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ABSTRACT

The problem of efficient design of material microstructures exhibiting desired properties spans a variety of engineering and
science applications. An ability to rapidly generate microstructures that exhibit user-specified property distributions transforms
the iterative process of traditional microstructure-sensitive design. We reformulate the microstructure design process as a
constrained Generative Adversarial Network (GAN). This approach explicitly encodes invariance constraints within a GAN to
generate two-phase morphologies for photovoltaic applications obeying design specifications: specifically, various short circuit
current density and fill-factor combinations. Such invariance constraints can be represented by deep learning-based surrogates
of full physics models mapping microstructure to photovoltaic properties. To circumvent data generation bottlenecks, we utilize
a multi-fidelity surrogate that reduces the requirements of expensive labels by 5X. Our approach enables fast generation
of microstructures (in ≈190ms) with user-defined properties. Such physics-aware data-driven methods for inverse design
problems are expected to democratize and accelerate the field of microstructure-sensitive design.

Introduction1

Advances in manufacturing (additive manufacturing, 3D printing, layer-by-layer deposition, real time control) allow us to2

precisely tailor the spatial distribution (i.e. microstructure) of materials. This opens up the possibility of microstructure-sensitive3

design, which involves identification of optimal material configurations that produce a desired property. Microstructure-sensitive4

design can impact a diverse array of applications ranging from membranes design to enhance water reclamation, battery electrode5

design to improve energy transport, and organic electronics active layer design to improve energy harvesting or sensing1, 2. The6

systematic creation of fast methods for microstructure-sensitive design is, however, a challenging problem, usually due to the7

complexity of the ‘forward model’ that maps the microstructure to property. The availability of a fast inverse design framework8

will transform the field of microstructure-sensitive design, and significantly impact how we harvest, store and distribute energy9

and mass.10

Over the past decade, a wide variety of approaches have been explored for solving the inverse microstructure design11

problem3–5. Traditionally, iterative optimization approaches have been the most popular strategy to search for microstructures12

that yield desirable characteristics. These approaches are typically time-consuming, computationally expensive, and often13

require manual supervision by domain experts. Furthermore, such approaches often lack the ability to generalize to new14

design constraints and require repeated exploration of the design space for each new design constraint or user choice. More15

generally, optimization based approaches are susceptible to challenges arising from (a) the combinatorial explosion of plausible16

microstructures, and (b) the computational complexity of function evaluation, i.e., solving the forward problem, especially for17

complex multi-physics problems. Thus, conventional optimization strategies based on using the full-physics forward model18

is a very challenging proposition, with limited deployment by groups with the skill set to use, and dedicated access to large19

computational clusters. As an example, current microstructure optimization approaches which rely on multiple forward-model20

PDE calculations for the discovery of a single optimal (inverse) design may typically require up to 160,000 CPU-hours for21

a given chemical system3. The push to democratize microstructure-sensitive design led to efforts focused on relaxing the22

challenges described above. Some approaches relied on developing cheaper, but less accurate surrogates for the forward model23

(example, using graphs3), while other approaches made the problem computationally tractable by severely constraining the24

design space (allowing only specific parameterized shapes)4.25

In this context, recent advances in the field of deep learning and scientific machine learning show promise for solving26

inverse design problems6–12. Particularly promising are Generative Adversarial Networks (GANs)13, a class of generative27
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deep learning models. Given a set of data, these generative models are capable of learning the underlying data distribution to28

generate new, realistic-looking samples. In the context of engineered systems, GANs have been successfully applied to areas29

such as differential equations14, system-modelling15, 16, and material and drug discovery17–19.30

Generative models can be trained to reconstruct realistic looking microstructures17, 20, 21. The challenge is to train them31

to reconstruct microstructures that satisfy a user-defined set of properties – or more generally, satisfying a set of constraints.32

Recently, a modified version of generative models called Invariance Networks (InvNets), have been proposed to enable33

imposition of explicit constraints on the model outputs22. The formulation of InvNet, which allows constraints to be defined34

independently, provides great flexibility in terms of incorporating domain knowledge or user specifications, cast as constraints.35

In this work, we formulate the microstructure-sensitive design problem into that of training an InvNet with physics-based36

constraints. We deploy this framework to generate candidate two-phase microstructures/morphologies for organic photovoltaic37

(OPV) applications due to this microstructure’s potential aspect in addressing a broad range of problems elaborated below.38

Flexible, light-weight, and wearable electronics and solar cells made from organic components provide a promising solution to39

wide array of societal needs. The potential application of these devices range from sensing (for precision and personalized40

medicine) to ambient energy harvesting (indoor solar cells) and energy efficient lighting and electronics. For example, the41

newest generation of small molecule acceptors have pushed single-junction organic photovoltaic (OPV) efficiencies over42

