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A selection pressure landscape for 870 human polygenic 

traits 

Abstract 

Characterizing the natural selection of complex traits is essential for understanding 

human evolution and biological or pathological mechanisms. To fulfill this 

requirement, we leveraged Genome-wide summary statistics for 870 polygenic traits 

and quantified the selection pressure of different forms and time scales on them in 

European ancestry. We found that 88% of traits underwent polygenic adaptation in the 

past 2000 years. At the present time and Neolithic period, selection pressure showed 

profound alteration. Traits related to pigmentation, impedance, and nutrition intake 

exhibited strong selection signals across different time scales. Our result provided an 

overview of selection pressure on various human polygenic traits, which served as a 

foundation for further populational and medical genetic studies. 

Main 

The genetic architecture of present-day human is shaped by the profound selection 

pressures in the long history1. Understanding the patterns of natural selection can 

provide valuable insights into the mechanisms of biological process2, the origin of 

human psychological characteristics3, and the historical events of anthropology4. For 

public health and clinical medicine, the study of evolution promotes our knowledge of 

disease mechanisms and susceptibility5,6, and aids precision medicine by highlighting 

the intolerant genetic variants7. The explosive growth of all branches of anthropology, 

biology and medicine demands a comprehensive understanding of natural selection, 



both for heritable diseases and non-disease traits. 

 Quantifying the selection pressure, especially on human polygenic traits, is a 

complex task1. Unlike simple traits dominated by a single gene or variant, selection 

pressure on complex traits often results in polygenic adaptation8, where subtle 

modification on a large number of variants segregates into phenotypic alteration. 

Polygenic adaptation could accomplish different forms of selection, such as purifying 

selection, balancing selection, and hard and soft sweeps1,8. Furthermore, the 

revolutions of culture and productivity in human history have profoundly distorted the 

existing selection pressure on human society9, which led to distinct adaptation 

patterns at different time scales. Undoubtedly, a comprehensive understanding of 

natural selection should cover all these aspects. So far, a few studies have managed to 

generate a multi-aspect picture of selection pressure for a single polygenic disease, 

such as attention-deficit/hyperactivity disorder10 and schizophrenia11. Yet, an intact 

overview covering all types of human traits is still lacking. 

 With the tremendous advancement of Genome-Wide Association Study 

(GWAS)12 and various efficient analytical tools of population genetics13, we're now 

able to study the selection pressure of human polygenic traits from a multi-

dimensional perspective. Here, we leveraged GWAS summary statistics of 870 traits 

and applied various methods to quantify their selection pressure in different forms and 

at different time scales. We also performed cross-sectional and longitudinal 

comparisons to illustrate the essential characteristics of human adaptation. Together, 

our result provides a reference landscape for future genetic studies regarding human 



evolution. 

Result 

By filtration in traitDB12 database and literature research (Method), we collected the 

GWAS summary statistics of 870 polygenic traits with adequate power, 738 of which 

were carried out primarily in the UK Biobank. These traits were separated into 15 

categories (Figure 1 and Table S1). To comprehensively evaluate the selection 

pressure on them, we adopted different methods to quantify the natural selection at 

four different time scale: present time, recent history (2,000 to 3,000 years), pan-

Neolithic period and since human speciation (Figure 1). These metrics were then 

integrated to analyze the relations and discrepancy of selection pressures among 

different time scales and traits. 

 

Figure 1 Flowchart of the study. 

  



 

Widespread impacts of impedance traits on fertility in modern society 

Our analysis started at the selection pressure at the present time. We applied 

Mendelian randomization (MR) to evaluate whether each trait could impact human 

fertility (i.e., number of children) and mating success (i.e., number of sexual partners). 

We found that among all 539 traits with valid MR results (Method and Figure S1), 40 

(7.4%) of traits had a causal effect on male's number of children (ncm), whereas 32 

(5.9%) impacted that of female's (ncf) (Table S2). Divided by category (Figure 2A 

and 2B), we found that 52% (23/44) of impedance traits (IMP) like height (Zncm=8.09, 

Zncf=4.91) and body mass index (BMI) (Zncm=7.11, Zncf=4.79) were causally related to 

male's number of children (for women, the proportion was 30% [14/47]). Effect of 

dermatology traits (DER) on fertility exhibited gender-specificity: 38% (5/13) of DER 

influenced ncm, but none affected ncf. The risk of any polygenic disease had no 

impact on fertility, providing no evidence for the previous hypothesis that some 

heritable diseases were not eliminated by natural selection because of their 

reproductive advantage14. 

 As for mating success (Figure S2), IMP also had a profound impact (44% of IMP 

impacted male's number of sexual partners [nsm]; 12% affected that of female [nsf]). 

Interestingly, among all polygenic diseases, Schizophrenia (Znsm=7.37) and Attention 

deficit hyperactivity disorder (Znsm=4.62) increased nsm, in line with previous 

finding14. For males, the impact on fertility of a trait was profoundly positively 

correlated with its impact on the mating success (Figure S2; Pearson Correlation 



Coefficient [PCC] =0.47, p=9.30×10-31); however, this was not true for female (Figure 

S2C; PCC=-0.10, p=0.02). This discrepancy supported the evolutionary psychology 

theory that male and female adopted distinct sexual strategies15. 

 We then analyzed the difference in selection pressure between genders. In 

general, impacts on fertility were similar for males and females (Figure 2C; PCC= 

0.38, p=6.85×10-31). A few exceptions included left leg impedance (Zncm=-4.30, 

Zncf=1.50) and Ease of skin tanning (Zncm=5.68, Zncf=-3.20). The impacts of mating 

success were even more similar between genders (Figure S2; PCC= 0.64, p=9.18×10-

106). Notably, high intelligence could significantly reduce fertility, especially for 

females (Zncm=-5.13, Zncf=-7.55); however, it increased the expected number of sexual 

partners of females (Znsf=7.05) (Figure S1).  

We also applied Causal Analysis Using Summary Effect Estimates (CAUSE)16 to 

all MR results to analyze the role of genetic correlation. We found that most of the 

results were better explained by the causal effect (see supplementary methods and 

results for detail).  



 

Figure 2 Selection pressure at present and recent history. A&B: Proportion of traits showing 

MR causal effects on number of children of male (A) and female (B) for each category. C: 

Comparison of MR z scores between male (x axis) and female (y axis). Dashed lines indicated 

significance threshold (|z|>4). Texts indicated selected traits with results of special interests. D: 

Distribution of absolute Spearman correlation (|ρSDS|) between tSDS and GWAS p value for 

each category. Upper and lower margins of box indicated first and third quartiles of ρSDS, and 

the thickened line indicated median ρSDS. E: ρSDS for all dermatology traits. The 

diagonal of the rhombus indicated ρSDS, and the width of rhombus indicated 95% 

confidence interval of ρSDS. F: Scatter plot showing the correlation between tSDS and 

GWAS p value for trait “Ease of skin tanning”. Each point represented a bin of 1000 

SNPs ranked by their GWAS p value. Y-axis indicated the bin median tSDS. DER: 

dermatology. NUT: nutrition. REP: reproduction. IMP: impedance. GI: Gastrointestinal. 

PSY: psychiatry. RES: respiratory. MED: medication. COG: social-cognition. MUSC: 

musculoskeletal. MET: metabolism. CIRC: circulation. NEU: neurology. 

