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ABSTRACT

Ribbon lattices are kind of transition systems in between one and two dimensions, and their study is crucial to understand the
origin of different emerging properties. In this work, we study a Lieb ribbon lattice and the localization-delocalization transition
occurring due to a reduction of lattice distances (compression) and the corresponding at band deformation. We observe how
above a critical compression ratio the energy spreads out and propagates freely across the lattice, therefore transforming the
system from being a kind of insulator into a conductor. We implement an experiment on a photonic platform and show an
excellent agreement with the predicted phenomenology. Our ndings suggest and prove experimentally the use of compression
or mechanical deformation of lattices to switch the transport properties of a given system.

Introduction

The understanding of transport and localization properties of different materials is the most relevant aspect in solid-state
physics, not only from a fundamental point of view but also in terms of concrete applications. When synthesizing materials
some deformations could emerge during the process; such as, compression, strain, defects and/or dislocations. However, they
can also be added deliberately to enhance or to induce certain transport properties. In particular, compression and strain of
materials have driven much attention lately because their transport properties can be dramatically modi ed. For instance,
graphene can go from a semimetallic to an insulating phase when an uniaxial compression i$ aggiedomenon known

as Lifshitz transition. In other two-dimensional (2D) materials similar transitions have been predicted. For example, black
phosphorous switches from a semiconductor into a metal when it is subjected to an uniaxial strain [3]. This allows the control
of the electronic transport properties on a nanodevice when an external electric eld is applied [4], which can be interpreted
as a delocalization-localization transition. And, for germanium kagome latticeansformation from a semimetallic into a
semiconductor is observed when applying compression due to an increment of the orbital frustration that induces an electronic
gap. Furthermore, the electronic structure and charge properties were studied in KCuSe ant] KdinEethat pressure
effectively modi es the transport properties due to an enhancement of carrier mobility, which could have direct applications in
optoelectronic technologies as, e.g., solar cells.

On the other hand, during the last decade, arti cial lattices have arisen as feasible platforms to emulate and test most
of the electronic properties predicted for solid-state-like matéridls Some of these systems have shown the ability to
carefully engineer compression and, thus, exploring interesting phenomena that are sometimes unrealizable in natural and
sinthetized materials. For example, the Lifshitz transition of graphene has been addressed using matter waves in optical
lattices®, waveguides array$, arrays of microwave resonatéfsand exciton-polariton latticé® In the latter system, a
predicted semi-Dirac scenario arises in graphene at a critical compression, which produces a highly anisotropic transport
and particular localization features. Remarkable also, it has been experimentally shown in graphene photonic lattices that a
smart design in term of compression or strain could induce a pseudomagnetic eld, causing the rupture of Dirac cones and the
appearance of Landau levels in the band struéftie which constitutes a clear delocalization-localization transition.

Besides compression properties, very fundamental condensed-matter phenomena has been experimentally proved in photonic
lattices; e.g., Anderson localizatith topological insulatiof®, and Flat Band (FB) localizatiéf?°. FB lattices have became
an ideal solution for observing transport and localization phenomena on a completely periodic and linear con3tition
as well as for studies considering highly degenerated and interacting sy&t8mdoreover, during the last years, several
contributions in optics have demonstrated different FB properties considering diverse lattice con gétafiars, thus,

FB systems have emerged as a well-established and relevant research area where to continue asking/solving questions about



the improvement or modi cation of fundamental properties in very different physical contexts; namely, electronic systems,
magnetic lattices, metamaterials, mechanical lattices, quantum con gurations, photorfi€setc.