14% and tandem efficiencies over 17%, potentially revolutionizing cheap, flexible, and green energy harvesting. A large43

body of work has demonstrated that the morphology in the active layer of OPV devices is key to enabling high-performance44

devices23–25. Thus, controlling the morphology in the active layer of these devices continues to be crucial for maximizing45

performance. Tremendous advances in self-assembly of flexible polymers suggest remarkable control of hierarchical structure,46

but the impact on high-performance organic electronics has been limited. This is because, despite the importance of active layer47

mesoscale morphology to OPV device performance, it remains a challenge to identify “ideal” microstructures that maximize48

power conversion efficiencies. A key question is whether multiple ‘families’ of optimal morphology exist, and whether these49

morphological characteristics depend on material specific parameters such as electron mobility, exciton diffusion length and50

biomolecular recombination (i.e. the molecular chemistry). Thus, a rapid, physics-aware microstructure design strategy will51

enable practitioners to systematically explore and unravel questions of how materials limitations affect optimal morphological52

features, thereby accelerate materials design leading to high-performance devices.53

Here, we train an InvNet to generate microstructures that simultaneously obey multiple constraints, specifically a user54

defined short-circuit current density Jsc and fill-factor FF . These two properties characterize the current-voltage performance55

of an OPV (for a given material system). The short circuit current density, Jsc, represents the maximum amount of current per56

unit area that can be drawn across a solar cell(when the applied voltage is zero). Meanwhile, the fill-factor FF denotes the57

maximum amount of power that can be supplied by the solar cell as a ratio of peak theoretical power. These properties are58

intimately (and non-trivially) influenced by morphology26. We first demonstrate that a deep neural network (DNN) can be59

trained as a surrogate model to accurately predict the values of Jsc and FF given a two-phase microstructure. This requires a60

substantial amount of full fidelity training data, and only serves as a baseline forward model surrogate. Next, we propose a61

multi-fidelity neural network that achieves a similar predictive accuracy while utilizing a small fraction of full fidelity labels62

alongside low-fidelity labels. We then formulate an InvNet based inverse design framework where these surrogate (baseline as63

well as multi-fidelity) models are used as invariances to generate morphologies that satisfy user-design specifications.64

Results65

We begin with a brief overview of our proposed methodology of using InvNets for fast generation of targeted two-phase66

morphologies. Figure 1(a) illustrates the overall InvNet framework with a Wasserstein-GAN (WGAN)27 formulation. The67

WGAN model architecture ensures that the distribution of generated morphologies matches the true data distribution. Design68

specifications are enforced via an explicit invariance constraint, whereby the invariance loss is computed using the surrogate69

physics model represented by a deep neural network. This invariance loss ensure that the generator produces morphologies that70

satisfies the invariance constraint. Figure 1(b) and (c) shows two alternatives of surrogate models: a high-fidelity convolutional71

neural network (CNN) trained with a large amount of expensive labels obtained from high-fidelity simulations, and a multi-72

fidelity network trained with a mixture of high- and low-fidelity labels. The multi-fidelity network is trained on low-fidelity but73

computationally cheap labels alongside a fraction of high-fidelity labels to reduce the overall computation cost.74

We present our results in the following order. First, we validate our CNN surrogate model for accurately predicting75

photovoltaic properties of a given morphology, followed by comparative assessment of prediction results of the multi-fidelity76

surrogate model. We then provide illustrative results of the microstructures generated by InvNet using both the high-fidelity77

network as well as the multi-fidelity network.78

[Figure 1 about here.]79
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High-fidelity short circuit current and fill-factor estimation80

In this section, we validate the approach of utilizing a deep neural network as a surrogate of the physics-based forward model.81

This surrogate model also serves as the invariance constraint within the InvNet framework. As deep neural networks are82

known to be powerful function approximators with fast prediction times28, we hypothesize that they are suitable candidates for83

representing the physics-based forward models.84

We previously showed that a CNN can accurately classify microstructures in binned classes of Jsc
5. Here, extend the idea to85

train a regressor that is capable of predicting Jsc and FF as continuous values. We train a CNN-based high-fidelity regressor86

RHF on a dataset of two-phase morphology images with high-fidelity simulated Jsc values ranging from 0 to 7 mA/cm2 and FF87

values ranging from 0.4 to 0.8 (see Methods and Supplemental Materials for details on full physics simulations and material88

properties). The output of this surrogate model is a vector which consists of the estimated Jsc and FF values. Training this89

model yields a R2 statistic of 0.994 for the estimations of Jsc and R2 statistic of 0.928 for estimations of FF as seen in bottom90

two scatter plots of Figures 2(a). This suggests that the surrogate model is capable of estimating the properties with sufficiently91

high accuracy. The top two plots in Figure 2(a) shows the histograms of absolute error for both Jsc and FF respectively. The92

error distribution of Jsc has a mean of 0.002 ± 0.08 mA/cm2 while the error distribution of FF have a mean magnitude of93

