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ABSTRACT: ​The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2           

(severe acute respiratory syndrome coronavirus 2) created a rush to discover drug candidates. Despite              

the efforts, so far no vaccine or drug has been approved for treatment. Artificial intelligence offers                

solutions that could accelerate the discovery and optimization of new antivirals, especially in the              

current scenario dominated by the scarcity of compounds active against SARS-CoV-2. The main             

protease (Mpro) of SARS-CoV-2 is an attractive target for drug discovery due to the absence in                

humans and the essential role in viral replication. In this work, we developed a deep learning platform                 

for ​de novo design of putative inhibitors of SARS-CoV-2 main protease (M​pro​). Our methodology              

consists of 3 main steps: 1) training and validation of general chemistry-based generative model; 2)               

fine-tuning of the generative model for the chemical space of SARS-CoV- M​pro inhibitors and 3)               

training of a classifier for bioactivity prediction using transfer learning. The fine-tuned chemical model              

generated >90% valid, diverse and novel (not present on the training set) structures. The generated               

molecules showed a good overlap with M​pro chemical space, displaying similar physicochemical            

properties and chemical structures. In addition, novel scaffolds were also generated, showing the             

potential to explore new chemical series. The classification model outperformed the baseline area under              

the precision-recall curve, showing it can be used for prediction. In addition, the model also               
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outperformed the freely available model Chemprop on an external test set of fragments screened              

against SARS-CoV-2 Mpro, showing its potential to identify putative antivirals to tackle the             

COVID-19 pandemic. Finally, among the top-20 predicted hits, we identified nine hits via molecular              

docking displaying binding poses and interactions similar to experimentally validated inhibitors. 

 

Keywords: COVID-19, SARS-CoV-2, transfer learning, ​de novo drug design, generative model,           

ULMFit. 

 

1. INTRODUCTION 

The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2 (severe           

acute respiratory syndrome coronavirus 2) created a rush to discover drug candidates against the virus               

[1–3]​. As of June 2020, no vaccine or molecule has been approved for treatment of COVID-19, despite                 

many molecules being screened and entering clinical trials, including remdesivir, chloroquine and            

lopinavir ​[4–6]​. Therefore, there is an urge to boost drug discovery campaigns in order to identify safe                 

and potent antivirals to tackle the COVID-19 pandemic. Moreover, the present efforts could form the               

basis of drug discovery strategies if a new coronavirus pandemic occurs. 

Coronaviruses are enveloped, single-stranded RNA viruses members of the family          

Coronaviridae ​[7]​. Their genome is approximately 30 kb and contains a variable number of open               

reading frames (ORFs) which encode 16 nonstructural (nsp), 4 structural and several accessory proteins              

[8–12]​. ORF1a/b translates to two polyproteins, pp1a and pp1ab, which are processed by two proteases               

into structural and nonstructural proteins ​[13–15]​. In SARS-CoV-2 the nonstructural protein 5 (nsp 5)              

is the main protease and is essential for viral replication ​[2, 16]​.  
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The main protease 3-chymotrypsin-like (M​pro ​or 3C-like) of SARS-CoV-2 is a cysteine protease             

and consists of a homodimer organized in three domains (I-III) ​[17]​. The active site is located on the                  

cleft between domains I and II and features the catalytic dyad Cys-His ​[2, 17]​. M​pro is conserved                 

among coronaviruses, sharing ~76% sequence similarity with SAR-CoV-1 M​pro​, and there are no             

homologs in humans; making it an attractive target for drug discovery ​[2, 7, 18]​. Furthermore, the high                 

sequence similarity to SARS-CoV-1 M​pro suggests that previously described inhibitors could be used as              

templates to design new inhibitors to boost the drug arsenal against SARS-CoV-2. 

Due to the lack of antivirals targeting SARS-CoV-2, computational approaches could offer fast             

solutions to design, prioritize and optimize small molecules for screening. In this scenario, artificial              

intelligence (AI) has been extensively used to explore the chemical and biological space in large               

molecular databases to find drugs that could be repurposed and novel antiviral activities ​[10, 19–23]​. 

In this work we used ULMFiT ​[24] to train a chemistry model to generate molecules in the                 

same chemical space as molecules screened against SARS-CoV main protease (M​pro​); and a             

classification model to predict the bioactivity of the generated molecules on SARS-CoV-2 M​pro​. The              

molecules predicted as active were further analysed using molecular docking to investigate possible             

interactions with M​pro​. 

2. METHODS 

2.1. Dataset and Molecule Representation. ​We used ChEMBL 26 ​[25] and PubChem ​[26] as              

sources of chemical data in the format of SMILES (​Simplified Molecular Input Line Entry              

Specification​) strings ​[27]​. We downloaded 1,940,733 small molecules from ChEMBL and submitted            

them to standardization to neutralize charges, remove salts, normalization of groups and converting the              

SMILES to the canonical form. The data was filtered to keep only molecules with atoms in the set ​L =                    
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{H, C, N, O, P, S, Br, I, Cl, F}. We also removed molecules with less than 10 heavy atoms or more                      

than 50 heavy. The filtering and standardization steps were implemented using RDKit 2020.01.1             

(https://www.rdkit.org/).  

For fine-tuning, the dataset consisted of over 280K molecules screened against SARS-CoV-1            

M​pro ​available on PubChem (AID: 1706). Originally, AID1706 consisted of 405 active molecules, but              

we augmented it with 224 inhibitors collected from literature by Tang et al.,             

(​https://github.com/tbwxmu/2019-nCov​) ​[28]​. In total, our fine-tuning dataset was highly unbalanced,          

with 629 active molecules and 288,940 inactive ones. Molecules in the fine-tuning dataset were              

submitted to the same preprocessing protocol described above. 

In this work, we used molecules represented as SMILES strings as input to the model (Figure                

1). Each SMILES string is a one-line textual representation of a molecule, where each atom is                

represented by its atomic symbol (e.g., C, for carbon; N for nitrogen etc). 

 

 

Figure 1. ​Overview of the basic concepts showing an unfolded recurrent neural network. Molecules are               

represented as SMILES strings in order to train a chemical model. The SMILES string is split into                 

individual tokens representing atoms and special environments (e.g., charged groups and           

stereochemistry). The tokenized molecule is then used as input to a recurrent neural network (RNN). At                
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each time step ​t, ​the model receives as input a token and the hidden state of the previous step (​h​t-1​). It                     

then updates its own hidden state ​h​t​, ​and​ ​outputs the next token in the sequence (​y ​i​).  