In this work, we explore the consequences of compression of a quasi-1D photonic lattice known as a Lieb photonic ribbon.
Without compression, this lattice possesses four dispersive and one at bands, and only nearest-neighbor (NN) couplings are
relevant. When compression is applied, we observe that a next-nearest-neighbor (NNN) diagonal coupling starts to weakly
affect the linear spectrum. It has been predicted that for Lieb-like latfieeseak diagonal coupling destroys the FB and
all the spectrum becomes dispersive. However, in this work, we show that although diagonal coupling is not effectively
zero, the FB phenomenology is still present and persists up to a critical compression value. We fabricate several dimer
systems to fully characterize the coupling dependence and de ne a relation between coupling constants. Then, using this
experimental information, we observe a localization-delocalization transition by theoretically analyzing the band spectrum as
well as by numerically studying the transport through different compressed ribbon lattices. Afterwards, we fabricate several
Lieb ribbon lattices using a femtosecond-laser written technique where we experimentally demonstrate this transition. We
observe that, above a critical lattice distance (uncompressed ribbon), there is a tendency to localization, whereas below this
distance (compressed lattice) the energy spreads out through the system inducing a delocalization transition.

Femtosecond laser written Lieb photonic ribbon

Our aim is to study the effect of compressing a Lieb ribbon lattice and observe how the emergence of a diagonal NNN interaction
Vqy affects the dynamics across the system. For this task is useful to understand rst how the coupling constants are modi ed
in our experimental platform. We fabricate several Lieb ribbon lattices by using a femtosecond (fs) writing tethaigjue
sketched in Figl(a). This fabrication method generates a small refractive index modi cation on a transparent glass-like
material; in this case, a borosilicate Eagle XG wafer of widtlength thickness:10 50 1 mm (blue block in that gure).

By focusing a Menlo BlueCut femtosecond laser [red beam inK&)], we are able to slightly modify the refractive index at

the focal region, achieving a contra¥t 10 4 10 3. The axial geometry of the fabricated method produces vertical and
elliptical elongated waveguides. Full waveguides are obtained by translating the glass wafer along the whdle-l&styth

mm, at a constant velocity @4 mm/s. Three-dimensional control of the sample is achieved by a fully automatized Thorlabs
micrometer stage [sketched as a dark plate in Hia)], which allows us to translate the samplejiy andz directions and,
therefore, to generate arbitrary two-dimensiong) (attice con gurations, with the dimension acting as a time.

As a rst step, we characterize the waveguide coupling dependence versus separation distance by fabricating sets of vertical,
horizontal, and diagonal couplers [see dashed rectangles ia(B). These couplers consist of two waveguides separated by a
variable center-to-center distance, where one waveguide has a full IérgtB@ mm) and the other one a shorter length of 5
mm, as sketched in Fig(b) inside the photonic chip (PC). We experimentally measure them by using a standard setup [see
Fig. 1(b)], where a focused horizontally polarized HeNe laser beam excites a given waveguide at the input facet. Then, we
obtain output light intensities on a CCD camera and extract the intensity information at every waveguide. The intensities follow
a cosine-like dependence over propagation dist2i%e and they allow us to extract a coupling function for every waveguide
separation. By compiling all the information, we obtain an exponential t for a coupling versus distance depéhtferse
shown in Fig.1(c), whereVy(dy) = 26:43exg{ 0:1850,) cm * andVy(dy) = 21:41exy 0:184d,) cm L. Due to the elliptical
waveguide pro le obtained from a fs-laser fabrication meftfod, vertical couplingvy (black line in gure) is always larger
than the horizontal}, one (orange line in gure). However, we nd a simple relation between these two coupling functions,
obtaining thatvy, V, ford,= d, 1:1 mm, which is a very important detail for setting up a fabrication routine. Therefore,
by adjustingd, andd, distances we are able to correct the anisotropy of the lattice, which implies having an effectively
symmetric (square-like) lattice. As a consequence, for simplicity, we de ne a nominal distaasea control p&rameter in

our simulations. Now, we characterize the diagonal couphy ¢onsidering a center-to-center distanige= dﬁ+ d2.
We immediately notice that the diagonal coupling [gray curve in Kig)] is very small in comparison to NN (vertical and
horizontal) coupling constants but, nevertheless, not strictly zero. We nd that this diagonal NNN coupling has the following
form: Vy(dg) = 36:50exg 0:273d3) cm L. In order to compare the magnitude of this NNN coupling constant, we plot a
fractional ratior V3=V, over nominal distancd as inset in Fig1(c). We notice that fod & 20 nm, V is less thar25%of .