7.68E-5 ± 0.02.94

[Figure 2 about here.]95

Reducing data cost with multi-fidelity labels96

An expected bottleneck of training a surrogate model on high-fidelity labels is the challenge of initial data generation, which97

may be computationally expensive. Various works in literature have previously explored the idea of leveraging both high- and98

low-fidelity data to accelerate computational models29–32. We exploit a similar idea by proposing a multi-fidelity surrogate99

model to circumvent the challenge of generating computationally expensive high-fidelity labels.100

Having demonstrated that the high-fidelity surrogate is capable of estimating Jsc and FF , we next provide a preliminary101

overview of the computation of low-fidelity labels, followed by results of estimating such low-fidelity labels via another neural102

network surrogate. Then, we present the results of the multi-fidelity surrogate model which alleviates the requirement of a103

large-labelled dataset required for training. We achieve this by using computationally inexpensive low-fidelity labels and a104

fraction of expensive high-fidelity labels to train the multi-fidelity surrogate model.105

We use our prior work where a mechanistic consideration of the photo physics as three distinct processes (absorption and106

generation of excitons; exciton diffusion and dissociation; charge transport and collection) allowed identification of three107

morphology descriptors that together showed high correlation with Jsc
33, 34. These descriptors are computed by representing the108

two-phase morphology as a weighted-graph and evaluating standard graph measures (like connected components and path109

lengths). Since the complexity of graph-based problems and corresponding algorithms are well understood, these descriptors are110

computationally inexpensive to compute. These morphology descriptors thus provide a low fidelity link between morphology111

and performance. We next describe how using only a small fraction of simulated high-fidelity labels (Jsc and FF) along112

with information from low-fidelity labels (morphology descriptors), we train a surrogate model that has the similar predictive113

performance as a model trained purely using high-fidelity labels. Training this multi-fidelity surrogate required availability of114

differentiable low-fidelity descriptors, which we get by training another neural network, Rg, that maps a morphology to the115

low-fidelity descriptors (see SI for results, network and training details)116

Multi-fidelity short circuit current and fill-factor estimation117

We train a multi-fidelity model that estimates the magnitudes of Jsc and FF using a limited amount of high-fidelity labels with118

the help of the low-fidelity descriptors. This multi-fidelity network consists of the low-fidelity network, Rg and a separate119

shared-embedding network, as illustrated in Figure 1(c). The purpose of the shared embedding network is to learn additional120

features that are useful in estimating the properties which were not captured by the low-fidelity model. In our experiments, we121

used only 20% of randomly sampled high-fidelity labels to train the multi-fidelity network, which resulted in a R2 of 0.989 and122

0.894 for Jsc and FF respectively. The absolute error distributions of the Jsc and FF predictions have a mean of -0.009 ± 0.12123

mA/cm2 and −0.003 ± 0.02 respectively. Figure 2(b) shows the scatter plots of the properties estimated by the multi-fidelity124

model against the ground truth values as well as the distribution of errors. As seen in Figure 2(a) and (b), the R2 of the RHF and125

RMF models are similar although the label requirements of the multi-fidelity model is reduced by 80%. We stress that while the126

low-fidelity network was trained using the entire dataset, the multi-fidelity model was only trained with 20% of the high-fidelity127

labels, which are significantly more expensive to generate (e.g., evaluating the Jsc and FF of one morphology needs about 1128

cpu-hr, whereas the low fidelity metrics can be computed in less than a minute). Hence, by using the multi-fidelity network,129

we alleviate the problem of requiring a large labelled dataset to train a surrogate physics model as the invariance constraint130

evaluator in the InvNet.131
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Targeted Microstructure Generation132

[Figure 3 about here.]133

We present the results of generating targeted morphologies that are tailored to design specifications using our proposed134

InvNet with multi-fidelity surrogate model framework. In Figure 3(a), we show samples of microstructures generated with135

InvNet for different design specifications. In the top row, we show examples of morphologies with low Jsc values and high FF136

values. As we traverse down the rows of Figure 3(a), the specified Jsc values are increased while the FF values are decreased.137

It is observed that the InvNet-trained generator is able to generate a variety of candidate microstructures with different138

morphologies given the same design specifications. This signifies that the generator has learnt the underlying distribution of the139

actual data and no mode collapse occurred during training which can result in only similar morphologies being generated. This140

also anecdotally validates a hypothesis in the OPV community that there exist multiple families of morphologies that produce141

identical performance.142

To further verify that the generated morphologies satisfy the imposed design constraints, we generated an additional 1000143

morphologies for different ranges of Jsc and FF values and compared the estimated properties of these morphologies with the144

actual design specifications. The values of these estimated properties and design specifications are plotted as densities and145

shown in Figure 3(b). We observe that the specified values and generated values for both Jsc and FF have highly overlapping146

densities. These overlapping densities show that generator is capable of creating morphologies that satisfy the imposed design147

specifications, hence enabling targeted design of candidate two-phases microstructures.148

