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SUPPLEMENTARY NOTE 1: NETWORK CORRELATIONS AND THE INFLATION TECHNIQUE

Before explaining the inflation technique in some detail, it is useful to note some basic observations on the definition
of network correlations. Recall from the main text that triangle network states are of the form

% =
∑
λ

pλE(λ)A ⊗ E(λ)B ⊗ E(λ)C

[
%ABC

]
, (1)

i.e. there exist source states %a, %b, %c with %ABC = %a ⊗ %b ⊗ %c, a shared random variable λ and channels (that is,

trace preserving positive maps) E(λ)A , E(λ)B and E(λ)C that can be used to generate the state %, as shown in Fig. 1.
First, we note that in this definition, the state %ABC does not depend on the classical variable λ. This is however,

no restriction, as the dimensions of the source states are not bounded. If in Eq. (1) the %ABC(λ) and hence the %a(λ),

%b(λ), %c(λ) depend on λ, one can just combine the set of all %a(λ) to a single %a etc. and redefine the maps E(λ)A

etc. such that they act on the appropriate %a(λ). This results in a form where %ABC does not depend on λ anymore,
hence the state can be written as in Eq. (1). Note that this has already been observed in [1].

As mentioned in the main text, one may define network states also in a manner where the shared randomness is
carried by the sources only. Indeed, if one adds an ancilla system to the source states, this may be used to identify the

channel EX to be applied. More explicitly, the source states may be redefined as %
(λ)
c ⊗ |λ〉〈λ| with orthogonal ancilla

states |λ〉 being send to Bob (respectively to Charlie and Alice for sources a and b), such that Bob can, by measuring
|λ〉, decide which channel to apply. This measurement can then be seen as a global channel EB that does not depend

on λ. From the linearity of the maps, one may also write general network states as % = EA⊗EB⊗EC
[∑

λ pλ%
(λ)
ABC

]
as

an equivalent definition. For our purpose, the potential dependence of %ABC on λ has the following consequence: If
we wish to compute for a symmetric |ψ〉 the maximum fidelity 〈ψ|%|ψ〉 over all network states %, then we may assume
that % permutationally symmetric, too. This follows from the simple fact that we can, without decreasing the overlap,
symmetrize the state %ABC , and the symmetrized state will still be preparable in the network.

Second, one may restrict the %ABC = %a ⊗ %b ⊗ %c further. Indeed it is straightforward to see that %a = |a〉〈a|,
%b = |b〉〈b|, and %c = |c〉〈c| can be chosen to be pure, as the channels E(λ)A etc. are linear.

Third, as the set of network preparable states is by definition convex, one may ask for its extremal points. Formally,

these are of the form E(λ)A ⊗ E(λ)B ⊗ E(λ)C

[
|a〉〈a| ⊗ |b〉〈b| ⊗ |c〉〈c|

]
, but can these further be characterized? Clearly, pure

biseparable three-particle states, such as |ψ〉 = |φ〉AB ⊗ |η〉C are extremal points. There are however, also mixed
states as extremal points, which can be seen as follows: It was shown in Ref. [2] that pure three-qubit states which

FIG. 1. Triangle quantum network. Three sources %a, %b and %c distribute parties to three nodes, Alice, Bob and Charlie (A,

B and C). Alice, Bob and Charlie each end up with a bipartite system X = X1X2 on which they perform a local channel E(λ)X

(X = A,B,C) depending on a classical random variable λ.
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FIG. 2. Triangle network and three of its inflations. The first figure represents the triangle network Fig. 1, with global state
%. Using the same source states (represented by lines of same colour) and same local channels, one can build the so-called
inflated state τ , which is biseparable. The state γ is build similarly, but with a different rewirering, leading to an inflated state
that is in general not separable and different from τ . One may also go to higher order inflations, e.g. with three copies and
some rewireing, as depicted here. This procedure implies several equalities between the marginals of the original state and its
inflations.

are genuine multiparticle entangled (that is, not biseparable) cannot be prepared in the triangle network. On the
other hand, in Ref. [1] it was shown that there are network states having a GHZ fidelity of 0.5170, which implies that
they are genuine multiparticle entangled [3]. So, the set defined in Eq. (1) must have some extremal points, which
are genuine multiparticle entangled mixed states.