After adjusting all coupling parameters, we start the fabrication of a total numigrpifotonic lattices. We split into
two sets of arrays having a total number3¥and43 waveguides, fod > 18 nm andd 6 17 nm respectively. Figl(d)
shows a microscope image at the output facet of a fabricated photonic Lieb ribbon lattice, after white light illumination. Bright
regions in this gure correspond to elliptical fs-written waveguides on a Lieb ribbon geometry, with relevant distances indicated
explicitly at gure. This image shows dipole-like white light statgswhich are originated due to the multiple wavelength
excitation coming from a white light lamp. However, in this work, we will study our photonic lattices by using a red HeNe
laser beam a33nm, for which all the waveguides are single-mode. E{g) shows two examples of different lattices at two
regimes: uncompressed and compressed lattices.
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Figure 1. (a) Femtosecond waveguide writing setup. (b) Simpli ed characterization setup showing a focused HeNe laser
beam at the input facet of a photonic chip (PC), and imaging onto a CCD camera. (¢) Caupkngus nominal distanakfor
vertical (black), horizontal (orange), and diagonal (gray) couplers. Vertical dashed lines dre i and 24nm. Inset:
fractional ratior versusd (horizontal dashed line corresponds to 25%). (d) White light microscope zoom of a Lieb photonic
ribbon. (el) and (e2) Two ribbon examples with 33 and 43 waveguidekfdy) = 24(22:9) mm and 135(12:4) mm,
respectively.

Model and linear spectrum

In order to study a Lieb ribbon lattice, we consider a tight-binding-like model with NN and NNN coupling constants due to
an evanescent interaction in between close waveguides. The lattice structure is sketche2(@),midpere the unit cell [see
dashed rectangle] is composed of ve sitdsB;C; D andE. This lattice has three relevant coupling constants: horizdftal
vertical\i, and diagonaVy, as shown in this gure. Light dynamics is governed by a paraxial wave equation, which after
applying coupled mode thed§°2 reads, in a general form, as

Tua _
1z
Here,u, describes the amplitude of a fundamental mode wave function located at lattieg aitdz is the propagation
coordinate b, corresponds to the propagation constant atssiteor a homogeneous lattice, this parameter is equal for all
waveguides and, without loss of generality, we simply set iz 0. V., de nes the evanescent coupling between sitesd
m, which naturally depends on the speci ¢ geometry and waveguides distance. Mpaetiénerally referred as Discrete
Linear Schidinger (DLS) equatiort§ >3, wherezis the dynamical variable (timtein other contexts). On a solid-state scenario,
Us andby correspond to the wave-function of electrons and the site energy at lattiee sgpectively, whild/,, de nes the
tight-binding matrix coef cients.

As we described in previous section, we consider an effective symmetric lattice dyverd, = d and, therefore, we can
assume/, = W, = V in our model. We compute the linear spectrum of this ribbon lattice by assuming the following Bloch
ansatz

f An; Bn;Cn; Dn; Eng = fA; B;C; D; Egeldng!! 2. 2)

[ PaUs + é VamUm (1)
m

Here,ky corresponds to the transverse wavenumber (Bloch wavevedtorfhe nominal distance (lattice unit), ando the
discrete horizontal position through the lattice. As a Lieb ribbon lattice is classi ed as a quasi-1D %y8témwe have
not included a verticalt, wavenumber due to the absence of transport on that speci ¢ direttiogpresents the solution's
frequency or energy for linear modes (macromodes) of the full system.
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Figure 2. (a) A Lieb ribbon lattice with coupling coef cients indicated by arrows. Every lled disk represents an optical
waveguide. (b) Linear spectrum versus transversal wavenukuli@rV = 1 andVy = 0. Inset: at band mode, where only
yellow and black disks are different to zero. (c) Linear spectrum vdg¢sasd nominal distance. (d) Linear spectrum versus
ks for d = 24 mm andd = 16 mm shown using full and dashed lines, respectively. (e) Band vidtitlrersus nominal distance
d.