Nonetheless, we observe that there are situations where the generated morphologies do not adhere to the design specifications,149

as seen in the first row of Figure 3(b), where the density of generated morphologies (in solid green) had a range of Jsc values that150

are higher than the specified range of Jsc values (in dotted blue). Since the proposed framework is fundamentally data-driven,151

we hypothesize that this failure mode was caused by an imbalanced dataset where samples from the low Jsc and high FF152

regions might be sparse. To confirm this hypothesis, we visualize the training data distribution in Figure 3(c). Based on the153

visualization of the joint density, we observe that there are indeed very few samples in the top left region, where morphologies154

have a low Jsc and high FF values. However, it is interesting to recognize that even when the generator fails to generate155

morphologies with specified Jsc in such sparse training data regions, the rank order of the morphologies’ Jsc are still preserved.156

Instead of generating morphologies with random Jscs’, the generated morphologies defaulted to morphologies with low Jsc and157

high FF values which are well supported with data.158

Comparing high-fidelity and multi-fidelity InvNets159

Next, we provide qualitative results to compare the effects of using the high-fidelity, RHF , and multi-fidelity RMF surrogate160

model as the invariance constraint evaluator in InvNet framework. In Figure 2, we have shown that the performances of the high-161

and multi-fidelity surrogate models are comparable. Moreover, we are also interested in investigating if the higher variance162

of the multi-fidelity surrogate will compound and affect the results of the generated morphologies. To study this, we trained163

InvNet with the same network architecture and replaced the RMF with RHF . We illustrate the results from both methods in164

Figure 4. In terms of the generated morphologies, we do not observe any significant difference between the two methods. Both165

the high- and multi-fidelity InvNets are capable of generating microstructures of varying morphologies without signs of mode166

collapse. However, the density plots which are used to validate the constraint invariances reveal two interesting observations.167

First, we observe that the high-fidelity InvNet is more capable of generating low Jsc/high FF morphologies in comparison168

with the multi-fidelity InvNet. This is evident in the first row, where the density of morphologies generated by high-fidelity169

InvNet has a higher overlapping area with the design specifications as compared to the density of morphologies created by170

multi-fidelity InvNet. We attribute this to the fact that RHF was exposed to a much larger and diverse set of morphologies as171

compared to RMF , which results in the high-fidelity InvNet being able to learn the underlying structure of the low Jsc/high FF172

morphologies better when training for the invariance. Thus, this suggests we can expect the performance of high-fidelity InvNet173

to be more robust and consistent when queried in regions where training data is sparser.174

The second interesting observation we make is that the high-fidelity InvNet also tends to generate morphologies that are175

a little more biased in terms of the FF . This can be observed in the second, third, and fourth rows where the densities of176

high-fidelity FF are slightly shifted from the FF design specifications. Referring back to Figure 3(c), we observe that the177

marginal density of FF data is highly skewed towards the lower regions. Therefore, it is possible that by training RHF on178

the entire high-fidelity dataset and subsequently using it as the invariance constraint evaluator to train InvNet does result in179

generated morphologies that are more biased in terms of the design specifications. This highlights the importance of having a180

balanced dataset when using our proposed framework for morphology generation.181

[Figure 4 about here.]182
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Efficiency of neural-network based methods versus physics-based models183

In Table 1, we compare the wall-clock running times of our proposed neural-network based methods with physics-based184

methods for a few different scenarios. All timings were performed on the same platform using a NVIDIA Titan RTX GPU and185

averaged across 100 function evaluations. In the first two columns, we show the average computation times for evaluating186

the Jsc and FF properties of a given morphology. We observe that both multi- and high-fidelity methods are several orders187

of magnitude faster than a high-fidelity physics simulation. A second advantage is that with the surrogate models, only one188

evaluation is required to estimate both Jsc and FF simultaneously. In comparison, performing the physics simulation requires189

separate individual evaluations for Jsc and FF . Comparing the multi-fidelity surrogate model RMF with the high-fidelity190

surrogate model RHF , we note that RHF is an order of magnitude faster than RMF . However, training RHF comes at the cost of191

requiring a large dataset with high-fidelity labels. On the other hand, RMF requires a smaller amount of high-fidelity labels, but192

requires training a more complex model architecture, which increases computation time. Hence, we view the benefits of each193

method as a trade-off between availability of data with computation time.194

In the third column, we show the total time required to train InvNet for 1E5 epochs. We observe that the high-fidelity195

InvNet is ≈ 3X faster than multi-fidelity InvNet, which is expected since the training of InvNet is dependent on the surrogate196

model to compute the invariance loss. We also include an estimate of the time required to train the InvNet if we were to replace197

the invariance constraint evaluator with an actual physics-based model to compute the invariance loss. As observed, training198

such an InvNet will require ≈ 60k hours, which is not tractable in compared to using a neural network-based surrogate model.199

