ × nt̄) ma-
trix Ut̄ of eigenvectors of Zt̄Z

T
t̄
, and the (nt̄×M)

diagonal matrix Σt̄.
• Step (4): Use the nontest loadings Vt̄ combined
with the test Xt to compute the (nt ×M) matrix
ÛtΣ̂t of PC predicted scores for the test set.

• Step (5): Build the (nt ×M) simulated test set of
variates Ẑt as the product of the predicted scores
from Step (4), and the matrix of loadings V T

t̄
from

Step (3) such that Ẑt = ÛtΣ̂tV
T
t̄
. We note that S

PCs, with S ≤ M , can be selected to be used
in the predictions, thus Ẑt would result from the
product of the (nt × S) matrix of PCs and the
(S ×M) matrix of loadings.

• Step (6): From the simulated test set of standard-
ised features Ẑt compute the (M ×M) set of sim-
ulated features as X̂t = Ẑtσt + µt.

To simulate the set of variates in such way the sample
size of the data should be large enough for the data
to be split between the test and the nontest set, and
no missing values are allowed. Neverthless, a possible
extension of this method would consider the Nonlinear
Iterative Partial Least Squares (NIPALS) algorithm as
a modified PCA to accommodate missing values [24].
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Availability

MWSL is an open-source R software package avaiable at https://github.com/AlinaPeluso/PhenoMeNal. Within the package we made available the lower

resolution CPMG data referred to in the text as MESA BINNED data.
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Tables

Table 1 Descriptive statistics for the clinical outcome measures.

Table 2 Descriptive statistics for the fixed effects covariates.

Table 3 Real data: Comparison of estimation of the number of non-redundant variates from the permutation method (ENT,
obtained as the average of the ENT estimates for all the clinical outcomes measures considered via the multivariate Normal and the
multivariate log-Normal methods) and via approximation procedures based on the eigenvalues of the correlation matrix of the
metabolite concentrations (Meff). R=ENT/ANT(%) ratio in brackets. ANT=655 for the MESA BINNED data, and ANT=30590
for the NOESY and CPMG data. Meff estimates closest to ENT estimates in bold.

Table 4 Real data: MWSL estimation comparison between the permutation method and the approximation procedure generating
the distribution of the minimum p-value as a Beta(1,MeffMWSL).

Table 5 Simulated data: Comparison of estimation of the number of non-redundant variates from the permutation method (ENT,
obtained as the average of the ENT estimates for all the simulated uncorrelated and correlated outcomes measures considered via
the multivariate Normal and the multivariate log-Normal methods) and via the approximation procedure based on the eigenvalues
of the correlation matrix of the metabolite concentrations (Meff). R=ENT/ANT(%) ratio in brackets. ANT=650. Meff estimates
closest to ENT estimates in bold.

Table 6 Simulated data: MWSL estimation comparison between the permutation method and the approximation procedure
generating the distribution of the minimum p-value as a Beta(1,MeffMWSL).

Table 7 BINNED data: ENT estimates with 95% confidence intervals in brackets, and type I error estimation from the permutation
procedure for dvarious simulated outcome measures: continuous, discrete-binary, discrete-count, time-to-event survival. 5,000
permutations. ANT=655.

Table 8 PCA simulated data (ANT=655, nt=1,500, PCs=350): ENT estimates with 95% confidence intervals in brackets, and
type I error estimation from the permutation procedure for various simulated outcome measures: continuous, discrete-binary,
discrete-count, time-to-event survival. K=5,000 permutations.

Figures

Figure 1 BINNED data: ENT across clinical outcome measures and for different approximations of the variates: original data
(identity), multivariate Normal, multivariate log-Normal. Error bars represent 95% confidence limits. K=10,000 permutations.

Figure 2 CPMG data: ENT across clinical outcome measures and for different approximations of the variates: original data
(identity), multivariate Normal, multivariate log-Normal. Error bars represent 95% confidence limits. K=10,000 permutations.

Figure 3 NOESY data: ENT across clinical outcome measures and for different approximations of the variates: original data
(identity), multivariate Normal, multivariate log-Normal. Error bars represent 95% confidence limits. K=10,000 permutations.

Figure 4 ENT for uncorrelated outcomes across correlated variates. Error bars represent 95% confidence limits. K=5,000
permutations.

Figure 5 ENT for correlated outcome across correlated variates. Error bars represent 95% confidence limits. K=5,000 permutations.

Additional Files

Additional file 1 — Supplementary results including Figures, Tables, and the description of the simulation algorithms used to generate the synthetic variates.

Additional file 2 — R tutorial to enhance the application of the MWSL R package.



Figures

Figure 1

BINNED data: ENT across clinical outcome measures and for different approximations of the variates:
original data (identity), multivariate Normal, multivariate log-Normal. Error bars represent 95% confidence
limits. K=10,000 permutations.

Figure 2

CPMG data: ENT across clinical outcome measures and for different approximations of the variates:
original data (identity), multivariate Normal, multivariate log-Normal. Error bars represent 95% confidence
limits. K=10,000 permutations.



Figure 3

NOESY data: ENT across clinical outcome measures and for different approximations of the variates:
original data (identity), multivariate Normal, multivariate log-Normal. Error bars represent 95% confidence
limits. K=10,000 permutations.

Figure 4

ENT for uncorrelated outcomes across correlated variates. Error bars represent 95% confidence limits.
K=5,000 permutations.



Figure 5

ENT for correlated outcome across correlated variates. Error bars represent 95% confidence limits.
K=5,000 permutations.
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