First of all, by taking a null diagonal (NNN) coupling/y = 0, the system converges to a standard 1D Lieb lattice,
which is quite similar to a St 3® or to a 2D Liel3*254°54 system, but in this case it presents ve linear bands instead of
only three. In Hﬂs limit Yy = 0), the @/stem possesses a at band (FB) locatdd at0, and four dispersive bands given
byl (k)= V 2(1+cogkd)); V 2(2+ cogkd)), where we have de ned V, = V. Fig. 2(b) shows the linear
spectrum in this case, where a particle-hole symmetry is clearly obSéreedsidering the dispersive bands around the FB.
The at band mode [see Fi@(b)-inset] has exactly the same pro le than the one of a 2D Lieb I&tti€e>*, and it is formed
by only four sites different to zero, with a staggered phase structure, and the following amplitude coiditidh= \W,B=\},
andA= C= 0. As this system has as much FB compact modes as closed rings along the lattice, all of them with equal
propagation constamt = 0, they can be linearly combined to form spatially larger st&t&s For example, two neighbor FB
modes constructively superposed form a spatial state having a larger peak at theBcsitéral herefore, this localized state
can be excited dynamically using a sin@esite excitation, as we will numerically and experimentally show below, in the limit
of a negligible diagonal coupling.

Now, we study the full case of considering a Lieb ribbon lattice with NN and NNN interactions as a more realistic model to
understand the dynamics of this lattice, when considering the effect of compression. Along this work, we will assume that
lattice compression implies a symmetric reduction of distances as the example shownliieFigherefore, we expect to
switch on the diagonal coupling after a given critical compression, of course considering the realistic dependence of coupling
constants described in Figyc). For example, it is well known that a 2D Lieb lattice presenting NNN coupNQds( 0) losses
its perfect atband = 0, but it nevertheless remains thin in comparison to the other two dispersive*Baftter inserting
the plane-wave ansat2)(in model (), we obtgin a set of ve algebraic coupled equations. We solve the eigenvalue problem
and nd two analytical solutions (k)= V 2(1+ cogkyd)). These bands are the same than in the previous perfect FB
case (g = 0) and are associated to transport along upper and lower rows of the lattice; i.e., a 1D-like transport with a total
band width of4V (particle-hole symmet®dy? is preserved on these two bands). The other three solutions can not be written in a
compact form; therefore, we directly plot them in F&fc) as a function oky and nominal distancé. As we described in the
previous section, all couplings constants are a direct function of distanggd); W(d) andVy(d). Therefore, by varyingl
we are indeed modifying these coupling coef cients using the functionality shown irL{y.which was obtained directly
from experiments. Fig2(c) shows a strong modi cation of the linear spectrum in terms of distand®e observe how for
distances larger thath 18 nm bands are quite at, implying a slow transversal dynamics, due to the small band cut¥ature
however, strickly speaking, the spectrum is not kt6 constant. In this regime, we expect a tendency to localization and
weak dispersion due to the small available velocities in the system. On the other hand, for distances sméllerliiam,
we observe a much broader linear spectrum, which grows rapidly, with larger slopes in general, something that guarantees a
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faster propagation through the lattice; i.e., a good transport regime (a wider spectrum implies larger available kinetic energies).

Therefore, a lattice compression in real space produces a broadening in frequency space, as expected from reciprocal relations.
Fig. 2(d) shows two band examples to illustrate the main differences observed in the linear spectrum. Full lines show the

ve linear bands for a distancg = 24 mm, where we observe a narrow spectrum area and three bands which are notoriously

at/thin (red, black and green). This case corresponds to a relaxed (uncompressed) lattice and coupling condfantQ:adet

cm LandVy = 0:052cm 1(i.e.,V  6Vy) been, therefore, a sort of realistic FB-like regime. Therefore, in this at-band-like

regime, we expect to observe a reduced tran$patien exciting the lattice surfaces (upper and lower rows), and a localization

tendency when exciting the central ro® gite). Dashed lines in Fi@(d) correspond to a distande= 16 nm; i.e., an already

compressed lattice. We observe now that three bands are completely dispersive and broad (red, orange and gray), while two