Last but not least, we provide the morphology generation time for a single morphology. Since the process of generating a200

morphology using InvNet during inference is independent of surrogate model, there is no significant difference time difference201

between using the high-fidelity versus multi-fidelity InvNet. In summary, we conclude that there is no significant difference202

in terms of the querying a trained high-fidelity versus multi-fidelity InvNet to generate targeted morphologies. Instead, the203

deciding factor of which model to apply depends on the availability of high-fidelity labels or computation resources. The204

high-fidelity InvNet framework is faster to train but requires a large dataset of high-fidelity labels to pre-train the surrogate205

model. Conversely, the multi-fidelity InvNet model requires less high-fidelity labels but requires a more complex network206

architecture which results in longer training times.207

[Table 1 about here.]208

Discussion209

The ability to rapidly synthesize targeted microstructure designs is essential in a broad range of scientific and engineering210

applications. We propose a data-efficient generative framework (InvNet) that casts user-specifications as explicit invariance211

constraints to generate candidate two-phase microstructures that adheres to design specifications. While recent works with212

similar objectives have proposed frameworks that demonstrated promising results12, 22, we highlight that those approaches213

is not capable of solving our specific application in a tractable manner. This is particularly due to the extremely long and214

expensive computation required to evaluate the constraints, which is a common bottleneck in the community. Hence, to remedy215

this challenge, we leverage neural network-based surrogates for the purpose of fast constraint evaluation. Using a surrogate,216

our framework addresses the challenge of expensive constraint evaluation while simultaneously circumventing the need of217

having a differentiable and explicit, closed-form expression of the constraints. Combining these advantages, we believe that218

our method results in a far more general-purpose framework that is applicable to a wider range of inverse design problems.219

Additionally, we have also supplemented our surrogate-based generative framework with a multi-fidelity approach to improve220

the data requirements of the model. This multi-fidelity approach reduces foreseeable expensive label generation procedures,221

which is an obstacle that is not present in inverse design problems where design constraints can be tractably computed. For222

further discussion on the motivation of our framework, we defer reader to the Methods section. From our experimentation, our223

results illustrate that neural networks are capable of being accurate surrogates of expensive full-physics simulations and the224

InvNets trained with multi-fidelity surrogates are capable of generating various candidate morphologies which caters to both Jsc225

and FF specifications. Furthermore, comparing the results of InvNet trained with high-fidelity and multi-fidelity surrogates226

reveals no significant differences in performance, thus reinforcing the fact of data-efficiency benefits of using the multi-fidelity227

surrogate. A wall-clock comparison of training times reveals that a trade-off exists between the high-fidelity and multi-fidelity228

modes, with the multi-fidelity version of the surrogate and InvNet having longer training times.229

While we have demonstrated our proposed framework through the lens of a material microstructure design problem that230

uses a data-driven surrogate, we emphasize that our InvNet framework is certainly not limited to purely data-driven surrogate231

approaches. Since the invariance constraint of InvNet is explicit, it can be easily replaced or combined with other data-free232

approaches. In this regard, a key future direction is to develop InvNets that explicitly incorporate complex physics/domain233

knowledge in a computationally tractable manner. This approach will significantly reduce the dependency of the proposed234

framework on data availability and extend the capability of the framework to extrapolate beyond the support of data. Other235
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promising directions include extending the current framework to generate morphologies with more than two phases as well as236

validating the generalizability of the framework on a dataset with more than two target properties. To conclude, our vision is237

that the computational tools developed in this paper will serve to democratize and accelerate the area of microstructure-sensitive238

design.239

Methods240

Description of two-phase morphology microstructures241

Microstructures: We use a large dataset of microstructure images arising from solving the Cahn-Hilliard (CH) equation242

with varying initial conditions. The Cahn-Hilliard equation35 describes phase separation occurring in a binary alloy under243

thermal annealing. It tracks the evolution of local volume fraction of each phase, in the presence of spatial gradients in244

chemical potential of the system. Hence, in the time evolution process, one first observes an initial rapid separation of the245

well-mixed system into its constituent phases, followed by slow coarsening of the respective domains. Thus, the microstructures246

generated will have lower energy compared to those at the beginning stages of the simulation, according to the second law of247

thermodynamics. Image data arising from the simulations provide a rich dataset for design of microstructures. Specifically, the248

morphologies obtained through the simulation will be similar to the morphologies in a real active layer of organic photovoltaic249

cells5. We use an in-house solver for generating the microstructure images.250

Photophysics Annotation of Microstructures: Each of the morphologies is virtually interrogated to extract its current-251

voltage characteristics, by solving a morphology aware (i.e. spatially heterogeneous) photophysics device model. We deploy252

a validated, in-house software that uses a finite element based solution strategy for solving the photophysics device model.253