 



Most heritable traits underwent significant polygenic adaptation in the past 2000 

years 

Next, we extended our analysis to the recent history (past 2000-3000 years). Selection 

pressure at this time scale was measured by the Spearman correlation between SNP-

trait association p-value and trait-increasing Singleton Density Score (tSDS), termed 

ρSDS, as applied by Field et al.17 (Method). High tSDS for a SNP indicated that the 

trait-increasing allele of this SNP had an elevated frequency in the past 2,000~3,000 

years. At the significance threshold of p<0.05/870, we found that 88% (761/870) of 

polygenic traits had a significant correlation between GWAS p-value and tSDS (ρSDS; 

Table S3). Previous analysis has found that population stratification between UKB 

and other GWAS might exaggerate the estimated polygenic adaptation18. In our study, 

GWAS from UKB showed a larger magnitude of ρSDS (p by permutation [pp]=0.001, 

Figure S3). This result was mainly driven by the excess number of DER and nutrition 

intake-related traits (NUT) in UKB (pp=0.08 after removing DER and NUT). We 

reasoned that the population stratification of GWAS outside UKB did not significantly 

inflate the observed adaptation. Thus, the high proportion (88%) of significant traits 

truly reflects recent adaptation prevalence. 

 To further verify this high prevalence of recent adaptation detected by ρSDS, we 

applied another method with a distinct statistic model, namely, Reconstructing the 

History of Polygenic Score19 based on RELATE20 (RHPS-RELATE, method and 

discussion). As shown in Table S3, the Polygenic Risk Score (PRS) alteration in the 

past 100 generations (roughly equivalent to 2,800 years20) was generally in 



accordance with ρSDS (PCC=0.25, p=3.96×10-13). Among 755 traits with significant 

non-zero ρSDS, 13.8% (104/755) showed consistent significant alteration of PRS (p by 

Tx test [pt]<0.05/870, method), and 26.1% (197/755) showed nominal significant 

alteration (pt<0.05). Notably, RHPS-RELATE also highlighted those traits with most 

profound ρSDS, such as Ease of skin tanning (p for ρSDS<10-100; pt<10-100) and raw 

vegetable intake (p for ρSDS<10-100; pt=2.69×10-51) (Table S3). In general, RHPS-

RELATE supported the result of ρSDS analysis, albeit at a smaller statistical power. In 

the following section, we still considered ρSDS as the main result. 

Among all traits, DER generally showed the most significant signals (median 

|ρSDS |=0.69, figure 1D-E), followed by NUT (median |ρSDS |=0.48; ρSDS =-0.95 for 

'raw vegetable intake', Figure S3) and reproduction-related traits (REP; median |ρSDS 

|=0.30; ρSDS =-0.58 for 'Polycystic ovary syndrome', Figure S3). Ease of skin tanning 

was the trait with the most significant adaptation (ρSDS =-0.96; Figure 1F). Ever 

drinkers (ρSDS =-0.82) and sitting height (ρSDS =0.84) were also among traits with an 

extreme signal of adaptation (|ρSDS |>0.8), which made up 3.3% of all traits (Figure 

S3). Neurological traits like brain structures exhibited the least polygenic adaptation 

(median |ρ|=0.05).  

Compared with non-disease traits, the adaptative pressure on polygenic disease 

was generally negative (median ρSDS =-0.08; permutation p=3.22×10-6), especially for 

early-onset disease (median ρSDS =-0.12; Figure S4). However, the magnitude of 

adaptative pressure for diseases was similar to traits (median |ρSDS |=0.16, permutation 

p [disease vs. trait] =0.1). The most profound negative adaptation was found for high 



cholesterol (ρSDS =-0.66, Figure S4). Exceptionally, we found positive adaptation on a 

few diseases like skin cancers and inflammatory bowel diseases (ρSDS >0.2; Figure 

S4), and even early-onset diseases like Attention deficit hyperactivity disorder (ρSDS 

=0.20) and Anorexia nervosa (ρSDS =0.16) (Table S3). This result suggested that some 

diseases might be by-products of other positive selection events.  

Hunter-gather ancestry impacted natural selection around Neolithic 

During the Neolithic (about 10,000 years ago21), human society underwent profound 

revolutions, and the selection pressure is also believed to be distinct from both ancient 

times and recent history21. To quantify the selection pressure at pan-Neolithic period, 

we downloaded three ancient human genome datasets (Neolithic22, pro-Neolithic23 

and near east farmer24, Table S4) and calculated the polygenic burden (measured by 

both allele counts and polygenic scores; Method and Figure S5) for each trait on all 

ancient human10. We applied linear regression to see whether the polygenic burden 

was altered along time and percent of hunter-gather ancestry (%HG). As shown in 

Figure 3A and Table S5, after controlling covariances (e.g., latitude, longitude, 

genotyping coverage, etc.) and multiple tests, the polygenic burden of 78 traits was 

significantly associated with %HG, whereas six traits were associated with time in 

one of three datasets. DER (7 out of 13) and NUT (18 out of 52) were most 

predominantly associated with %HG (Figure 3A). Ease of skin tanning was the most 

significant trait (tHG=20.3, p=1.74×10-38 [Figure 3B]). In the near east dataset, we 

observed that the selection pressure on skin tanning was dependent on latitude (Figure 

3C): it was favored by selection at low latitude region (latitude<50), but was 



suppressed at high latitude region. After controlling the impact of latitude, we found a 

general ascending trend of it (tneareast=5.81, p=2.29×10-8 [Figure 3C]). We also found a 

nominally significant increment in the pro-Neolithic period (tproneolithic=4.25, 

p=0.0009), but a non-significant increment in Neolithic (tneolithic=0.92, p=0.36), for 

Ease of skin tanning (Figure S6). 

By analyzing the t statistics for all traits (Figure 3D), we found that tHG was 

positively associated with tneareast (PCC=0.55, p=6.27×10-69) and tproneolithic (PCC=0.61, 

p=4.59×10-89), but was negatively correlated with tneolithic (PCC=-0.29, p=1.50×10--17). 

This result suggested that traits related to hunter-gatherer ancestry were favored by 

natural selection in the pro-Neolithic period and near east farmer society but were 

suppressed by natural selection at the Neolithic period. This pattern was also true for 

polygenic diseases, albeit at smaller magnitude (PCC=0.18, 0.48, -0.23, respectively, 

green points and texts in Figure 3D). This pattern was partly because polygenic 

diseases had less association with %HG (median |tHG|=0.85 for disease, permutation p 

[disease vs. trait] =7.96×10-12). As shown in diagonal plots in Figure 3D, we also 

confirmed that polygenic diseases generally suffered more negative selection pressure 

than non-disease traits. This was most significant in near east farmer (median tneareast=-

0.66, permutation p =4.31×10-5) and pro-Neolithic period (median tproneolithic=-0.42, 

permutation p=0.004), but not significant in Neolithic period (median tneolithic=-0.17, 

permutation p [disease vs trait] =0.34). Among the 13 exceptions (i.e. diseases with 

tneareast, tproneolithic or tneolithic>0 and p<0.05), we found immunological diseases like 

Crohn’s disease (tproneolithic=2.86, p=0.013), Atopic dermatitis (tneolithic=2.61, p=0.01) 



and periodontitis (tproneolithic=2.48, p=0.029), as well as fracture (tneareast=2.73, p=0.007) 

(Figure S6). These diseases were positively selected during the pan-Neolithic period.  