 

In order to use molecules as SMILES strings as input, the SMILES were initially split into                

individual characters or tokens, representing the individual atoms in the molecule and special chemical              

environments, (e.g., [OH-] and stereochemistry information). After tokenization, we used a           

string-to-integer dictionary to convert each token to a unique integer. In total, the dictionary consisted               

of N entries, including beginning of string (BOS), end of string (EOS) to represent the start and end of                   

each SMILES string, respectively. We also added padding tokens (needed for the classification task)              

and UNK tokens to deal with tokens that were not covered by the dictionary, which could be useful                  

when dealing with molecules with exotic groups. To summarize, each molecule was represented by an               

integer array, where each number represented an atom or chemical environment.  

2.2. Model Architecture. ​We used AWD-LSTM as a base architecture ​[29]​, which is a kind of                

recurrent neural network (RNN) that can handle sequential data and learn short and long-term              

dependencies between items in a sequence ​[30]​. The architecture consists of an embedding layer, three               

LSTM (Long-Short Term Memory) layers and a fully connected linear layer (Figure 2). Similar to the                

original ULMFit method ​[24] (see Supplementary Information Part I), we used an embedding layer              

with shape N x 400, where N is the number of input tokens in our dictionary and 400 the number of                     

outputs.  
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Figure 2. Overview of the ULMFit approach. Initially, a general chemical model is trained to learn the                 

“chemical language” contained in a collection of input molecules. The learned features can then be               

transferred to a target-task and adapted to the idiosyncrasies of the data. These “chemical models” can                

be used to generate molecules on demand. The last step consists of using the fine-tuned features to train                  

a classifier that predicts bioactivity. 

 

We initially trained the model using the default 1152 hidden units of ULMFit. However, the               

total training time was superior to the GPU time available. Therefore, we changed the number of                

hidden units to 512 while still maintaining performance. During training, the embedding layer receives              

the inputs and maps them to a latent feature space that contains the contextualized information about a                 

molecule; which can be learned. The embedding and LSTM layers are the encoder of the model,                

responsible for learning the “chemical language” and short and long-term dependencies between each             

token. The final layer was the decoder and consisted of a linear layer with a softmax activation that                  

outputs probabilities for each predicted token. 

For fine-tuning the classifier, we used the same AWD-LSTM architecture as the language             

model but augmented it with two additional linear blocks with relu activations. In other words, only the                 
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linear blocks of the classifier were trained from scratch, which makes the ULMFit approach very               

flexible in the quantitative structure-activity relationship (QSAR) context, since the chemical language            

learned by the general model can be reused ​[31]​. 

The input to the classifier is the activation of the last time step ​h​t of the encoder concatenated                  

with the max-pooled and mean-pooled activations of previous time steps. This pooling operation             

returns the maximum and average activations of previous time steps, allowing the model to focus on                

the most important features to make a prediction ​[24]​. In addition, batch normalization and dropout               

layers were used between each layer to avoid overfitting. The final layer consisted of a linear layer with                  

softmax function to output the probabilities for bioactivity prediction, classifying each molecule as             

“Active” or “Inactive”. 

2.3. Training. ​We trained the general chemical model from scratch for 10 epochs using a               

constant learning rate of 3 x 10​-3​. We randomly selected 10% of the data as a validation set to monitor                    

the performance and avoid overfitting. For fine-tuning, we started with the pretrained model and              

fine-tuned it using discriminative learning rates and gradual unfreezing as proposed by Howard &              

Ruder in the original ULMFit paper ​[24]​. In this context, since each layer captures different types of                 

information ​[32]​, it is sensible to fine-tune each layer with a different learning rate ​[24]​. The learning                 

rate was adjusted using the function η​layer − 1 = η​layer​/2.6, used in the original ULMFiT approach, where η                   

is the learning rate and layer is the number of a specific layer.  

Training with gradual unfreeze initially trains only the linear blocks of the classifier, while              

keeping the parameters of the encoder frozen. We initially trained the classifier for 4 epochs and then                 

unfroze and fine-tuned each layer every 3 epochs until convergence and all layers were fine-tuned ​[33]​.                
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This method of training slowly adapts the classifier to the new task and minimizes the risk of                 

catastrophic forgetting that could happen when fine-tuning all layers at once ​[33]​.  

2.4. Implementation​. We implemented our model using Fastai v1 library ​[33] (https            

://docs.fast.ai). The codes and models for reproducibility are freely available on request. All codes were               

written in Python 3 and ran on ​Google Colaboratory (Colab) (Google, 2018) using Ubuntu 17.10 64                

bits, with 2.3 GHz cores and e 13GB RAM, equipped with NVIDIA Tesla K80 GPU with 12GB RAM.  

2.5. Validation of the Generative Model. ​To validate the general and fine-tuned chemical             

models, we computed the number of novel, unique and valid molecules generated. We define these               

metrics as follows: 

● Validity: percentage of chemically valid SMILES generated by the model according to RDKit.             

A SMILES string is considered valid if it can be parsed by RDKit without errors; 

● Novelty: percentage of valid molecules not present on the training set; 

● Uniqueness: percentage of unique canonical SMILES generated. 

The SMILES strings were generated by inputting the start token “BOS” and progressed until the               

end token “EOS” token was sampled or a predefined size was reached. The probability for each                

predicted token was calculated with the output of the softmax function and adjusted with the               

hyperparameter temperature (T). The sampling temperature is a hyperparameter that adjusts the output             

probabilities for the predicted tokens and controls the degree of randomness of the generated SMILES               

and the confidence of predicting the next token in a sequence ​[34]​. Lower temperatures make the                

model more conservative and output only the most probable token, while higher temperatures decrease              
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the confidence of predictions and make each token equally probable ​[35, 36]​. The probability of               

predicting the ​i​-th token is calculated as (Eq. 1): 

 ​(1) 

where ​y​i ​is the softmax output, ​T is the temperature and ​j ranges from ​i ​to ​K number of maximum                    

tokens to sample from the model.  