The photophysics model is described by the steady state excitonic drift diffusion (XDD) equations. The XDD equations are a254

set of four tightly coupled partial differential equations that model the optoelectronic physics of energy harvesting in organic255

photovoltaic devices. The photophysics consists of the following stages:256

• Incident solar radiation causes the generation of energetically active electron-hole pairs, called excitons (denoted by X),257

in the donor regions of the microstructure. These excitons diffuse across the microstructure and have a finite lifetime258

before becoming ground state electron-hole pairs;259

• Excitons that diffuse and reach the donor-acceptor interface undergo dissociation into electrons (denoted by n) and holes260

(denoted by p) at the donor-acceptor interface. The dissociation mechanism is material and field dependent (denoted by261

D);262

• These generated charges (n,p) traverse the microstructure and reach their corresponding electrodes (cathode and anode)263

to produce a current. Two mechanisms are responsible for driving carrier transport or current flow. First, the drift, which264

is caused by the presence of an electric field (denoted as the gradient of the potential, ∇ϕ , and second, the diffusion,265

which is caused by a spatial gradient of electron or hole concentration;266

• The distribution of electrons and holes in the microstructure interacts with the applied voltage and influences the267

electrostatic potential ϕ across the microstructure. Finally, electrons and holes can recombine (denoted by R) to create268

excitons269

The photophysics described above is encoded as the exciton drift diffusion (XDD) equations26.

∇.Jn−R+D = 0 (1)
−∇.Jp−R+D = 0 (2)

∇.(εrε0∇ϕ) = q(n− p) (3)
−∇.(Vt µx∇X)− f D[∇ϕ,X ]−R[x] =−G−R[n,p] (4)

Here, X , n, p represent the exciton, electron and hole distributions respectively. ϕ represents the electric potential. q270

represents the elementary charge. Vt represents the thermal voltage. ε is the dielectric constant in the donor and recipient271

materials. µn/p/X are the mobilities of electron/hole/exciton respectively. The current densities Jn and Jp are given by the272

constitutive equations273

Jn =−qnµn∇ϕ +qVt µn∇n (5)
Jp =−qpµp∇ϕ−qVt µp∇p (6)

These set of high-dimensional, complex PDEs are solved to get the performance of the solar cell device, which is274

charecterized by the short-circuit current, and fill factor.275
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Framework development276

In this section, we discuss the motivation of creating a data-driven framework capable of generating microstructures with277

various targeted morphologies while adhering to design specifications. Previous studies have demonstrated that InvNets can278

effectively generate novel two-phase microstructures that satisfy explicit constraints such volume fractions and domain size and279

also generate poly-crystalline microstructures (a discrete-valued generation problem) by relaxing the generation problem to a280

probabilistic assignment problem22. However, we consider a couple of drawbacks of the existing InvNet in terms of scalability.281

Previously, it has only been shown that InvNet worked with explicitly defined constraints or invariances. Nevertheless, existing282

works have not addressed what happens when the invariances cannot be explicitly defined. Additionally, evaluation of the283

invariances are often computationally expensive and time-consuming. For example, in the case of our application, evaluating Jsc284

and FF of a given morphology involves solving a set of differential equations that can take up to approximately several hours.285

As such, this limitation hampers the scalability of training InvNet. Hence, we represent such invariance constraints, which286

cannot be explicitly expressed or are too computationally expensive with a deep neural network. By representing the invariance287

with a deep neural network surrogate, the evaluation of the invariance constraints can be significantly accelerated since the288

forward evaluation of a neural network is fast once the model is trained. Utilizing a neural network surrogate also has the benefit289

of not requiring the invariances, such as the equations governing a physical system, to be explicitly known as long as labeled290

data are available to train the surrogate model. Also, a neural network representation of the invariance simplifies the training of291

InvNet. During training of the InvNet, the parameters of the entire model are optimized by utilizing gradient information from292

the invariance loss function. Since neural network models are differentiable, gradient information with respect to the invariance293

loss can be easily computed using modern deep learning libraries with automatic-differentiation capabilities. In comparison,294

using other forms of explicit invariances will necessitate the constraints to be differentiable, and the gradients will have to be295

calculated separately.296

Nonetheless, as alluded above, representing the invariance with a deep neural network does result in a second drawback,297

which is the availability of labeled data. In the context of our application, creating a labeled data set of morphologies with298

corresponding J and FF values is computationally expensive, and defeats the goal of avoiding costly physics-based simulations.299

This second drawback motivates the development the multi-fidelity surrogate which alleviates the problem of generating300

expensive labels.301

Training details302

High-fidelity surrogate model: To improve the robustness of the surrogate model, we first performed standard image303

augmentation techniques, image rotation and flipping, which resulted in an augmented dataset of ≈ 38k images of augmented304

morphologies. To ensure a stable training process, we also scaled the labels of Jsc and FF to belong in the same numerical305

range. Following standard practices, we partitioned 80% of the data as training data and reserved 20% of data as a test data.306