 

Figure 3 Selection pressure at pan-Neolithic period. A: Manhattan plot showing the p value 
of linear regression. The regression was between scaled genetic burden and either time to 
present (round dot) or percent of hunter-gatherer ancestry (%HG) (cross). B: Relation between 
genetic burden of “Ease of skin tanning” and %HG. Each dot denoted an ancient human in 
Neolithic dataset, its y-axis showed the genetic burden of “Ease of skin tanning” carried by this 
individual, and the y-axis showed the %HG of this individual. C: Similar to B, but for living 
times in neareast dataset. D: Relation among four selection metrices. Each dot represented a 
trait, and its x and y axis showed the t value of linear regression on two out of four selection 
metrices (Neolithic time, Neolithic %HG, neareast time and pro-Neolithic time). Red color 
corresponded to non-disease traits, and green color corresponded to polygenic diseases. Texts 
in upper triangle showed the Pearson Correlation Coefficients for symmetric plots in lower 
triangle. *: p<0.05; **: p<0.01; ***: p<0.001. Diagonal plots showed the distribution of t values. 

 

SNPs at regions under background selection and constraint genes exhibited 

significant heritability enrichment of polygenic traits 

To expand our analysis to a more ancient time scale, we collected several metrics that 

detected genomic regions undergoing different forms of selection11,25–29, then applied 

linkage disequilibrium (LD) score regression (LDSC)30 to see whether heritability of 

each trait enriched in these regions (Method and Figure S7). As shown in Figure 4A 

and Table S6, we detected widespread heritability enrichment in genomic regions with 



low average coalescence times26 (ASMCavg, a metric that measures background 

selection in the past several hundred thousand years), around mutation-sensitive genes 

(indicated by high probability of LOF-intolerant, pLi31) and in regions with low LD or 

high conservation30. For ASMCavg, the p-value by LDSC was significantly inflated 

compared to the null distribution (Figure 4B). Traits showing highest enrichment in 

low ASMCavg regions included body water mass (z=-7.32), intelligence (z=-5.65) and 

schizophrenia (z=-5.55) (Figure 4C). Similar enrichment was also observed for 

mutation-sensitive genes, especially for schizophrenia (z=6.23), intelligence (z=4.61) 

and neutrophil count (z=4.40) (Figure S8). Consistently, variants with high 

deleteriousness (measured by CADD7) were also significantly associated with 

polygenic traits (Figure S8). Heritability for traits like large artery stroke (z=8.84) and 

ever drinkers (z=7.68) were enriched in high-CADD variants whose alternative allele 

increased the traits (CADD+) (Figure S8). We also analyzed other forms of selection 

(Method and Table S6). We found that heritability of Large artery stroke was 

significantly enriched in regions undergoing soft sweep (z=4.08), whereas heritability 

of beer intake enriched in genomic regions suffering from balancing selection 

(z=3.83). 



 

Figure 4 Selection pressure since human speciation. A: Heatmap showing the median LDSC 
enrichment Z score on each genomic annotation for each category. Bar plots denoted the total 
number of traits showing significant enrichment in the corresponding annotations. B: QQ plot 
for LDSC p value of ASMCavg enrichment. C: Manhattan plot for ASMCavg enrichment. D: 
Effect-frequency distribution for trait “Large artery stroke”. Each dot denoted a SNP, x-axis 
showed its derived allele frequency (DAF), y-axis showed the cumulative proportion of 
variance explained by all SNPs with DAF smaller than this SNP. We separated SNPs according 
to their DA effect (increase or decrease the trait). The area between the curve of these two 
distributions, named S, was used to measure natural selection. E: Volcano plot for the statistical 
analysis of S. 



 

 By comparing the number of traits reaching the significance threshold for each 

annotation between diseases and non-disease traits (Figure S9), we found that 

CADD+ was predominantly associated with polygenic diseases (Odds Ratio 

[OR]=9.58, p=5.69×10-6). CADD+ z scores for diseases were also generally larger 

than non-disease traits (pp=0.0002, Figure S9). This result confirmed that highly 

deleterious variants make more contribution to diseases than non-disease traits. 

Interestingly, Atrial fibrillation (z=3.45), Anorexia nervosa (z=3.35) and Rheumatoid 

Arthritis (z=3.16) showed heritability enrichment in deleterious variants whose 

alternative alleles decreased disease risk (CADD(-), Table S6). This result suggested 

that these diseases' risk might be increased by the negative selection eliminating their 

protective alleles. Additionally, we found that Conserved regions (pp=0.003, Figure 

S9) and low ASMCavg regions (pp=0.07, Figure S9) tended to contribute to the non-

disease traits. 

Cerebrovascular disease suffered natural selection since human speciation 

Lastly, we analyzed the overall selection pressure since human speciation by 

calculating the distribution of derived allele (DA) effects, similar to a previous tool, 

SbayesS32. Since SbayesS did not consider the direction of the DA effect, we 

borrowed their idea and calculated the difference of area under the effect-frequency 

distribution curve (S=ΔAUC; Figure 4D and method) to measure the purifying 

selection since speciation (Methods and Table S7). At the significance threshold of 

p<0.05/870, 67 traits had S not equal to zero, which were mainly related to nutrition 



(15), neurology (11), and psychiatric (9). For cerebrovascular diseases like large 

artery stroke (Figure 4D), the SNPs whose DA had a large risk-increasing effect 

generally had small DA frequency (S=-1.88, z=-14). This was also true for different 

kinds of stroke or intracerebral hemorrhage (Figure S10), suggesting an overall 

negative selection of cerebrovascular disease. On the other hand, memory was 

favored by natural selection (S=0.14; Figure 4E). Polygenic diseases were generally 

suppressed by selection (mean S=-0.03; permutation p [disease vs. trait] =8.56×10-6; 

Figure S10). However, primary sclerosing cholangitis, anorexia nervosa and atrial 

fibrillation showed signals of being favored by natural selection (S>0 and p<0.05/870; 

Figure 4E and Figure S10).  

 Another interesting fact is that most traits had AUC>0.5 for both trait-increasing 

DA (AUCinc>0.5: 868 out of 870 traits) and trait-decreasing DA (AUCdec>0.5: 860 out 

of 870 traits) (Table S7), supporting the notion that purifying selection widely exists 

in human traits33. The highest purifying selection was observed for the blood level of 

Lipoprotein A (AUCinc=0.70, AUCdec=0.64, Table S7). However, we found exceptions 

on extreme height (AUCinc=0.45, AUCdec=0.45, Table S7) and extreme BMI 

(AUCinc=0.46, AUCdec=0.45, Table S7), suggesting a bi-directional positive selection 

on extreme impedance.  

 We additionally analyzed the distribution of trait-increasing alleles among 

derived and ancestral alleles (Table S7 and Figure S10). We found that alleles that 

promote ten traits, including anorexia nervosa, fresh fruit intake, hair and skin color, 

etc. were mainly ancestral (percent of trait-increasing DA [%DA] <50, p by binomial 



test [pb]<0.05/870). In contrast, those promote ten traits like cerebrovascular diseases, 

alcohol intake and gout, etc. were mainly DA (%DA>50, pb<0.05/870) (Figure S10 

and Table S7). Compared with non-disease traits, polygenic diseases were primarily 

promoted by DA (pp [disease vs. trait] =0.002, Figure S10). 