(black and green) are kind of mixed or weakly-dispersive. They have regions Whewnstant, which is kind of heritage

from the previous FB-like limit. In order to analyze a bit more the bands properties, while compressing the lattice, we de ne a

band width parameterd [l (ky= 0) | (k= p)]5l (k«= 0)j. We compare all bands with respect to the total width of

1D-like bands as a reference, considering that these bands always produce transport and de ne a sort of dispersion scale in

our lattice. Fig2(e) showsDl versus nominal distanak By de nition, DI = 1 for orange [ +) and gray [ ) bands. We

observe that the upper (red) band, although been always dispersive, has always a smaller bandﬁALidth tharlthe 1D reference,

in the interval shown in this gure. For larger distances, red and green band widths converge to@ &lug)= 2 05

[as expected from Fig2(b)], while the black (central) band naturally converges to a FB with zero width ( 0). For a

decreasing distanat black and red band widths increase and, therefore, we expect an increasing transport tendency. The

lower (green) band width tends to saturate, showing the possibility of a weak tendency to localization as wilell. JFmm

we observe a crossing region for an increasing black and decreasing green bands, which somehow could indicate a critical

regime for observing a dynamical transition around this nominal distance. As the black band is originated at the FB for larger

distances, when this band is not the thinnest one, we expect to observe a dominant transport across the system and, therefore, a

localization-delocalization transition when compressing the lattice.

Finite lattice dynamics

Real systems are always nite and possess a xed number of latticeNsitéée study numerically the properties of a nite
system in order to obtain more realistic details for this quasi-1D photonic lattice. Although we are experimentally limited to the
study of small systems only, due to the short available propagation distances of the fs waveguide writing technique, we study
nite properties on a larger system having a total numbeXef 263sites (which corresponds to a lattice w88 closed rings).
This choice is necessary to correctly analyze the properties of the linear spectrum of each lattice and determine more clearly the
excited frequencies of the system as we will show below. First of all, we construct a tight-binding Ypatrfier lattices having
different nominal distances, which considers vertical, horizontal and diagonal coupling interactions only, as it was described
in Section considering the experimental data. We obtain the linear spectrum of every lattice system and calculate its density of
statedD, (d), by computing an eigenfrequencies histogram, on a given interval and de ned resolution. This allows us to not
only see the projected linear spectrum for each lattice but also adding the information about the number of states associated to
each frequency, as a way to predict the phenomenology of a given system in terms of the available states on each array. We
show our results in Fig3(a). Ford & 18 nm we notice that the spectrum is composed by a strong pdak &, with four
dispersive bands clearly de ned and isolated states in between. InZeysnd (d) we observe that bands are always connected
atk, = p=d, with no gaps in between, been therefore a continuum of states in practice. The density is high close to central
(originally at) band and well disseminated in the dispersive surrounding bands. Therefore, we expect to observe a tendency to
localization while exciting a bullB site, while dispersion and transport when exciting a buliite. Belowd 18 mm we
observe that the pseudo-FB peak starts broadening. In fact, at inset we show the participation ratio in frequey space
versus distancd, obtained by using the density of states informatign £ R, (d) (&, jD, (d)j?)?=(&, jD; (d)j*), where a
small (large) value indicates few (many) strongly excited frequencies]. We observig howarly increases for distances
d. 18nmiindicating a noticeable change in the density of states for shorter disthaoelscompressed lattices. This naturally
implies that the linear spectrum broadens and the FB phenomenology starts disappearing that is again a signature of a change in
the lattice phenomenology.