2.6. Validation of the Classifier​. The classifier performance was evaluated with 5-fold            

cross-validation. We performed two types of splitting: 1) random split into training, validation and test               

sets using a 80:10:10 ratio, and 2) Scaffold-based splitting in order to ensure that the same scaffolds                 

were not present in training and validation sets. In addition, a dataset of 880 fragments screened against                 

SARS-CoV-2 M​pro using X-ray ​crystallography ​was used as an external evaluation set            

(​https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem/Downloads.h

tml​). Since the dataset was highly unbalanced, we used the area under the precision-recall curve               

(AUC-PR) as the key metric to evaluate the performance, which is more informative in this scenario                

[37]​. The AUC-PR can be calculated from a plot of precision X recall (or sensitivity): 

   (2) 

   (3) 

 ​  (4) 
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where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives and false                  

negatives, respectively. 

We also compared the performance of our classifier on the external test set with Chemprop, a                

freely available ​message passing neural network (MPNN) that has been used to repurpose drugs to               

SARS-CoV-2 ​(​http://chemprop.csail.mit.edu/predict​) ​[38]​. 

2.7. Chemical Space Analysis​. ​We evaluated the chemical space coverage by computing            

Uniform Manifold Approximation and Projection (UMAP) plots of Morgan circular fingerprints or            

Extended Connectivity Fingerprints (ECFP) of length 1,024 bits and radius of 2 bonds. UMAP is a                

dimensionality reduction method used to visualise high-dimensional data (in this case ECFP4            

fingerprints) in just 2 dimensions (2D). Using this method, similar molecules are clustered close to               

each other, while also preserving the global structure of the original high-dimensional data ​[39]​. In               

addition, we investigated the Tanimoto similarity between the generated molecules and true inhibitors             

in terms of structure and Bemis-Murcko scaffolds ​[40]​. 

2.8. Docking protocol. ​A molecular docking simulation was carried out using the            

Protein-Ligand Ant System (PLANTS) v.1.2 docking software. The active site Cys145 was used as the               

center of the simulation box and 15Å were added to each cartesian direction, in order to include the                  

S1/1’, S2 and S3 subsites of M​pro active site. The molecules were scored with the ChemPLP scoring                 

function, using the default search speed parameter of PLANTS v1.2 (search speed = 1). 

 

10 

http://chemprop.csail.mit.edu/predict
https://paperpile.com/c/zFZPEu/lmHyO
https://paperpile.com/c/zFZPEu/fiUg7
https://paperpile.com/c/zFZPEu/oZhZL


 

3. RESULTS AND DISCUSSION 

3.1. General Chemical Model Validation. ​We initially validated the chemical model trained            

on ChEMBL to access its potential to generate molecules using SMILES strings. The main metrics               

have been used to validate generative models in other works ​[35, 36, 41]​. 

3.1.1. Validity, Uniqueness and Novelty of the Generated Molecules. ​We initially investigated            

the performance of different sampling temperatures on the proportion of valid, unique and novel              

molecules generated. Our results are summarized in Supplementary Information Part II, Table S1. 

Overall, our results indicate that the general model can generate diverse and novel molecules              

(Table S1). When sampling with ​T = 0.8, we obtained a good compromise of validity (98.73 ± 0.15%),                  

uniqueness (98.69 ± 0.17%) and novelty (86.57 ± 0.36%) scores (Table S1). Therefore, we decided to                

use ​T = 0.8 for the subsequent experiments. Most structural errors were associated with incomplete               

ring systems, where RDKit could not find matching pairs of brackets on the SMILES string, and a                 

smaller proportion consisted of invalid valances,  such as C​+5​ and Cl​+2​.  

The performance of the general chemical model is in accordance with previous findings for              

LSTM-based models, with high validity, diversity and novelty scores ​[34–36, 41]​⁠. For instance, Brown              

et al​., benchmarked different generative methods, to access their potential in ​de novo drug design.               

Their LSTM model achieved validity, diversity and novelty scores higher than 90%, even higher than               

other machine learning methods, including variational autoencoders (VAE), generative adversarial          

networks (GAN’s), adversarial autoencoders (AAE) ​[41]​⁠. In another study, Merk ​et al​., pre-trained a              

model on 550 thousand SMILES from bioactive molecules from ChEMBL and then used it to generate                

target-specific inhibitors for peroxisome proliferator-activated receptor gamma (PPARγ) and trypsin,          

achieving novelty scores of 88% and 91%, respectively ​[42]​. We also highlight the study by Moret et                 
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al., that adopted a similar approach to ours by using transfer learning and a LSTM model on low-data                  

problems. Their model achieved high proportions of valid, unique and novel molecules (>90%), which              

was further improved when data augmentation was used to increase the training size by including               

different representations of the same SMILES string ​[35]​. 

3.1.2. Chemical Space Analysis. ​As shown in Figure 3, the chemical spaces of ChEMBL and of                

the generated molecules have a high degree of overlap, indicating that the model captured the structural                

features from ChEMBL. 

 

Figure 3. UMAP plot of the chemical space of molecules generated by the general chemical model and                 

ChEMBL (2,000 molecules were randomly selected for each set). 
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3.1.3. Scaffold Diversity and Novelty. ​We also investigated the chemical space of the generated              

scaffolds. For this task, we sampled 10,000 valid SMILES, representing 7,538 unique Bemis-Murcko             

scaffolds (75.58%). The top-10 most common scaffolds were relatively simple, fragment-sized, with            

less than 30 heavy atoms and consisting of at most two 6-membered rings (Figure 4). In addition, five                  

of the top-10 most common scaffolds were also among the most common ChEMBL scaffolds, further               

demonstrating a relative overlap of chemical spaces (Figure 4).  

 

Figure 4. Top-10 most common scaffolds from the generated molecules and ChEMBL sets. The              

prevalence of each scaffold is also shown. 

In terms of novelty, 3,291 (43.66%) of the scaffolds were not present on the training data. In                 

general, the frequencies of each novel scaffold in the generated set was low; each representing only                
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0.03% of all scaffolds (Figure 5). Structurally, the novel scaffolds were more complex than the most                

common ones, with a higher number of heavy atoms and heterocycles.  