Dramatic change of selection pressure at Neolithic and present time 

So far, we have quantified the selection pressure at four different time scales, which 

allowed us to analyze the relation among these selection pressure. We reasoned that if 

environmental pressure were identical throughout the history, strength of selection at a 

later time would be dependent on that of ancient times, and the violation of this 

principle may reflect a modification of environmental pressure. Thus, we applied 

linear regression on the scaled selection metrics (Method and Table S8) to analyze 

whether ancient selection strength could predict recent selection. As shown in Figure 

5A, ρSDS could be best predicted by ancient selection metrics (R2=0.74, p<10-100), 

especially by %HG (p=3.60×10-62) and tneareast (p=3.28×10-35). On the other hand, ncm 

(R2=0.09, p=3.45×10-11) and tneolithic (R2=0.13, p=1.80×10-23) were poorly explained 

by ancient selection metrics. For all seven tested metrics in Figure 5A, the prediction 

was more precise on non-disease traits than disease (Table S9), and the jackknife p-

value for five of them was lower than the significance threshold of 0.05/7. For 

example, R2 for ρSDS prediction was 0.76 on non-disease traits but dropped to 0.47 

when applied on polygenic diseases (p by jackknife =9.95×10-5, Table S9 and 

Method). This result suggested that selection pressure at Neolithic and the present 

time was profoundly altered and deviated from ancient selection pressure, and the 



deviation was more profound for polygenic diseases.  

 We further analyzed the traits that contribute to this selection deviation. For ncm 

(Figure 5B and Table S10), traits like arm impedance (Z score of residuals [Zresid]=-

5.54), educational attainment (Zresid =-3.85), Loneliness (Zresid =-3.48) and intelligence 

(Zresid =-2.71), etc. had significantly lower Zncm than predicted by ancient selection 

metrics, whereas traits like Bald pattern 1 (Zresid =2.75) tended to have higher Zncm 

than expected. For tneolithic (Figure 5C and Table S10), the volume of left vessel (Zresid 

=3.30) and atopic dermatitis (Zresid =3.20) had larger-than-expected tneolithic, whereas 

trouble of concentration (Zresid =-3.37) was lower than expected. We also summarized 

traits showing the largest deviation measured by other metrics (ncf, ρSDS, tneareast, tproneo 

and tHG; Figure S11 and Table S10). We found that traits like intelligence, back pain 

and pigmentation-related traits showed deviation across many different time scales.  

To gain a continuous view on the adaptation trajectories, we applied RHPS-

RELATE to infer the population-mean PRS trajectory of each trait, then applied time 

series clustering to elucidate its pattern. As shown in Figure 5D and Table S11, the 

trajectory of 434 and 308 traits were grouped into clusters 1 and 2, respectively, which 

generally showed accelerating monotonic increasing or decreasing trends since about 

500 generations ago. Typical representatives were Raw vegetable intake (Figure S12, 

pt between 496 and 96 generations <10-100) and Atopic Dermatitis (Figure S12, pt 

between 496 and 96 generations <10-100). On the other hand, 13 and 10 traits were 

grouped into clusters 3 and 4, characterized by a sharp turnover of adaptation 

directions around 133 generations ago (Figure 5D). Thes traits included intelligence 



and Insomnia (Figure S12), etc. 

 

Figure 5 Relation among selection pressure at different time scales. A: Heatmap showing 

the t value of linear regression which used ancient selection pressure (columns) to predict 

recent selection pressure (rows). Bar plots denoted the R2 for corresponding linear regression. 

B: Each dot denoted a trait; x-axis showed the Zncm predicted by linear regression, y-axis 

showed the true Zncm, and color denoted the scaled residual in the linear model. C: Similar to 

B, but for tneolithic. D: Population-average polygenic risk score trajectory for 765 traits, 

grouped into four clusters according to their time series similarity. Y-axis showed z-score of 

PRS. 

  



 

Functional genomic architectures of polygenic traits had a moderate impact on 

the selection pressure 

Despite the relation among selection pressure at different time scales, we were also 

interested in their relationship with the traits' genetic architectures. Thus, we applied 

step-wise linear regression on each selection pressure metrics to explore whether the 

genetic characteristics (e.g., functional genomics enrichment, %DA, variant 

deleteriousness, etc.) could determine the selection pressure of the trait. We found that 

functional genomic patterns explained 7% (pro-Neolithic) ~ 18% (ASMCavg) of the 

variance in selection pressure (R2=0.07~0.18; p<8.22×10-6; Figure 6A). Adding 

conservation annotations (annotations that are directly related to natural selection like 

LLD and allele age30) into the model increased the R2 by 0.02 (Neolithic) ~ 0.49 

(SDS). This increment was mainly driven by the inclusion of CADD(+) and CADD(-) 

(Figure S13); for the model of S, R2 increased from 0.11 to 0.58 after the inclusion of 

CADD(+) and CADD(-).  

We also analyzed the sign and significance of regression coefficients for each 

linear model (Table S12). As expected, the regression coefficient of CADD(+) was 

negative in seven out of ten linear models (i.e., traits promoted by high CADD 

variants were negatively selected; Figure 6A), especially for ρSDS (tCADD(+)=-15) and S 

(tCADD(+)=-14, Figure 6B). An unexpected exception was ASMCavg (tCADD(+)=3.91), 

where high CADD(+) enrichment led to low enrichment in region under background 

selection (Figure S13). Another unexpected result was the positive relationship 



between mutation-sensitive genes and Neolithic natural selection (tPLI=3.47), which 

indicated that traits with heritability enriched in mutation-sensitive genes tended to be 

positively selected at Neolithic (Figure S13). We also found significant contribution 

of %DA to SDS (tDA=16, Figure 6C) and %HG (tDA=12). For all functional genomics 

annotation, the most significant relation was found between CpG and ASMCavg 

(tCpG=-8.5, Figure 6D). 

 

Figure 6 Genomic architectures impacted selection pressure. A: Heatmap showing the 

t value of linear regression which used functional genomic architecture and genetic 

conservation characteristic (columns) to predict selection pressure (rows). Red bars denoted the 

R2 for corresponding linear regression using functional genomic architectures alone, and black 

bar denoted R2 for linear regression using all predictors. B-D: Scatter plots showing the most 

significant contribution of genomic characteristics to selection pressures. Each dot represented 

one trait. 

  



 

Discussion 

In the current study, we quantified the selection pressure of human polygenic traits at 

four different time scales and in various forms. We analyzed the essential 

characteristics of selection pressure, such as its prevalence and strength, its uneven 

distribution among time points and trait categories, as well as its association with 

genetic architectures. 