We numerically integrate model) by exciting the lattice at a single-site. By exciting &ssite (or aC-site, due to lattice
symmetry) we observe very good transport in Bignl), where we project the lattice sites intensities on a 1D row by applying
a lattice ordering scheme with columns priority. In this gure, we chose a long propagation digaree100in order
to observe a dynamically asymptotic regime as a consequence of well excited linear bands. Due to the large propagation
distance, all the lattice is well excited and some fast waves are re ected at lattice surfaces. The participatiosh@tin as
inset in this gure indicates a rather constant dissemination of the energy, with values largerztiandifferent distanced
(anRvalue close to zero corresponds to a localized pro le, wRile 1 indicates a delocalized offe*®). The dynamically
excited spectrum in this case is shown in Bfb2). This is obtained by Fourier transforming the wave amplitude at every
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Figure 3. (a) Linear spectrum and density of states versus nominal disthrinset: dependence of the participation ratio in
frequency spacB, versus distancd. (b) and (c) excitation of bulkk and bulkB sites, respectively. (b1) and (cl) intensity
output pro lesjus(zmax)j?, for znax= 100, versus distance where, for simplicity, the lattice is projected on a 1D row. Insets:
participation ratidR for output intensities versus distande(b2) and (c2) dynamically excited frequency spectrum versus
distanced.

lattice site, in the intervat 2 f 0;znag. This gives us the frequencies excited on a speci c lattice position, which are then
numerically integrated by simply summing the absolute value over the whole Yattites gives us the excited spectrum in

the dynamics and the key modes which are responsible for the observed spatial pro les, where we observe quite clearly that
dispersive (surrounding) bands are excited the most, with an almost absent central ( at-band-like) band. On the other hand,
Fig. 3(c1) shows the compiled results foBasite excitation. We clearly observe a dynamical transitioth at18 mm (see

dashed horizontal line), from a localized/trapped output pro le into a completely broad/dispersed spatial pattern. We include an
inset showing the participation rati®versus distancd computed with the data shown in this gure. We observe a dynamical
transition aroundl 19 nm (see linear ts included), with a notorious change in the slope as an indication of a larger excited
area after this transition. Therefore, in this asymptotic regime, we clearly predict a localization-delocalization transition when
compressing the Lieb ribbon lattice, below a critical distathcEig. 3(c2) shows the frequency spectrum excited during the
propagation described in Fig(cl). Fig.3(c2) shows quite clearly the persistence of the original at (central) band located at

I 0, when exciting &8-site, where broader (surrounding) dispersive bands are only weakly excited in this case. This central
band is strongly excited and its width properties will somehow de ne the observed transition, what from the presented data
would occur for a band widtDl  0:35, as shown in Fig2(e). Then, ford . 18 mm we see how this main peak broadens and

shifts to smaller frequencies, and spatial output pro les increase abruptly, as a result of an increasing band width.

These results show that a localization-delocalization transition, appearing when comprising the lattice with the consequent
reduction of nominal distanag is originated due to the persistence of localization properties of the central band of this lattice,
which is responsible for the existence of a FB when the diagonal interaction becomes negligible. Therefore, we theoretically
and numerically predict that FB properties will not disappear immediately when switching on the diagonal interaction and that
will persist up to a given threshold distance, which we have found is in the rardy2 D1.8;20g nm, for the experimental
parameters we are using in this study. From a more theoretical perspective, and using the previous analysis, we could claim that
this transition would happen when band widths are all larger Bhian 0:3, for this speci c Lieb ribbon lattice. Nevertheless,
the transition would be observed only if the right site is excited. As the input site directly de nes the speci ¢ bands excited
dynamically, there will be some sites showing the localization-delocalization transition and other sites showing only transport.
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Figure 4. Left, center and right columns show the experimental output intensity pattefatfolk, B-bulk, andB-edge input
excitations, as indicated at insets by red circles. Nominal distdiezreases downwards, as indicated directly beside left
column. The aspect ratio was corrected to compare different lattices on a similar visual scale. A linear color scale is applied,
normalized to the peak power of every image.