After this prelude, let us explain the inflation technique [4, 5], which has already proven to be useful for the
characterization of quantum networks [1]. We introduce it for triangle networks as for arbitrary networks it is a direct
generalization.

We start with constructing two inflations of the triangle network. Consider two networks with six vertices and six
edges as in Fig. 2. Identical sources are distributed along the lines of same colour, thus two copies of each source are
needed per network. In other words, the source %b is distributed between AC and A′C ′ to generated τ , and between
AC ′ and A′C for γ (analogously for %a and %c, following Fig. 2). Then, the channels are performed according to the

random parameter λ. Both on primed and non-primed A nodes, the same channel E(λ)A is applied and similarly for
B and C. This leaves us with two network states, τ and γ. Those operators are physical states, i.e. they have a unit
trace and are positive semi-definite. Formally, they can be written as

τ =
∑
λ

pλ

(
E(λ)A ⊗ E(λ)B ⊗ E(λ)C

[
%ABC

])
⊗
(
E(λ)A′ ⊗ E(λ)B′ ⊗ E(λ)C′

[
%A′B′C′

])
(2)

and

γ =
∑
λ

pλE(λ)A ⊗ E(λ)B ⊗ E(λ)C ⊗ E(λ)A′ ⊗ E(λ)B′ ⊗ E(λ)C′

[
%ABCA′B′C′

]
, (3)

where %ABCA′B′C′ = %c ⊗ %b ⊗ %a ⊗ %c ⊗ %b ⊗ %a, with the ordering of parties being different on both sides. Here,
one needs to carefully pay attention to which channel acts on which party (this is depicted in Fig. ??). Clearly, given
only the knowledge of %, the precise form of τ and γ is not known. Still, due to the way they are constructed some
of their marginals have to be equal, namely

τABC = τA′B′C′ = %, (4)

γABC = γA′B′C′ , (5)

TrXX′(τ) = TrXX′(γ) for X = A,B,C. (6)
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Furthermore, from Eq. (2) it is clear that τ is separable wrt the partition ABC|A′B′C ′ and we note that τ and γ are
permutationally symmetric under the exchange of non primed and primed vertices. Therefore, if, for some given state
%, it is not possible to find states τ and γ that satisfy those conditions, then % cannot be generated in the considered
network.

An interesting point is that the question for the existence of τ and γ with the desired properties can be directly
formulated as a semidefinite program (SDP). This can be used to prove that such inflations do not exist, and the
corresponding dual program can deliver an witness-like construction that can be used to exclude preparability of a
state in the network. Still, these approaches are memory intensive. For instance, as the authors of Ref. [1] acknowledge,
it is difficult to derive tests for tripartite qutrit states in a normal computer.

Finally, let us note that other triangle inflations may be considered, for instance inflations with 3n nodes (n =
3, 4, . . . ) or simply wired differently than τ and γ. As mentioned previously, this technique can also be used for more
complicated networks.

SUPPLEMENTARY NOTE 2: FIDELITY ESTIMATE FOR THE GHZ STATE

Let us compute a bound on the fidelity of triangle network states to the GHZ state, i.e. compute F = max〈GHZ|%|GHZ〉,
where the maximum is taken over all states as in Eq. (1). For this maximization is it sufficient to consider the extremal

states, which are of the type %
(λ)
ITN = E(λ)A ⊗E

(λ)
B ⊗E

(λ)
C

[
%ABC

]
, here ITN stands for the independent triangle network,

that is the triangle network without shared randomness.
Therefore, one may use techniques based on covariance matrices [6, 7], which are designed for the ITN. The

covariance matrix (CM) Γ of some random variables x1, . . . , xN is the matrix with elements Γij = cov(xi, xj) =
〈xixj〉 − 〈xi〉 〈xj〉, i = 1, . . . , N .

We can now explain the general idea of the technique in Ref. [7]: If one computes the CM of the outcomes of
Z-measurements on each qubit of an ITN state, then this matrix has a certain block structure. Checking this block
structure can be done by checking the positivity of the comparison matrix M(Γ). The comparison matrix obtained
by flipping the signs of the off-diagonal elements of Γ. The condition then reads: For any quantum state in the ITN
the comparison matrix of the CM is positive semi-definite. Hence, a negative eigenvalue in the comparison matrix
excludes a state of being preparable in the ITN.