 By analyzing the tSDS correlation and PRS trajectory, we found a widespread 

recent polygenic adaptation among different kinds of traits. The observation that 

polygenic adaptation was common among complex traits has long been questioned by 

researchers8. For one thing, the population stratification is known18 to inflate the 

signal of ρSDS; for another, existing studies on polygenic adaptation usually focused 

on single trait34,35. In our study, the use of RHPS-RELATE could overcome the 

challenge of false-positive observation. First of all, false-positive ρSDS findings were 

mainly driven by a large number of SNPs with small effects18,20, whereas RHPS-

RELATE only analyzed top loci with large effect19,20. Secondly, we included various 

European populations from 1000G into RHPS-RELATE, which compensated the 

population stratification of GWAS. Lastly, RHPS-RELATE relied on a different 

statistical test (Tx test) to analyze the significance of adaptation, such that the 

potential inherited bias of ρSDS was avoided. Since ρSDS and RHPS-RELATE gave 

convergent results, we suggest that the widespread recent polygenic adaptation was 

plausible. 



 We found that pigmentation, impedance, and dietary traits were continuously 

under intense selection pressure across various time scales. Pigmentation is one of the 

most thoroughly studied examples of human evolution. The tremendous 

spatiotemporal variations of skin color reflected the complex balancing between UV 

damage, Vitamin D requirements and heat regulation36. With Ease of skin tanning as 

an example, our result also revealed a complex evolutionary history of pigmentation: 

dark skin was promoted before the Neolithic period and in recent history but had 

inconsistent adaptation during the Neolithic period. The body size and dietary habits, 

on the other hand, were mostly shaped by the trade-off among energy allocations on 

growth, maintenance, digestion and other functions37,38. Our result also suggested that 

among other factors that might impact energy allocations, such as ecology, climate 

and migration, genetic factors profoundly influenced the evolution of impedance and 

nutrition intake traits. 

 We also discovered a profound deviation of selection pressure at the Neolithic 

period and present time, in accordance with the radical change of culture and society 

at these periods. The tremendous agricultural revolution at Neolithic39 and the 

industrial revolution in the past centuries40 have thoroughly reshaped our society. This 

was accompanied by genetic reformation at loci related to diet41, disease 

susceptibility42 and reproductive behaviors43. Our result expanded these findings to a 

broader view of polygenic adaptation: genetic reformation at Neolithic and the present 

time was common and widespread, not restricted to a few traits or variants. This 

finding also supported the notion that the social revolution could significantly distort 



the natural selection of human beings9. 

 Another counterintuitive discovery is the positive adaptation of diseases like 

Anorexia nervosa and inflammatory bowel diseases (IBD). In the evolutionary 

perspective of Anorexia nervosa44, foraging for food is typical behavior when facing 

the threat of starvation, thus will be favored by selection at periods of food supply 

shortage. As for IBD, researchers have suggested that the disease vulnerability may be 

associated with high defense against pathogen45, which provided survival advantages 

in ancient societies with poor sanitary conditions. Since human beings have just 

solved starvation and sanitation threats recently and incompletely, natural selection 

does not have enough power to eliminate these diseases. Consistently, our findings 

further indicated that these diseases might be favored by natural selection at specific 

time points. 

 Our study has limitations. The currently available large-scale GWAS were 

dominated by European participants46, especially UK Biobank47, which significantly 

restricted the universality of GWAS-based genetic studies. Inevitably, our result had 

little power to dissect mainland Europe's subpopulation, not to mention the broad 

population in the rest of the world. The power to explore more ancient history (more 

than 100,000 years ago) is also limited since the available tools suitable for such a 

long time scale could only detect a few sweeps at a single loci1. In the future, the 

development of multi-ethnic GWAS, ancient human genome analysis, and analytical 

tools for more extended time scales will eventually achieve the intact landscape of 

human evolution. 



 In conclusion, we provided a global overview of natural selection on human 

polygenic traits and its essential characteristics, which could serve as a foundation for 

future studies regarding human genetics and evolution. 

 

Method 

GWAS filtration and preprocessing 

We downloaded all GWAS summary statistics from traitDB12 release 1 and retained 

those conducted solely in cohorts of European ancestry. Since traitDB was released at 

November, 2019, we additionally conducted literature research to search for all 

GWAS of European ancestry published between October, 2019 to April, 2020. We 

downloaded only GWAS summary statistics that were publicly available. All these 

GWAS were filtered according to the following criteria: sample size >10,000, SNP-

based heritability (h2) calculated by LDSC >0.01 and z score of h2>4. For the 

duplicated phenotypes in the remaining GWAS, we chose those GWAS with larger 

sample size, with more participants outside UKB, with more professional definition of 

phenotypes (e.g. diagnosed disease rather than self-reported disease), and those 

conducted by professional consortium. For some meta-analysis that reported only z 

score of each variant, we used the result from its largest cohort with detailed summary 

statistics (i.e. effect size and standard error) as a substitute. If no detailed summary 

statistics were available, we did not include it in our study. We separated all included 

GWAS into 15 categories, which were slightly modified from the definition of traitDB 

(Table S1 and supplementary method). For all included polygenic diseases, we 



additionally separated them according to the onset age: diseases that preliminary onset 

before reproductive age (18 years old) were labeled "early", diseases that preliminary 

onset after reproductive age (50 years old) were labeled "late", and the remaining 

diseases were labeled "lifetime". 

 We manually modified all summary statistics into a uniform format. Specifically, 

we log-transformed all Odds Ratio to ensure zero-centered effect size and modified 

the sign of the effect size to ensure that 1) A1 allele was the effect allele; 2) positive 

effect size was corresponded to literally "trait increasing" (see example in 

supplementary methods). We further removed all variants without rs ID, not recorded 

in 1000 Genome phase 3 (1000G)48, had missing information, or had MAF<0.01 in 

European participants of 1000G. Since many of the GWAS did not provide allele 

frequency, we uniformly discarded all frequency information and used 1000G 

alternative allele frequency instead.  

Mendelian randomization 

To measure the human fertility and mating success, we downloaded the GWAS 

summary statistics of number of children (ncm and ncf) and number of sexual 

partners (nsm and nsf) for both sexes from Benjamin Neale Lab 

(http://www.nealelab.is/uk-biobank). For each of the 870 traits, we selected the SNP 

with p<5×10-8 as the instruments. We retained all instruments that were presented in 

outcome GWAS, then pruned at the threshold of LD>0.01 in 1000G. The data 

harmonization was applied separately for each exposure-outcome pair by 

TwoSampleMR R package49.  

http://www.nealelab.is/uk-biobank


 For each exposure-outcome pair, we first calculated the per-instrument MR 

effects by Wald ratio, then meta-analyzed the results for all instruments with three 

methods: 1)Inverse variance-weighted (IVW), which was considered the primary 

results; 2) Weighted median (WM) method50, which was relatively robust when some 

of the instruments were invalid; and 3) Egger regression51, which allowed for non-

zero directional pleiotropy.  