Since the task of the surrogate model is to essentially perform a multi-target regression, the loss function of the regressor is307

formulated as:308

LRHF = ‖RHFφ ,Jsc
(I)− Jsc‖2

2 +‖RHFφ ,FF (I)−FF‖2
2 (7)

where RHF denotes the high-fidelity surrogate model, parameterized by parameters φ , I is the input image of the microstruc-309

ture and Jsc and FF are the true label values. The high-fidelity model architecture we used is a sequential model which consists310

of two convolution layers, each followed by batch normalization layer, ReLU activation, and a max pooling layer. Two dense311

layers were used after the two convolution blocks along with dropout layers to avoid over-fitting during training. The output312

of RHF is a vector of two values that corresponds to the estimated Jsc and FF values. The model was trained using Adam313

optimizer with a learning rate of 3E-4 for 25 epochs. Additionally, we also investigated network architectures with separate314

final layers that do not share parameters. We observed no significant improvement in prediction accuracy while the cost of315

computational memory requirement was increased.316

Multi-fidelity surrogate model: Before describing the training details, we briefly justify the need to replace the graph-based317

computation of low-fidelity descriptors with another neural network surrogate, Rg in the multi-fidelity model. While multi-318

fidelity frameworks are effective in reducing the requirement of expensive labels32, they are currently not tractable for application319

as an invariance constraint in InvNets. This is because updating the generator’s parameters in InvNet requires the gradient320

computation of the invariance-loss function. However, graph-based methods used to compute the low-fidelity descriptors are321

often non-differentiable. Therefore, optimizing the parameters of the generator via conventional back-propagation becomes322

a non-trivial problem. Additionally, evaluating the low-fidelity descriptors using previously proposed graph-based method323

requires that the generated images be converted into nodes and edges on-the-fly during training, which incurs additional324

computational cost and time. Hence, a neural network surrogate which is differentiable and can directly evaluate graph features325

of morphologies in the pixel domain circumvents both of these challenges.326
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As illustrated in Figure 1(c), the multi-fidelity network encompasses both low-fidelity network (described in SI) and a327

shared-embedding network. The purpose of the shared-embedding network is to learn additional features that are not already328

captured by the low-fidelity network for estimating Jsc and FF . During training of the multi-fidelity network, the low-fidelity329

network predicts the low-fidelity descriptors of a given microstructure, which are combined with the image embeddings from330

the shared embedding network. These two vectors are then passed through a dense layer to estimate Jsc and FF . As we are only331

using a limited amount of high-fidelity labels, it is possible that training the multi-fidelity network might lead to a biased model332

due to label imbalance. To avoid such issues, we constructed the following weighted loss function with empirically-determined333

scaling constants that balances the errors between the estimations of Jsc and FF . RMF denotes the multi-fidelity surrogate334

model where χ and ω represents the parameters of the shared-embedding network and low-fidelity network respectively.335

LRMF = LJsc +LFF (8)
336

LJsc = λ1(J2
sc + Jsc)‖RMFχ,ω,Jsc

(I)− Jsc‖2
2 (9)

337

LFF = λ2‖RMFχ,ω,FF (I)−FF‖2
2 (10)

with λ1 and λ2 heuristically set to 0.008 and 0.0005, respectively. We highlight that in principle, the weights of the low-fidelity338

network Rg are already trained and can be frozen. Nevertheless, in practice, we find that allowing the weights of the low-fidelity339

network to optimized alongside the entire network does result in a slightly better estimations. To train the multi-fidelity network,340

we used SGD optimizer with a learning rate of 1E-3 and trained the network for 100 epochs.341

Generator and Discriminator of InvNet: In this section, we provide the training description of InvNet with the multi-fidelity342

surrogate model as the invariance constraint evaluator. Since the main modification that we’ve proposed occurs in the invariance343

constraint, the formulation of InvNet’s loss function remains as344

LInvNet = LG(θ ,ψ)+LI(θ) (11)

where LG denotes the standard loss function of the WGAN, with θ being the parameters of the generator, ψ being the345

parameters of the discriminator. Both the generator and discriminator are also represented using deep neural networks. The346

invariance loss LI is expressed as:347

LI = ‖RMFJsc
(Gθ (z))−RMFJsc

(I)‖2
2 +‖RMFFF (Gθ (z))−RMFFF (I)‖

2
2 (12)

with Gθ denoting the generator, z denoting a latent vector sampled from a uniform distribution, Gθ (z), denoting the image of348

generated morphology and I denoting a real morphology sampled from the dataset. During training, the weights of the surrogate349

physics model, φ are kept frozen, and RMF acts purely as an invariance constraint evaluator that estimates the morphological350

properties of the generated microstructures. Only the parameters of the discriminator ψ , and generator θ are optimized.351