 

 

Figure 5. Top-10 most common novel scaffolds. The prevalence of each scaffold among the generated               

molecules is also shown. 
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The UMAP shows the scaffolds of 2,000 randomly selected molecules from ChEMBL and the              

generated set (Supplementary Information Part II, Figure S1). The plot highlights the overlap in              

chemical space of the scaffolds and corroborates our previous analysis that the LSTM model captured               

the chemical information from the training set. 

3.2. Fine-tuning for M​pro ​Chemical Space. ​We previously demonstrated that our generative            

model was able to generate valid, diverse and novel molecules and scaffolds. In the following               

experiments, the encoder of the LSTM model was used to fine-tune another model to generate a                

focused library for compounds active on SARS-CoV-1 M​pro The dataset of M​pro inhibitors was very               

small, with 629 active molecules and more than 280K inactive ones. Therefore, a model that could                

conserve scaffolds associated with high activity and expand the chemical space would be a valuable               

tool to tackle the lack of chemical matter for the current and future coronaviruses pandemics. 

3.2.1. Sampling Temperature. ​Similar to our previous analysis, we initially evaluated the            

optimal temperature by sampling 2,000 SMILES in five independent runs (10,000 in total). As              

expected, with ​T = 0.20 all molecules were valid due to the model only returning high confidence                 

predictions about the next character in the SMILES string (Table 1). However, the generated molecules               

showed low uniqueness and novelty scores, indicating that the model is generating the same molecules               

at every round. Sampling with temperatures higher than 0.5 yielded high proportions of unique, valid               

and novel molecules (Table 1). 
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Table 1. Validity, uniqueness and novelty (mean ± std) of SMILES generated after training. We               

sampled 2,000 SMILES for each temperature in five independent runs (10,000 in total). 

Temperature Validity (%) Uniqueness (%) Novelty (%) 

0.20 100.00 ± 0.00 39.79 ± 0.27 33.21 ± 0.59 

0.50 99.98 ± 0.03 99.05 ± 0.30 78.44 ± 0.78 

0.60 99.95 ± 0.04 99.05 ± 0.18 81.80 ± 1.19 

0.70 99.80 ± 0.10 99.58 ± 0.16 85.10 ± 0.58 

0.75 99.72 ± 0.15 99.58 ± 0.12 85.85 ± 0.68 

0.80 99.44 ± 0.21 99.36 ± 0.20 87.11 ± 0.59 

1.00 97.21 ± 0.39 97.15 ± 0.15 88.66 ± 0.95 

1.20 89.95 ± 0.23 89.84 ± 0.24 85.38 ± 0.87 

 

3.2.2. Optimal SMILES size. ​We also investigated the distribution of molecular weights as a              

function of the maximum size of the SMILES strings the model was allowed to generate. Figure 6                 

shows that the model can generate a range of structures, from fragments (SMILES size in the range 10                  

- 30 characters) to molecules with molecular weights > 500 Da, outside the ranges of classical drug-like                 

physicochemical filters, such as Lipinski’s rule of 5 (molecular weight < 500 Da, HBA < 5, HBD < 5                   

and logP < 5) ​[43]​. The average molecular weight of the generated molecules stabilized between 350 -                 

400 Da when the maximum number of characters per SMILES string was higher than 60. This                

flexibility to generate molecules with different sizes allows our model to be used in different virtual                

screening settings, from fragments to lead / drug -like campaigns. For the next analysis, we generated                
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70,000 valid SMILES using the fine-tuned model setting ​T = 0.80 and the maximum size of SMILES                 

to 50, in order to generate molecules in the drug-like chemical space. 

3.3. Generating M​pro​-focused Compound Libraries. ​Having set the sampling temperature, we           

generated 70,000 valid SMILES using the fine-tuned model. After removing duplicates, we obtained             

67,527 unique molecules (96.47%). The generated molecules displayed a slight shift to lower values of               

molecular weight (MW), logP and number of heavy atoms, indicating that, in general, the model               

generated smaller and more hydrophilic molecules compared to M​pro inhibitors (Figure 6 A-C). On the               

other hand, the distributions of the number of rotatable bonds, H-bonds donor (HBD) and acceptors               

(HBA) (Figure 6 D-F) were similar between the generated molecules and M​pro inhibitors. Overall, the               

similarity between the distributions suggests that the transfer learning process was able to generate              

molecules in the same physicochemical space as the M​pro​ dataset. 

 

Figure 6. Physicochemical properties for the generated molecules (purple) and known SARS-CoV-1            

M​pro inhibitors (green). A) Molecular weight; B) logP; C) heavy atom count; D) H-bond acceptors; E)                

H-bond donors; and F) number of rotatable bonds. 
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We also investigated the ease of synthesis of the generated molecules. For this analysis, we               

used the synthetic accessibility score (SAS), which penalizes molecules with highly complex            

structures, such as high number of stereocenters and multiple ring systems. The SAS score ranges from                

1 to 10, with high values being assigned to more complex and difficult to synthesize molecules ​[44]​⁠.                 

The generated molecules had a similar SAS distribution to the training set. The mean SAS of the                 

generated molecules was 2.36, while the training set had a mean of 2.44. Furthermore, the minimum                

(i.e. lowest complexity) and maximum SAS for the generated set were 1.13 and 6.96, respectively;               

which were comparable to the minimum (1.12) and maximum (7.81) scores of the training set. 

3.4. Navigating the Chemical Space of the Focused Library​. To gain a better insight of the                

fine-tuned chemical space, we calculated the novelty of the 70,000 generated molecules and observed a               

high proportion (96.46%) of novel molecules compared to M​pro ​inhibitors training set, showing that the               

transfer learning process did not simply copy molecules from the training data. As shown on the                

UMAP plots, the generated molecules not only share the chemical space with M​pro inhibitors but they                

extend it by filling gaps with novel molecules, corroborating our previous finding about the similar               

physicochemical parameters (Figure 7). 
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Figure 7. Chemical space of 1,000 randomly selected generated molecules (light green) and 629 M​pro               

inhibitors (gold).  