Adjustment of pleiotropy and genetic correlation for Mendelian randomization 

 To get rid of the influence of outliers and pleiotropy in a uniform manner, we 

applied a step wise outlier removal test for each exposure-outcome pair. Specifically, 

we first applied three sensitivity tests (Cochran's Q test, Rucker's Q test and Egger 

intercept test)52 on all instruments. If p values of any of these tests <0.05, we applied 

MR-PRESSO outlier test53 to calculated the observed Residual Sum of Squares 

(RSSobs) for all instruments, and ranked them in the descending order of RSSobs. We 

removed top 1 instrument and repeated the three MR analysis and three sensitivity 

analysis on the remaining instruments. If p values of any sensitivity tests were still 

<0.05, we repeated this procedure by removing top 2, top 3, … top (n-3) instruments, 

until all sensitivity tests had p value >0.05 (leftmost black point in Figure S13). The 

MR results at this step were considered the final result. If p values of any sensitivity 

tests were <0.05 throughout the procedure, we denoted the MR results for this 

exposure-outcome pair as NA. For exposure-outcome pairs with less than three 

instruments, we provided the MR results (Wald ratio or IVW) in the Table S2, but did 

not consider them in the downstream analysis. After we got outlier-free MR results for 



all pairs, we defined the significant causal effect as following: z score of IVW 

estimation >4 or <-4, estimation of IVW, WM and Egger regression were of the same 

direction. For those results not reaching significance criteria, we still included them in 

the correlation analysis (Figure 2C). We also applied CAUSE to distinguish causality 

from genetic correlation (see supplementary method and result). 

tSDS analysis 

Singleton density score (SDS)17 is a metric that measures the density of singleton 

mutations on a haplotype tagging a tested SNP. Based on the assumption that positive 

selection distorts the ancestral genealogy of haplotype and leads to shorter terminal 

branches for the favored allele, SDS>0 indicate that derived allele (DA) of the tested 

SNP has an increased frequency in the recent history (about 100 generations)17.  

For each trait, we only included SNPs with DAF>0.05 and <0.95, and had a SDS 

calculated by Field et al.17 using UK10K data54. Then, following the procedure of 

SDS authors17, we modified the sign of SDS for each SNP according to the effect 

direction of its DA, which resulted in a tSDS metric. tSDS>0 indicated that the trait-

increasing allele had an increased frequency. We re-normalized tSDS per DAF bin of 

0.01 using z score method. We ranked all SNPs in the ascending order of their GWAS 

p value, and grouped them into consecutive bins of 1000 SNPs each. We calculated 

ρSDS as the Spearman correlation coefficients between median tSDS for each bin and 

the order of bins. To estimate the p value of ρSDS, we ordered all SNPs according to 

their physical positions (all chromosomes were treated as a concatenated meta-

chromosome) and divided them into 1000 consecutive blocks. We applied jackknife 



procedure by sequentially removed one block and repeated the ρSDS calculation on the 

remaining SNPs. We calculated the jackknife standard error to estimate the p value 

and 95% CI for ρSDS under uniform distribution. 

Previous study18 has found that combining GWAS outside UKB and SDS of UKB 

might cause false positive ρSDS due to population stratification. Since we found large 

proportion of significant ρSDS, we tested whether the significance was mainly 

contributed by GWAS outside UKB. Specifically, we separated all GWAS according 

to whether more than 70% of participants were from UKB, then compared the average 

|ρSDS| between two groups by permutation test.  

Polygenic burden of ancient human 

To analyze the pan-Neolithic trajectory of polygenic burden for each trait, we 

downloaded ancient human genotype data for three studies, as Esteller-Cucala et al.10 

did: pro-Neolithic23 (51 individuals), Neolithic22 (180 individuals) and near east 

farmers24 (281 individuals). The genotype data were transformed into ped and bim 

files using EIGENSOFT v6.1.455 and plink v1.0756, with only SNPs that had a rs ID 

retained. For each trait and each ancient dataset, we retrieved all SNPs with GWAS 

p<0.01 and applied LD pruning in the ancient dataset using plink with parameter –

indep 50 5 2 to get a list of independent trait-associated SNPs (tSNP). We excluded 

individuals with >90% missing information on the tSNP. Similar to the work of 

Esteller-Cucala et al.10, we calculated the scaled polygenic burden 𝑓𝑓 for each 

individual as following: 𝑓𝑓 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐 𝑜𝑜𝑓𝑓 𝑡𝑡𝑁𝑁𝑡𝑡𝑐𝑐𝑡𝑡 𝑐𝑐𝑖𝑖𝑐𝑐𝑁𝑁𝑁𝑁𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 𝑡𝑡𝑎𝑎𝑎𝑎𝑁𝑁𝑎𝑎𝑁𝑁𝑐𝑐

2 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑖𝑖𝑁𝑁𝑖𝑖𝑜𝑜𝑡𝑡𝑔𝑔𝑐𝑐𝑁𝑁𝑔𝑔 𝑡𝑡𝑡𝑡𝑁𝑁𝑡𝑡  



𝑓𝑓 is a metric between 0 and 1 that measured the percentage of polygenic burden this 

individual carried (𝑓𝑓=1 indicated that the individual had homozygous trait-increasing 

allele on all non-missing tSNP). As a positive control, we also replaced the allele 

counts by the polygenic risk scores and repeated the entire analysis (see 

Supplementary methods and results). 

 In each dataset, we fitted a linear model to test for the relation between 𝑓𝑓 and 

time to present, which reflected the polygenic adaptation on the traits. We included 

latitude, longitude, genotyping technique, sex, whether performed damage restrict, 

genotyping coverage, number of SNPs genotyped, fraction of library and inferred 

time of admixture as covariates (some of the covariates were not provided in 

particular datasets, see Supplementary method for detail). For Neolithic dataset, the 

percentage of hunter-gatherer ancestry (%HG) was also included as a predictive 

variable. From the regression result, we retrieved the t-statistics for time to present 

(tproneo, tneareast and tneolithic, respectively) and %HG (tHG) as well as their p value as the 

measurements of polygenic adaptation. We also applied Pearson correlation analysis 

among these four metrices by GGally R package57.  

Heritability partition on genomic regions exhibiting different evidences of 

natural selection 

We adopted a strategy similar to Pardiñas et al.11 which first identified genomic 

regions under different selection pressure then partitioned the heritability of each trait 

to these regions by LDSC30. We obtained and reformatted following genomic 

annotations from literature (under hg19 position): 



1) B229. B2 is a metric of a set of composite likelihood ratio test statistics that are 

based on a mixture model. Regions with high B2 statistics were under balancing 

selection in about 10,000 generations. We downloaded the B2 statistics calculated by 

BalLerMix29 on 1000 Genome CEU population48, and annotated each SNP according 

to the B2 statistics of the region that covered it.  

2) Combined Annotation Dependent Depletion (CADD)7. We downloaded CADD 

v1.3 for all 1000G SNV and indels and dichotomized all variants at the threshold of 

CADD-phred score >20. We further generated trait-specific annotations (CADD+ and 

CADD-) according to the effect of alternative alleles, i.e. variants whose alternative 

alleles increase the trait and had CADD-phred>20 were annotated "1" for CADD(+), 

whereas all other variants were annotated "0". Similarly, variants whose alternative 

alleles decrease the trait and had CADD-phred>20 were annotated "1" for CADD(-). 

3) Composite of multiple signals (cms)27. cms integrated signals of several previous 

methods for detection of positive selection, and could detect positive selection in the 

last tens of thousands of years at a high resolution. We directly downloaded the 

genomic regions with significantly high cms from Grossman et al.27 and generated 

trait-specific dichotomized annotations (cms+ and cms-). 

4)Hard and soft sweep predicted by Trendsetter28. Trendsetter applied a penalized 

regression framework which took statistics at adjacent regions into account and 

predicted whether each genomic region has undergone hard sweep, soft sweep or 

neutral alteration. We downloaded the prediction results of CEU population and 



labeled each genomic region by the label with highest probability, ang generated trait-

specific annotations according to these labels (hard+, hard-, soft+ and soft-). 