Experimental results

As commented in section , we fabricatbdiribbon lattices to experimentally study the localization-delocalization transition
produced by a symmetric lattice compression. By using a characterization setup as the one showlghip RRig.are able to

study the dynamics for all the fabricated lattices and measure the intensity output pattern after a propagation distarie of

mm. In Fig.4 left-column we observe the excitation of Arbulk site, as shown in inset (this is equivalent 1G-gite excitation

as well). We clearly observe a good transport scenario when exciting this site. The energy spreads out homogeneously across
the lattice, due to the fact that only dispersive bands are excited. For lattices with a larger nominal distaeciffraction

area is narrower due to the smaller maximum velocities excited [narrow linear spectrum as showg(c)Figherefore, the
necessary propagation distance for observing a whole energy dissemination would be much lagfemttnans described
numerically in Fig.3(b1). Ford > 18 mm we observe that in the opposite (bottom) row already light is diffracting in a 1D-like

form, although light has not arrived to the edges strongly. This is the main reason for fabricating smaller lattices up to this
nominal distance, as transport is still occurring slowly. Thengdfér 17 mm we increased the system size to a totad &f
waveguides and immediately observe how light spreads through a larger transversal area. We notice that for an even shorter
distanced light explores quite well the whole lattice with noticeable re ections at edges as a clear manifestation of a broader
linear excited spectrum and larger kinetic energies. Therefore, we have shown quite clearly the transport regime for these
ribbon lattices, that is independent of the nominal distahbat, naturally, it depends on the dynamical coordirzate

Fig. 4 center-column shows the excitation oB#ulk site for Lieb ribbon lattices, while symmetrically compressing the
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system and, effectively, reducing the nominal distaghc@/e clearly observe that far> 18 mm the energy remains completely
localized at the input region, independent of a distahoeduction, which for ai\-site excitation already shows a very good
transport. The energy remains localized mostly at the input site, therefore being a quite localized pro le with a participation
ratio of R 1, which for nite and in nite systems corresponds to a perfect localization. This localization tendency comes
from the FB heritage and shows very clearly the preservation of FB properties although, strictly speaking, diagonal coupling
Vg 6 0and, consequently, the FB compact states are not system eigenmodes. Then, for smaller distances the energy starts to
weakly spread through the lattice. We observedfer 15:5 mm that the maximum intensity is not at tBénput site anymore;

as a result, the transition into delocalization has started to occur quite clearly. Finally, for smaller distances the spectrum is
even wider and the FB heritage is simply lost. The energy is well disseminated across the lattice as an effect of compressing
the system. Therefore, we have observed a localization-delocalization transition experimentally and showing quite clearly the
possibility of changing the transport properties abruptly by comprissing the lattice.

As an extension, we experimentally excited the surface of every lattice to also show the transition under compression at the
lattice edge. We injected light at the input facet d&-gite as shown by inset in Fig.right-column. Again, we observe high
localization up to a nominal distance of arouhd 18 nm, with a single-peaked pro le. Fat 6 17 mm we observe a spatial
transition and observe that the pro le has now two main peaks, although it is still quite localized and compact, but showing that
a delocalization transition is starting to occur also at the lattice edge. For even smaller distances, we observe how the energy
spreads out into the system and how the dispersive nature of the compressed lattice manifests. Therefore, a relaxed Lieb ribbon
lattice behaves as a perfect insulator, while under compression the energy is able to spread out through the lattice becoming a
perfect conductor.

Conclusions

In conclusion, we have studied theoretically and experimentally a localization-delocalization transition induced by strain in
Lieb ribbon lattices. We found the analytical solutions of the system and how they are affected by a compression value, which

in photonic lattices can be understood as the inclusion of next-nearest-neighbor coupling. For small values of compression, the
solutions are localized, and the system presents a low transport. But under severe compression, the solutions are extended, and
a high transport is obtained. This transition from localized to delocalized states was observed by using exci8ades in

of the lattice, where properties of localized states, reminiscence of at band states, prevails until a critical value of coupling.
These results show that Lieb lattices, and presumably other lattices possessing at bands, are good candidates to the study of
band structures modi cation and the tuning of transport properties through compression.

Methods

Sample fabrication. The photonic lattice used in our experiment was fabricated using the femtosecond laser writing tech-
nique®®. By focusing a laser beam on a borosilicate wafer, we are able to locally modify the refractive index. Then, we translate
the sample at xed velocity and create a complete waveguide inside the glass plate. Depending on the transversal pattern of the
speci c lattice, we repeat this procedure on several positions and fabricate a full photonic system.
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