We also investigated how the generated molecules populated the scaffold (in terms of             

Bemis-Murcko scaffolds) chemical space, which is an interesting feature for ​de novo design; if the               

model could generate novel scaffolds it might be possible to find scaffold hopping opportunities and               

new chemical series. Among the 70,000 generated molecules, we found 35,713 unique scaffolds             

(52.89%); of which 35,538 (99.51%) were novel compared to the training set. The UMAP plot shows                

the overlap in chemical space between Bemis-Murcko scaffolds of the generated molecules and M​pro              

inhibitors. The novel scaffold also filled gaps in chemical space demonstrating that the fine-tuned              

model successfully approximated the target chemical space (Figure 8). 
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Figure 8. Chemical space of 1,000 randomly selected scaffolds from the generated molecules set (light               

green) and 629 M​pro​ inhibitors (gold). 

We also analysed how different the novel scaffolds were from the training set scaffolds.              

Overall, the novel scaffolds were structurally different to their closest neighbor in the training set, with                

a Tanimoto coefficient of 0.420 ± 0.10. Some novel scaffolds displayed small modifications compared              

to their closest neighbors, such as the insertion or removal of a few atoms between rings, the                 

substitution of oxygen for sulfur atoms and substitution of one ring (Figure 9A). In general, these small                 

modifications did not affect the core of the scaffold, indicating that the model can explore subtle                

changes while maintaining important features for activity. Some scaffolds showed more drastic            

modifications, such as replacing atoms of the core of the scaffold, reducing or increasing the               
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complexity of the radicals attached to the core scaffold and changing the core structure completely               

(Figure 9B). 

 

Figure 9. Chemical structures of some generated scaffolds and their closest neighbor on the training               

set, with small (A) and more drastic changes in chemical structure (B). 

In general, the model showed some ​creativity​, in a sense that it introduced modifications to               

existing scaffolds and generated novel structures. This creativity can also be seen in other works. For                

instance, the RXRs and PPARs inhibitors generated by Merk et al., showed a similar biphenyl scaffold                

and most modifications were on the radicals. Although the authors did not make the training set                

available, it’s possible that the biphenyl moiety was present on the training set ​[42]​. In another study,                 

Méndez-Lucio and coworkers trained a generative model using chemical (e..g, SMILES strings) and             

transcriptomic data for 978 genes, showing that the model could generate molecules that were              

structurally similar to their closest neighbors in the training set, while also introducing a range of                
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modifications to the scaffolds. Concretely, starting with a benzene ring, the authors obtained structures              

with fused rings, different substitution patterns and also the replacement of carbons atoms to generate               

heterocycles ​[45]​. A recent approach described by Arús-Pous et al. was used to generate molecules               

starting from any scaffold; by exhaustively slicing acyclic bonds of the molecules on the training set                

the authors obtained a vast amount of scaffolds and decorators data. After training, the model generated                

scaffolds decorated with different groups and predicted to be active against dopamine receptor D2              

(DRD2). Furthermore, their model could be used to add decorations in a single step or multiple steps                 

[46]​. 

The works summarized above are a small sample of what is possible with modern generative               

models, showing how different deep learning strategies can be used to generate novel scaffolds with a                

range of modifications. However, it is important to highlight that the true impact of such modifications                

in terms of intellectual property and publication quality is still an open question ​[47]​.  

3.5. Performance of the Fine-tuned Bioactivity Classifier. ​Having demonstrated that the           

fine-tuned chemical model approximated the chemical space of M​pro inhibitors, we used transfer             

learning to fine-tune a classification model for bioactivity prediction. The performance of the classifier              

varied depending on the split method used. For random splitting, the model achieved a validation               

AUC-PR of 0.310 ± 0.036 and a test AUC-PR of 0.220 ± 0.027. The performance using scaffold split                  

was worse, with validation AUC-PR of 0.251 ± 0.083 and test AUC-PR of 0.185 ± 0.13 (Figure 10).                  

This drop in performance is expected, since different scaffolds are present in training and validation.               

However, this method of validation is more realistic when evaluating the performance of the classifier               

for prospective screening on new scaffolds, since it reduces the bias on specific chemical series ​[48,                
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49]​. Overall, our model outperformed the baseline AUC-PR for random classification (0.00217),            

demonstrating it can be used to predict bioactivity for SARS-CoV-1 M​pro​.  

 

Figure 10. Boxplots of the performance of the classifier grouped by split method. The validation (red                

bars) and test (blue bars) sets consisted of random or scaffold-based splits of the original SARS-CoV-1                

M​pro ​inhibitors data.  

We also evaluated the performance of the classifier in predicting the bioactivity of an external               

set of fragment hits screened against SARS-CoV-2 M​pro in order to estimate its applicability for               

prospective virtual screening on a similar target. The baseline AUC-PR for randomly predicting hits              

was 0.089, which is the same as the ratio of hit molecules in the dataset (78 hits x 802 non-hits                    

fragments). Our model clearly outperformed the baseline for random predictions, achieving an            

AUC-PR of 0.255 (Figure 11). 
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Figure 11. Precision-recall curves for our model (solid blue line) and chemprop (dashed orange line).               

The baseline area under the precision-recall curve (AUC-PR) for random predictions is given by the               

ratio of active molecules in the dataset. For the SARS-CoV-2 M​pro​, the baseline was 0.089 and is shown                  

as a dotted red line. 

We also compared the classifier with the freely available model chemprop, which has been used               

by the “AI Cures” project to repurpose drugs for SARS-CoV-2 ​[50]​. Chemprop is a message passing                

neural network (MPNN) that works directly on the molecular graph for molecular property prediction.              

The predictions are made by averaging the output of 5 models augmented with RDKit features ​[38]​.                

The precision-recall curve shows that our model outperformed chemprop (Figure 11).  

After analysing possible thresholds calculated from the precision-recall curve, we decided to            

use 0.0035 as the probability cutoff to predict a molecule as active to achieve a good balance between                  
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precision and recall. Overall, our results suggest that the fine-tuned classifier can be used for               

prospective virtual screening for SARS-CoV-2 M​pro​.  

3.6. Predicting the Bioactivity of Generated Molecules. ​As a proof-of-concept, we used the             

fine-tuned classifier to predict the bioactivity of the previously generated 70,000 valid SMILES. In              

total, 1,697 molecules were classified as active and the UMAP plot shows a good overlap between the                 

predicted hits and real M​pro​ inhibitors in chemical space (Figure 12). 