5)Neanderthal introgressions25. We downloaded the average posterior probability LA 

score from Sankararaman et al.25 and dichotomized at the top 0.01 LA score. 

6)pLi31. We curated the gene list of pLi>0.9 as mutation-intolerant genes and 

generated the annotation of physical position of these genes as well as the flanking 

regions of 100kb at both 3' and 5' end. 

We generated these annotations for each trait and added them to the updated baseline 

annotations of LDSC30 to apply heritability partition. We retrieved the z score for 

LDSC coefficient τc for each annotation as main results, which measured the 

heritability enrichment in each annotation on conditioned of all other annotations. 

Some of the annotations from the baseline model that also measured some aspects of 

natural selections were also retrieved (ASMCavg26, B statistics58, recombination 

rate30, conserved regions58, etc. see Supplementary method). 

Analysis of derived allele distribution 

The basic assumption of allele distribution analysis was that purifying selection 

tended to suppress the alleles with large effect on traits to a low frequency33. We first 

obtained the derived allele (DA) of about four million SNPs provided by 1000 

Genome phase 148 and corresponding DA frequency (DAF) in UK10K54 data curated 

by Field et al.17. For each trait, we included in our analysis SNPs meeting following 

criteria: has DA annotation, DAF between 0.05 and 0.95, GWAS z score>3 or <-3. 



These SNPs were pruned by plink56 with parameter –indep 50 5 2 and 1000G EUR as 

reference panels and then separated into two groups according to whether their DA 

increased the trait (i.e. z>0).  

Similar to the work of Zeng et al.33, we quantified the proportion of variance 

explained by each SNP (%𝑣𝑣𝑡𝑡𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑁𝑁). However, we used a different estimation 

approach proposed by Shim et al.59, which required less input variables: 

%𝑣𝑣𝑡𝑡𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑁𝑁 =
2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ (1 − 𝐷𝐷𝐷𝐷𝐷𝐷) ∗ 𝛽𝛽2

2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ (1 − 𝐷𝐷𝐷𝐷𝐷𝐷) ∗ 𝛽𝛽2 + 2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 ∗ (1 − 𝐷𝐷𝐷𝐷𝐷𝐷) ∗ 𝑁𝑁 ∗ 𝑐𝑐𝑁𝑁(𝛽𝛽)2 

Where β was the effect size, N was the sample size of GWAS, and se(β) was the 

standard error of effect size. Then, we ordered the two groups of SNPs in the 

ascending trend of DAF and calculated the cumulative %𝑣𝑣𝑡𝑡𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑁𝑁 at each SNP, 

assuming an additive effect. The cumulative %𝑣𝑣𝑡𝑡𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑁𝑁 was further scaled by total 

%𝑣𝑣𝑡𝑡𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑁𝑁 by all SNPs in that group, resulting in two joint distribution of DAF and 

%𝑣𝑣𝑡𝑡𝑁𝑁𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑁𝑁 from (0.05,0) to (0.95,1) (Figure 4D). We calculated the Area Under Curve 

(AUC) for each distribution; AUC>0.5 indicated that large effect (either trait-increasing of 

trait-decreasing effect) DA had a small DAF, which suggested the existence of purifying 

selection. To figure out the direction of selection, we calculated the difference of AUC: 𝑡𝑡 = 𝛥𝛥𝐷𝐷𝐴𝐴𝐴𝐴 = 𝐷𝐷𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐷𝐷𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑑𝑑 
S>0 indicated that the purifying selection pressure on trait-decreasing DA was larger 

than that on trait-increasing DA, thus the trait was favored by natural selection. To 

estimate the statistical significance of S, we randomly dropped half of the included 

SNPs and repeated the entire analysis for 100 times to estimate the standard error of 

S, then calculated the p value for the Null hypothesis of S=0 under normal 



distribution.  

 Additionally, we calculated the proportion of included SNP whose DA had a trait-

increasing effect (%DA), and calculated its corresponding p value by two-sided 

binomial test assuming the random proportion =50%.  

Integrative analysis of all selection pressure 

Before integrative analysis, we first applied linear regression to adjust all selection 

pressure metrices by three covariates calculated by LDSC60: λGC, mean Χ2 and 

intercept. These covariates captured the confounders rather than genetic architecture 

of GWAS60.  

 For each of the seven selection pressure metrices with definite time scale (Zncm, 

Zncf, ρSDS, tneolithic, tneareast, tproneolithic, tHG), we applied linear regression that included all 

metrices whose time scale were more ancient to it (Supplementary method). The 

regression was run on all traits with reliable results of the corresponding response 

variables (e.g. traits without homogenous MR results were not included in the 

regression of Zncm and Zncf). The obtained linear models were applied on the same 

data to generate predicted selection pressure metrices. We calculated the R2 value on 

the predicted metrices using three set of traits: all traits, polygenic diseases and non-

disease traits. Since the number of diseases (85) was much smaller than non-disease 

traits (785), we compared their R2 with a subsampling method. Specifically, we 

randomly chose 85 non-disease traits and calculated R2 on them for 1000 times, then 

calculated the standard error of them. We generated a normal distribution whose mean 

was equal to R2 using all non-disease traits and standard error equal to the standard 



error of 1000 subsampling tests. The R2 for diseases was compared to this normal 

distribution to generate an empirical p value, as reported in Table S9. 

 To discover the traits showing deviation of selection pressure at each time scale, 

we calculated and z-scored the residuals of each linear model. Traits with scaled 

residual>3 or <-3 were highlighted. 

Reconstructing the History of Polygenic Scores (RHPS) and Relate 

To estimate the trajectory of population-mean PRS for each trait, we applied the 

Relate Reconstructing the History of Polygenic Scores (RHPS) method proposed by 

Edge et al.19, which utilized local coalescent trees at GWAS locus to estimate the 

population-mean polygenic risk score (PRS) of a trait. As suggested by Edge et al.19, 

for each GWAS we calculated the Bayesian Factors (BF) for each SNP: 

𝐵𝐵𝐷𝐷 =
√1 − 𝑁𝑁𝑁𝑁(
−𝑧𝑧2∗𝑟𝑟2 )

, 𝑁𝑁 =
0.1

0.1 + 𝑐𝑐𝑁𝑁2 

Where z and se were the GWAS statistics for this SNP. Then, we partitioned all SNPs 

into 1702 consecutive and independent blocks provided by Pickrell et al.61, and chose 

the SNP with largest BF from each block. To maximize the computational efficiency, 

we retained SNPs with BF>10000. The population mean PRS at ancient time t was 

estimated as 

𝑡𝑡𝑃𝑃𝑡𝑡(𝑡𝑡) = 2�𝛽𝛽𝑖𝑖 ∗ 𝑐𝑐𝑖𝑖(𝑡𝑡)𝑖𝑖∈𝐺𝐺  

Where G denoted all SNPs retained, 𝛽𝛽𝑖𝑖 denoted the GWAS effect size of SNP 𝑐𝑐, and 𝑐𝑐𝑖𝑖(𝑡𝑡) was the population frequency of SNP 𝑐𝑐 and time t. To estimate 𝑐𝑐𝑖𝑖(𝑡𝑡), we 

applied Relate20 to each of the retained SNP. Specifically, we retrieved all variants 



within the ±100kb windows around the target SNP from non-Finnish European 

population of 1000G48, and transferred into .haps format required by Relate. The 

ancestral genome sequence, genetic map of recombination rate and genetic distance, 

and genome mask of GRCh37 were downloaded from 1000G resource. We ran Relate 

on the variant data to estimate the focal tree in the 200kb windows with parameter –m 

1.25×10-8 and -N 30000. The branch length and population size were re-normalized 

by EstimatePopulationSize function with three iterations and threshold of 0.7. The 

frequency of target SNP was estimated by DetectSelection function. We divided the 

output frequency by 808 (404 non-Finnish European individual×2) to obtain the 

population frequency per chromosome. To estimate the significance of polygenic 

adaptation during a time course, we applied the Tx test proposed by Edge et al.19 to 

calculate the p value for PRS alteration in specific time window. For the analysis of 

recent history, we applied Tx test on the last five timepoints (96 generations ago to 

present). 