Now, if we apply that to states %(F ) = F |GHZ〉〈GHZ|+(1−F )%̃ with a fidelity F to the GHZ state, the comparison
matrix of the CM reads

M(Γ) =

 1− a2(1− F )2 −
(
F + d(1− F )− ab(1− F )2

)
−
(
F + e(1− F )− ac(1− F )2

)
−
(
F + d(1− F )− ab(1− F )2

)
1− b2(1− F )2 −

(
F + f(1− F )− bc(1− F )2

)
−
(
F + e(1− F )− ac(1− F )2

)
−
(
F + f(1− F )− bc(1− F )2

)
1− c2(1− F )2

 , (7)

where a = 〈Z11〉%̃, b = 〈1Z1〉%̃, c = 〈11Z〉%̃, d = 〈ZZ1〉%̃, e = 〈Z1Z〉%̃ and f = 〈1ZZ〉%̃. From the last paragraph,
we have that this matrix is positive semi-definite for ITN states, thus 〈φ|M(Γ)|φ〉 ≥ 0, for all vectors |φ〉, and
in particular for |φ〉 = (1, 1, 1)/

√
3. We notice that 〈φ|M(Γ)|φ〉 is upper bounded by 4 − 6F + F 2 and therefore,

0 ≤ 〈φ|M(Γ)|φ〉 ≤ 4−6F+F 2 holds for ITN states and we are able to exclude all states %(F ) with F > 3−
√

5 ' 0.7639
form the triangle network scenario.

By making use of additional constraints or other criteria, we can obtain tighter bound. For any given three
compatible dichotomic measurements M1,M2,M3, we have [1]

p(M1 = M2) ≥ p(M1 = M3) + p(M2 = M3)− 1. (8)

This implies

〈M1M2〉 ≥ 〈M1M3〉+ 〈M2M3〉 − 1. (9)

By substituting Mi with −Mi, we obtain

〈M1M2〉 ≥ | 〈M1M3〉+ 〈M2M3〉 | − 1, (10)

〈M1M2〉 ≤ 1− | 〈M1M3〉 − 〈M2M3〉 |. (11)

In our case, we have

d ≥ |a+ b| − 1, e ≥ |a+ c| − 1, f ≥ |b+ c| − 1. (12)
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With this extra constraint, 0 ≤ 〈φ|M(Γ)|φ〉 ≤ 9− 12F holds for ITN states and we are able to exclude all states %(F )
with F > 3/4 = 0.75 form the triangle network scenario.

Another criterion for ITN states [8] states that

(1 + |EA|+ |EB |+ EAB)2

+(1 + |EA|+ |EC |+ EAC)2

+(1 + |EB |+ |EC |+ EBC)2

≤6(1 + |EA|)(1 + |EB |)(1 + |EC |), (13)

where

EA = 〈Z11〉% , EB = 〈1Z1〉% , EC = 〈11Z〉% , (14)

EAB = 〈ZZ1〉% , EAC = 〈Z1Z〉% , EBC = 〈1ZZ〉% . (15)

As it turns out, if Eq. (13) together with Eq. (12) has a feasible solution of a, b, c, d, e, f ∈ [−1, 1], then F should
be no more than 1/

√
2 ' 0.7071. Hence, we can exclude all states %(F ) with F > 1/

√
2 ' 0.7071 form the triangle

network scenario.
In particular, if we know EA = EB = EC = 0, i.e., a = b = c = 0, Eq. (13) reduces to

6 ≥ (1 + F + d(1− F ))2 + (1 + F + e(1− F ))2

+ (1 + F + f(1− F ))2

≥ 3(1 + F − (1− F ))2

= 12F 2, (16)

which implies F ≤ 1/
√

2. The bound 1/
√

2 ' 0.7071 is slightly worse, but close to the one 0.6803 obtained in Ref. [1]
based on advanced numerical computations.

SUPPLEMENTARY NOTE 3: GRAPH AND CLUSTER STATES

In this Appendix we present our results on graph states and cluster states. This Appendix is structured as follows.
We first recall the basic facts about graph and cluster states. Then, we prove the estimate on the fidelity with cluster
states for states in the square network (see the main text). Finally, we present the proof and discussion of Observation
1.