 

 

Figure 12. Chemical space of predicted hits (yellow) and M​pro inhibitors of SARS-CoV-1 (indigo) and               

SARS-CoV-2 (light green).  

We also report the top-20 predicted molecules for M​pro inhibition (Figure 13). These 20              

molecules were classified as hits with high confidence, with probabilities in the range 0.99 - 1.0. By                 
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analysing their structures, we found scaffolds that are present in real inhibitors. Of these generated               

molecules, 5 were rediscovered by our model (​LaBECFar-9, 12, 14, 19 ​and 20​). Benzotriazoles              

similar to ​LaBECFar-1-4​, have been described as non-covalent inhibitors of SARS-CoV-1 M​pro ​and a              

X-ray crystal structure between a prototype bound to the enzyme is available on the Protein Databank                

(PDB: 4MDS) ​[51]​. Peptidomimetic benzothiazolyl ketones, such as ​LaBECFar-5-10​, have been           

described as covalent inhibitors of SARS-CoV-1 M​pro ​[52]​. In fact, ​LaBECFar-9 is present on the               

training set and was rediscovered by our approach. The core peptidomimetic structure is preserved in               

the generated molecules and they also bear the warhead group benzothiazolyl ketone at P1’ position,               

which could form a covalent bond with the cysteine of the catalytic dyad Cys-His on the active site of                   

M​pro​. 
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Figure 13.​ Top 20 predicted active molecules. 
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3.6.1. Docking simulation. ​In order to further prioritize molecules for biological testing, we             

submitted the top-20 predicted hits to a docking simulation using the crystal structure of SARS-CoV-2               

M​pro ​(PDB: 6LU7). Nine molecules were considered hits, displaying similar binding poses to             

experimentally validated inhibitors in X-ray crystal complexes with M​pro​. These hits included three             

benzotriazoles (​LaBECar-1​, ​LaBECFar-3 and ​LaBECFar-4​) and four benzothiazolyl ketone         

(​LaBECFar-5, LaBECFar-6, LaBECFar-9 ​and LaBECFar-7​), one peptidomimetic       

(​LaBECFar-11​), and one ​N​-(2-pyridyl)acetamide derivative (​LaBECFar-17​). 

The docked pose of ​LaBECFar-11 fits nicely into the active site of M​pro​, showing a similar                

binding pose to peptidomimetic inhibitors described in other works, including ​11a (Figure 14A) (PDB:              

6LZE) ​[2, 7, 17, 53, 54]​. The γ-lactam group at P1 is a glutamine mimetic and binds in the S1 pocket,                     

with the oxygen atom acting as H-bond acceptor to H163 and the nitrogen as donor to E166 (Figure                  

14B). As described in other works, the formation of an H-bond between H163 is critical for activity;                 

H163 is a conserved residue at S1 and is responsible for stabilizing substrates in place via an H-bond                  

with a glutamine residue at position P1 ​[7, 53]​. Interestingly, ​LaBECFar-11 does not possess a               

warhead group at P1’ position, but docking pose suggests it might work as a reversible inhibitor or be                  

optimized for covalent inhibition. 

The fluoro-phenylalanine group at P1’ position formed a H-bond with G143 at S1’, adopting a               

parallel orientation to the S2 pocket. The leucine side chain at position P2 inserted into the S2 pocket                  

and established hydrophobic contacts with the side chains of M49, Y54 and D187. The benzyl               

carbamate group at P3 position bond on the solvent-exposed S4 pocket, while also forming a H-bond                

with E166 at S1. 
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Figure 14. Experimental binding poses of peptidomimetic inhibitor ​11a (PDB: 6LZE) and docked pose              

of ​LaBECFar-11 on SARS-COV-2 M​pro​. (PDB: 6W79). The amino acid residues are shown as beige               

sticks and the ligands as green sticks. 

The benzotriazole derivatives displayed a similar binding pose to the non-covalent inhibitor            

ML300 (PDB: 4MDS) developed by Turlington et al., ​[55] (Figure 15). As shown in Figure 15B for                 

LaBECFar-4​, the benzotriazole ring binds to the S1 pocket, formed by the side chains of F140, N142,                 

H163, and H172 (Figure 15B). Overall, ​LaBECar-1 (​Figure S2A), ​LaBECFar-3 (Figure S2B) and             

LaBECFar-4 displayed an extensive H-bond network with the S1 pocket, with H163 and E166              

representing the main residues stabilizing the ligand.  
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Figure 15​. Experimental binding poses of peptidomimetic inhibitor ​ML300 (PDB: 4MDS) and docked             

pose of ​LaBECFar-4 on SARS-COV-2 M​pro​. (PDB: 6W79). The amido acid residues are shown as               

bege sticks and the ligands as pink sticks. 

The S2 pocket also hosted a series of interactions with the ​LaBECar-1​, ​LaBECFar-3 and              

LaBECFar-4​. The ​cyclopentyl moiety of ​LaBECar-4 ​inserted into S2 and stacked with the imidazole              

ring of H41 (Figure 16B). The cyclopentyl moiety also made extensive hydrophobic contacts with              

M49, Y54 and D187 at S2. The same interaction pattern of hydrophobic interactions was observed for                

LaBECFar-1 (Figure S2A) and ​3 ​(Figure S2B). The ​N​-(2-phenyl)-acetamide group at position P1 in              

LaBECar-1 ​(Figure S2A) and ​3 ​(Figure S2B)was solvent exposed, protruding from the binding site              

without any noticeable interactions with M​pro​. The same orientation was not observed in ​LaBECFar-4​,              

where the ​N​-(2-phenyl)-acetamide group was accommodated between the S2 / S1’ pockets and             

established an H-bond with G143 (Figure 15B), which is similar to the pose of inhibitor ​ML300​ ​[55]​.  

Different groups were positioned on the solvent-exposed S4, which is in accordance with the              

high tolerance of this subsite to a range of functional groups ​[7, 17, 55]​. It might be possible to truncate                    

LaBECar-1​, ​LaBECFar-3 and ​LaBECFar-4 ​and reduce the molecular weight by removing ​the P3             
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group at S4, since it is exposed to solvent. A similar strategy was adopted by Turlington et al., for the                    

development and optimization of ​ML300​ and other benzotriazole derivatives ​[55]​. 