Time course clustering of PRS trajectory 

Time course clustering was conducted by dtwclust R package62. For all traits with 

PRS trajectory results from RHPS-RELATE (i.e. frequency trajectory available for at 

least three SNPs), we retained the result of last 12 timepoints (958 generations ago to 

present; detailed information of each timepoint was recorded in Table S11), since 

result at earlier time points was sparse. We z-scored the trajectory of each trait, 

calculated the similarity among traits by Dynamic time warping63, and partitioned the 

traits by hierarchical clustering. We chose the number of clusters k=4 by comparing 



the Silhouette coefficient for clustering results with k=2 to 10.  

Impacts of genetic architectures on selection pressures 

Despite the genomic annotations that directly measured selection pressure, we were 

also interested whether heritability enrichment in other annotations could impact 

natural selection. These annotations were roughly divided into two groups (columns 

of Figure 6A): those that are associated with selection, termed "conservative 

annotations" (black texts in Figure 6A), and those without evidence of direct 

association with selection, termed "functional genomic annotations" (red texts in 

Figure 6A). The annotations of MAF bin were discarded. Similar to the above section, 

all data were adjusted by λGC, mean Χ2 and intercept prior to the analysis. For each of 

the ten selection pressure metrices (Figure 6A), we first fitted a full linear model 

including LDSC z scores of all conservative and functional genomic annotations, then 

applied a bi-directional step-wise regression aiming at maximization of Akaike 

Information Criterion (AIC) to obtain a simplified model. For the convenience of 

visualization, in Figure 6A we only showed the t value for annotations that reached 

p<0.01 in at least one simplified model. Full results for all simplified models can be 

found at Table S12.  

 To analyze the contribution of different groups of annotations, we subtracted 

three sub-models from each simplified model: (1) model containing only functional 

genomic annotations; (2) model containing functional genomic annotations and 

CADD annotations; and (3) model containing all annotations. We applied each of 

these models to generate predicted values for each selection metric and calculated 



corresponding R2 values for these precited values.  

Statistical Analysis 

For all comparison of metrices among groups, we applied two-sided Fisher-Pitman 

permutation test by oneway_test from the coin R package64. For all comparisons 

between two metrices, we applied Pearson correlation analysis. For comparisons 

between two distributions, we applied two-sided Kolmogorov-Smirnov test. The 

significance threshold was set at p>0.05/870 unless otherwise specified. 
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Figures

Figure 1

Flowchart of the study.



Figure 2

Selection pressure at present and recent history. A&B: Proportion of traits showing MR causal effects on
number of children of male (A) and female (B) for each category. C: Comparison of MR z scores between
male (x axis) and female (y axis). Dashed lines indicated signi�cance threshold (|z|>4). Texts indicated
selected traits with results of special interests. D: Distribution of absolute Spearman correlation (|ρSDS|)
between tSDS and GWAS p value for each category. Upper and lower margins of box indicated �rst and



third quartiles of ρSDS, and the thickened line indicated median ρSDS. E: ρSDS for all dermatology traits.
The diagonal of the rhombus indicated ρSDS, and the width of rhombus indicated 95% con�dence
interval of ρSDS. F: Scatter plot showing the correlation between tSDS and GWAS p value for trait “Ease
of skin tanning”. Each point represented a bin of 1000 SNPs ranked by their GWAS p value. Y-axis
indicated the bin median tSDS. DER: dermatology. NUT: nutrition. REP: reproduction. IMP: impedance. GI:
Gastrointestinal. PSY: psychiatry. RES: respiratory. MED: medication. COG: social-cognition. MUSC:
musculoskeletal. MET: metabolism. CIRC: circulation. NEU: neurology.

Figure 3

Selection pressure at pan-Neolithic period. A: Manhattan plot showing the p value of linear regression.
The regression was between scaled genetic burden and either time to present (round dot) or percent of
hunter-gatherer ancestry (%HG) (cross). B: Relation between genetic burden of “Ease of skin tanning” and
%HG. Each dot denoted an ancient human in Neolithic dataset, its y-axis showed the genetic burden of
“Ease of skin tanning” carried by this individual, and the y-axis showed the %HG of this individual. C:
Similar to B, but for living times in neareast dataset. D: Relation among four selection metrices. Each dot
represented a trait, and its x and y axis showed the t value of linear regression on two out of four
selection metrices (Neolithic time, Neolithic %HG, neareast time and pro-Neolithic time). Red color
corresponded to non-disease traits, and green color corresponded to polygenic diseases. Texts in upper
triangle showed the Pearson Correlation Coe�cients for symmetric plots in lower triangle. *: p<0.05; **:
p<0.01; ***: p<0.001. Diagonal plots showed the distribution of t values.



Figure 4

Selection pressure since human speciation. A: Heatmap showing the median LDSC enrichment Z score
on each genomic annotation for each category. Bar plots denoted the total number of traits showing
signi�cant enrichment in the corresponding annotations. B: QQ plot for LDSC p value of ASMCavg
enrichment. C: Manhattan plot for ASMCavg enrichment. D: Effect-frequency distribution for trait “Large
artery stroke”. Each dot denoted a SNP, x-axis showed its derived allele frequency (DAF), y-axis showed



the cumulative proportion of variance explained by all SNPs with DAF smaller than this SNP. We
separated SNPs according to their DA effect (increase or decrease the trait). The area between the curve
of these two distributions, named S, was used to measure natural selection. E: Volcano plot for the
statistical analysis of S.

Figure 5



Relation among selection pressure at different time scales. A: Heatmap showing the t value of linear
regression which used ancient selection pressure (columns) to predict recent selection pressure (rows).
Bar plots denoted the R2 for corresponding linear regression. B: Each dot denoted a trait; x-axis showed
the Zncm predicted by linear regression, y-axis showed the true Zncm, and color denoted the scaled
residual in the linear model. C: Similar to B, but for tneolithic. D: Population-average polygenic risk score
trajectory for 765 traits, grouped into four clusters according to their time series similarity. Y-axis showed
z-score of PRS.

Figure 6

Genomic architectures impacted selection pressure. A: Heatmap showing the t value of linear regression
which used functional genomic architecture and genetic conservation characteristic (columns) to predict
selection pressure (rows). Red bars denoted the R2 for corresponding linear regression using functional
genomic architectures alone, and black bar denoted R2 for linear regression using all predictors. B-D:
Scatter plots showing the most signi�cant contribution of genomic characteristics to selection pressures.
Each dot represented one trait.
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