To train the InvNet, we instantiate the generator with an architecture that consists of one dense layer, five residual blocks352

with skipped connections, and one convolution layer. Each residual block is made up of two batch-normalization layers and353

two convolution layers with up-sampling operations. ReLU activation functions were used after every layer, except for the354

last convolution layer. We used the sigmoid activation function on the output of the convolution layer to generate 128 x 128355

images of microstructures. The Discriminator network consists of one convolution layer, four residual blocks, and a dense356

layer. The residual blocks are similar to the blocks used in the Generator, with the exception that the convolution layers are357

paired with down-sampling operations and layer-normalization is used instead of batch-normalization. As we’ve chosen to use358

the WGAN-GP36 variant of GAN, the output of the discriminator is a single scalar value estimating the Wasserstein distance359

between the distributions of generated and real microstructures. To compute the invariance loss, we use the multi-fidelity360

surrogate model RMF to ensure that generated morphologies had properties that are similar to the properties of the real361

morphologies. Both the Generator and Discriminator are trained alternatively using Adam optimizer with a learning rate of362

3E-4 for 1E5 epochs. We include specific details of network layers we used in the generator, discriminator and multi-fidelity363

network in the Supplementary Materials. Note that in the methodology presented, we have described the InvNet framework364

using the multi-fidelity surrogate, RMF as the invariance constraint evaluator. We highlight that the methodology for training365

the framework using high-fidelity network is exactly the same, with only RHF replacing RMF .366
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Figure 1. Overview of our proposed framework for targeted microstructure generation based on user design
specifications. (a) Illustration of InvNet architecture, which utilizes a modified GAN to learn the underlying data distribution
to generate new morphologies. We propose the use of a surrogate physics model, represented by a deep neural network, to
enforce an invariance constraint by evaluating the properties of generated microstructures to ensure that user design
specifications are satisfied. (b) A high-fidelity CNN is trained to predict the properties of the microstructures, which is used as
the surrogate physics model in the InvNet. (c) To reduce the requirements of expensive, high-fidelity labels to train the
surrogate model, we propose a multi-fidelity network which attains the same predictive accuracy as training the network on
high-fidelity data by combining information from cheap, low-fidelity labels and a fraction of high-fidelity labels.
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Figure 2. Results of high-fidelity and multi-fidelity surrogate models. (a) Left figures summarize the distribution of
errors for both Jsc and FF estimation using the high-fidelity surrogate physics model. Bottom plots visualize the correlation
plot of the estimated properties with respect to the ground truth values. In both cases, the predicted values have high correlation
coefficients, R2 values of greater than 0.9. (b) Summary of error distributions for Jsc and FF estimation using the multi-fidelity
surrogate model which was trained with only 20% of high-fidelity labels. We observe that while there is slight drop in R2 and
increase in variance, there is a huge marginal gain in terms of decreasing the amount of expensive simulations required to
generate the high-fidelity labels.
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Figure 3. Results of targeted microstructure design using multi-fidelity InvNet. (a) Examples of morphologies
generated by InvNet for the specified Jsc and FF ranges shown on the right densities. (b) Densities of estimated Jsc and FF
from generated morphologies compared with a range of respective design specifications for 1000 samples. Observe that the
densities of the design specifications and generated morphologies properties in the mid- and high-ranges (rows 2 to 7) are
highly overlapping, signifying that the invariances are satisfied. In contrast, the densities at the region of low Jsc are more
deviated, signifying a more biased model at the region where the training data is sparse. (c) Visualization of joint and marginal
densities of training data for both Jsc and FF . Notice that the marginal density of Jsc labels is relatively well balanced, while
the marginal density of FF is extremely skewed, resulting in sparser data around certain regions.
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Figure 4. Qualitative comparison of morphologies generated by the high-fidelity InvNet vs multi-fidelity InvNet.
Visually, we observe that both models are capable of generating varying morphologies which follows a similar trend as we
varied the design specifications. Looking at the densities of property invariances, we observe that the high-fidelity InvNet
performs slightly better than multi-fidelity InvNet by generating morphologies which are closer to design specifications in the
low Jsc high FF regions where training data is sparse. However, the high-fidelity InvNet also tend to generate morphologies
which are slightly biased in terms of the FF , as observed in rows 3, 4 and 5.
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Jsc Evaluation FF Evaluation InvNet Training Morphology Generation
High-Fidelity 5.9 ms 5.9 ms 5.8 hr 191.0 ms
Multi-Fidelity 55.3 ms 55.3 ms 18.7 hr 192.0 ms
Physics-Model 9.0 min 72.0 min 60,017.0 hr* N/A

Table 1. Comparison of average computation times of neural network-based methods vs physics-based methods for
different processes. Jsc and FF columns denotes the time required to evaluate the corresponding properties given a
morphology. InvNet training times are based on our training scheme of 1E5 epochs. *Physics model-based InvNet training is
based on an estimate if the invariance loss were to be computed using high-fidelity physics simulation. Morphology Generation
column denotes the time required for a trained InvNet to generate a single morphology given design specification values of Jsc
and FF .
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