The benzothiazolyl ketones ​LaBECFar-5 ​(Figure 16B)​, LaBECFar-6 (Figure S3A)​,         

LaBECFar-7 ​(Figure S3B)​, LaBECFar-9 ​(Figure S3C) ​displayed a binding pose that could favour             

covalent inhibition, with the carbonyl positioned 4.2A from the sulfur atom of C145 at S1’. As shown                 

in Figure 16B for ​LaBECFar-5​, the binding pose is similar to the recently solved X-ray crystal                

complex between the benzothiazolyl inhibitor ​GRL-0240-20 (Figure 16A) and SARS-CoV-2 M​pro           

(PDB: 6XR3). The γ-lactam group at P1 position established H-bond with the imidazole of H163 and                

the side chain of E166 on the S1 subsite. The leucine side chain at P2 inserted into the S2 pocket and                     

formed hydrophobic interactions with M49, D187 and Y54. The 4-methoxy-benzyl group at P3             

interacted with the solvent-exposed S4, forming a H-bond with Q192. 

 

Figure 16. Experimental binding poses of peptidomimetic inhibitor ​GRL-0240-20 (PDB: 6XR3) and            

docked pose of ​LaBECFar-5 on SARS-COV-2 M​pro​. (PDB: 6W79). The amido acid residues are              

shown as beige sticks and the ligands  as orange sticks. 
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We also report the ​LaBECFar-17; ​bearing an ​acrylamide moiety that could covalently inhibit             

M​pro (Figure 17). In fact, one acrylamide from the training set (Pubchem SID: 47196538) is an                

analogue of ​LaBECFar-17 ​and was confirmed to be active on two Pubchem confirmatory screenings              

against SARS-CoV-1 M​pro (AIDs: 1879 and 1944). The docked pose of ​LaBECFar-17 revealed that              

the 3,4-dichloro group inserts into the S2 pocket, while the pyridine ring forms a H-bond with H163 at                  

S1. The warhead acrylamide is at 5.9A from the catalytic C145 and forms H-bonds with E166 and                 

H164 at S1. 

 

Figure 17. Docked pose of ​LaBECFar-17 on SARS-COV-2 M​pro​. (PDB: 6W79). The amido acid              

residues are shown as bege sticks and the ligand is shown as light blue sticks. 

3.6.2. PAINS filtering​. In a final round of ​in silico analysis, we submitted the top-20 predicted                

hits to a Pan Assay Interference Compounds (PAINS) filter implemented in the FAF-Drugs4 server in               

order to identify molecules with the potential to interfere with biological assays. Not surprisingly,              
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LaBECFar-15 and 16 were flagged as PAINS; the amino-thiophene group in these molecules is known               

to have thiol reactivity. The other 18 predicted hits passed in all PAINS filters.  

In silico ​filtering using predefined rules is a valuable tool to prioritize molecules from huge               

databases and reduce the risks of false positives in biological assays ​[56, 57]​. Many tools are available                 

for free and implemented in packages such as RDKit and servers such as FAF-Drugs4. However,               

automatic virtual filters are not magic bullets to catch all molecules that could interfere with assays                

[58]​. For instance, current strategies to develop M​pro inhibitors often rely on warhead groups, such as                

α,β-unsaturated carbonyls, aldehydes and thiol-reactive esters ​[59, 60]​; these groups ​would probably be             

flagged as problematic in some PAINS filters ​[57, 61, 62]​. Therefore, the selection of molecules for                

follow up analysis should be done carefully and take into account the nature of the target and the                  

known inhibitors available. These highly reactive molecules could be problematic to optimize, but they              

are still the most abundant source of starting points to develop M​pro inhibitors, and should not be                 

discarded before experimental confirmation of bioactivity and that they are not interfering with the              

biological assay.  

 

4. CONCLUSIONS 

We used ULMFit to train a chemical model for ​de novo design and fine-tune a classifier for                 

bioactivity prediction on SARS-CoV-2 M​pro​. The chemical space of the generated molecules            

overlapped with the target chemical space of M​pro inhibitors, showing that the key structural features               

were properly captured by the model. In addition, the generated molecules and real M​pro inhibitors               

showed similar physicochemical properties. 
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The fine-tuned classifier outperformed the random classification baseline and a model that is             

being used to repurpose drugs for SARS-CoV-2 M​pro​. The predicted active molecules also shared              

scaffolds with real M​pro inhibitors, while introducing a range of changes to lateral chains and the core of                  

the scaffolds, indicating it could be used to explore the structure-activity of chemical series. 

A limitation of our classifier is that the precision-recall curve shows that it is only possible to                 

achieve a high precision (~0.70) at the cost of low recall (<0.10). In addition, the probabilities output                 

by the classifier were extremely low, with a median of 0.0035. The low probabilities are the result of                  

the extreme class unbalance on the training set, with only 0.1% of active molecules. In future work, we                  

will prioritize calibrating the probabilities to a more reasonable range and improve the recall. The               

model will be retrained as soon as more activity data is available for SARS-CoV-2 M​pro inhibitors.                

Remarkably, most molecules from AID1706 do not have measured IC​50 available, since they were              

classified as active based on the percentage of inhibition on a single concentration screening campaign.               

Therefore, we still lack confirmatory screening for M​pro inhibitors, which would probably improve the              

performance of deep learning models. 

We also highlight that the current version of our generative model is still limited by the nature                 

of the training data. As more molecules are screened against M​pro​, we will update the model in order to                   

generate more diverse and novel molecules. 
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Part I - Universal Language Model Fine-tuning 

1. THEORY 

Instead of searching chemical databases for potential antivirals, in this work we            

propose a deep learning platform to generate new chemical matter focused on SARS-CoV-2             

M​pro​. Our method is based on the ULMFit (Universal Language Model Fine-Tuning)            

approach developed by Howard and Ruder to address the problem of transfer learning in              

natural language processing (NLP) classification tasks ​24​. Specifically, ULMFit allows          

pre-training a general-domain model and then fine-tuning it on a target task. The approach              

can be divided into three parts:  

1) Initially, a general-domain model is trained on a large text corpus to learn to predict               

the next word (or character) in a sentence. Since this task is strongly dependent on the                

model learning long and short-term dependencies between the words, we can think of             

training the model to learn a very general idea of how a language works. In a                

chemical sense, this translates to learning how to build valid SMILES strings of             

molecules. 

mailto:floriano@ioc.fiocruz.br
https://paperpile.com/c/zFZPEu/CJ84Y


2) The features learned by the pre-trained model can be fine-tuned to adapt to the              

idiosyncrasies of a target task. 

3) In the last step, the fine-tuned model can be used as part of a classification model to                  

predict the bioactivity on M​pro​. 

The pre-training and fine-tuning of chemistry-based language models, or generative          

models, is a growing research field for ​de novo drug design ​25,26​. The main idea of this kind                  

of deep learning model is to use a neural network that can generate new chemical matter after                 

seeing examples of valid molecules. One of the most used architectures for this are recurrent               

neural networks (RNN). RNN’s are neural networks that can deal with sequences of variable              

length, such as the ones in natural language processing ​27​, audio ​28 and video ​29 tasks. The                 

recurrent operation is the heart of RNN; each item in a sequence serves as input to the neural                  

net in order to predict the next item in the sequence ​30,31​. RNN’s can also learn long and                  

short-term dependencies between items and learn how the sequence is structured ​32​.  

RNN’s are suitable to work with molecules because most molecular information is            

available as text files; in SMILES strings each character contains some information about the              

molecule and RNN’s could learn the ​chemical language by looking at a number of examples               
25​. Concretely, different studies have demonstrated that RNN’s can be trained on SMILES             

strings of a large molecule collection to generate molecules that are similar to active              

molecules of a target chemical space ​30,31,33–36​. In addition, these models can be combined with               

reinforcement learning (RL) to optimize them towards physico-chemical and biological          

properties of interest ​37–42​.  

In this work we used ULMFiT ​24 to train a chemistry model to generate molecules in                

the same chemical space as molecules screened against SARS-CoV main protease (M​pro​); and             

a classification model to predict the bioactivity of the generated molecules on SARS-CoV-2             

M​pro​. The molecules predicted as active were further analysed using molecular docking to             

investigate possible interactions with M​pro​. 
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Part II - General Chemical Model Validation 

1. General Chemical Model Validation. ​We initially validated the chemical model           

trained on ChEMBL to access its potential to generate molecules using SMILES strings             

(Table 1). The main metrics have been used to validate generative models in other works               
31,34,55​.  
Table S1. Validity, uniqueness and novelty (mean ± std) of SMILES generated after training.              

We sampled 10,000 SMILES for each temperature (2,000 SMILES in five independent runs). 

Temperature Validity (%) Uniqueness (%) Novelty (%) 

0.20 99.27 ± 0.21 35.26 ± 1.56 83.01 ± 1.06 

0.50 99.81 ± 0.050 95.78 ± 0.37 77.73 ± 0.31 

0.60 99.74 ± 0.11 98.70 ± 0.37 80.43 ± 0.31 

0.70 99.30 ± 0.18 99.09 ± 0.23 83.11 ± 0.42 

0.75 98.96 ± 0.31 98.81 ± 0.34 84.25 ± 1.20 

0.80 98.73 ± 0.15 98.69 ± 0.17 86.57 ± 0.36 

1.00 94.26 ± 0.48 94.24 ± 0.46 92.14 ± 0.59 

1.20 81.80 ± 1.23 81.78 ± 1.20 95.72 ± 0.60 

 

As expected, the proportion of valid SMILES decreased steadily with temperature           

when T ≥ 0.75. As the randomness of sampling increases, the number of valid molecules               

decreases; which is consistent with previous works ​33,34 (Table S1). Most errors were             

https://paperpile.com/c/zFZPEu/6kBxF+H3XwD+Gksjf
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associated with incomplete ring systems, where RDKit could not find matching pairs of             

brackets on the SMILES string, and a smaller proportion consisted of invalid valances, such              

as C​+5​ and Cl​+2​.  

When ​T = 0.20, the generated SMILES were mostly long acyclic molecules with few              

branches and enriched with carbon and carbonyl / amide groups, showing that the model is               

making high confidence predictions about the next atom based on the previous tokens. This is               

not surprising since carbon, oxygen and nitrogen are the most prevalent tokens on the training               

data. 

Increasing the temperature resulted in higher uniqueness (or diversity), with the            

maximum value achieved with ​T = 0.70 (uniqueness = 99.09 ± 0.23%). When ​T > 0.70, there                 

was a progressive decrease in diversity, with ​T = 1.2 returning the lowest score (81.78 ±                

1.20%). This lower diversity could also be a reflection of the lower proportion of valid               

SMILES in higher temperatures. Despite the drop in diversity, all temperatures still yielded             

more than 70% unique SMILES. The novelty score also increased with temperature,            

achieving the highest value with ​T ​= 1.2, indicating the model is not simply copying               

molecules from the training set but in fact generating new chemical matter. 

For all temperatures, a few very complex molecules were generated, such as            

9-members rings and polycyclic compounds, which is probably a reflection of the general             

nature of the model since it was trained on ~1.6 million molecules from ChEMBL and we did                 

not impose restrictions to molecular complexity, except the maximum size of the SMILES             

string to generate (i.e., 140 characters). 

Overall our results indicate that the model can generate diverse and novel molecules.             

As shown in Table 1, a good compromise of validity, diversity and novelty was obtained               

when sampling with ​T = 0.8. Therefore, we decided to use ​T = 0.8 for the subsequent                 

experiments.  

 

 

 



1.1. Scaffold Chemical Space 

 

Figure S1. ​UMAP plot of the chemical space of scaffolds generated by the general chemical               

model and scaffolds from ChEMBL (2,000 molecules were randomly selected for each set). 

 

Part III - Molecular docking 



 

Figure S2​. Docked poses of ​LaBECFar-1 and ​LaBECFar-3 on SARS-COV-2 M​pro​. (PDB:            

6W79). The amido acid residues are shown as bege sticks and the ligands are shown as pink                 

sticks. 



 



Figure S3​. Docked poses of ​LaBECFar-6, ​LaBECFar-7 ​and LaBECFar-9 on          

SARS-COV-2 M​pro​. (PDB: 6W79). The amido acid residues are shown as bege sticks and the               

ligands are shown as orange sticks. 
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