Graph states and the stabilizer formalism

Graph states [9, 10] are quantum states defined through a graph G = (V,E), i.e. through a set V of N vertices and
a set E containing edges that connect the vertices. The vertices represent the physical systems, qubits. One way of
describing these states is through the stabilizer formalism. For that, as introduced in the main text, one first needs
to introduce the generator operators gi of graph states: a graph state |G〉 is the unique common +1-eigenstate of the
set of operators {gi},

gi = Xi

∏
j∈Ni

Zj , (17)

whereNi is the neighbourhood of the qubit i, i.e. the set of all qubits j ∈ V connected to the qubit i ∈ G. The state |G〉
can also be described through its stabilizer, which is the set S = {S1, . . . , S2N } = {

∏N
i=1 g

xi
i : {x1, . . . , xN} ∈ {0, 1}N}.

This means that S contains all possible products of the generators gi, hence Si|G〉 = |G〉. We note that 1 ∈ S. The
projector onto the state |G〉 reads

|G〉〈G| = 1

2N

2N∑
i=1

Si. (18)
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FIG. 3. Square network and three of its inflations. Similar to the triangle network of Fig. 2, the states τ and γ are generated
using two copies of the sources and channels used to generate %, without and with rewireing respectively. Then, one goes to a
high order inflation by using three copies of the sources and the local channels. By rewireing according to the figure, one gets
the inflated state ξ. Due to the way network states are generated, several of the marginals of %, τ , γ and ξ are identical.

Defined like that, graph states are a subset of the more general stabilizer states [9, 11, 12]. First, one has to
consider an abelian subgroup S of the Pauli group PN on N qubits that does not contain the operator −1. To that
set corresponds a vector space VS that is said to be stabilized by S, i.e. every element of this vector space is stable
under the action of any element of S. We call stabilizers that lead only to one state full-rank stabilizers, i.e. there
is a unique common eigenstate with eigenvalue +1. That state is completely determined by a subset of N elements
of S. As an example, one may consider the GHZ state, as explained in the main text. Indeed, it is the unique
common eigenstate of XXX, 1ZZ and ZZ1. One can show that any stabilizer state is, after a suitable local unitary
transformation, equivalent to a graph state.

More precisely, the local unitary transformations that map any stabilizer state to a graph state belong to the so-
called local Clifford group C1. The local Clifford group is defined as the normalizer of the single-qubit Pauli group, i.e.
UP1U

† = P1 for all U ∈ C1. By construction, the stabilizer formalism is preserved under the action of the local Clifford
group, and hence, an interesting question is under which conditions two graph states (or two stabilizer states) are
equivalent under local Cliffords. For graph states this question has a simple solution in terms of graphical operations
that determine their equivalence. Namely, two graph states are equivalent under the action of the local Clifford group
if and only if their corresponding graphs are equivalent under a sequence of local complementations [13]. For a given
graph G and vertex i ∈ V the local complement G′ of G at the vertex i is constructed in two steps. First, we have to
determine the neighborhood N(i) ⊂ V of the vertex i and then the induced subgraph is inverted, i.e. considering all
possible edges in the neighborhood any pre-existing edge is removed and any non-existing edge is added. E.g. having
a graph V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)}, a local complementation on vertex 1 results in the graph with
edges E = {(1, 2), (3, 1)}.

Estimate for the cluster state fidelity

We aim at computing a bound on the fidelity of square network states to the four-qubit ring cluster state |C4〉, i.e.
F = max〈Cl4|%|Cl4〉, were the maximum is taken over all square network states %. The fidelity of a state % with the

cluster state is given by F = 1
16

∑15
i=0 〈Si〉%, where {Si} is the stabilizer of |C4〉, consisting of S0 = 1111 and further

elements given in Table I.

The symmetry of |C4〉 implies that one can assume the network state % that maximizes the fidelity to admit the
same expectation value on operators from the same column, as denoted in the last row of Table I.

As explained in the main text, the general idea is to notice that some stabilizers of |C4〉 anticommute in the
appropriate inflation, and then use the fact that anticommuting operators cannot all have large expectation values
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Stabilizer elements

S1 = XZ1Z S5 = Y Y ZZ S9 = X1X1 S11 = −Y XY 1 S15 = XXXX

S2 = ZXZ1 S6 = Y ZZY S10 = 1X1X S12 = −1Y XY

S3 = 1ZXZ S7 = ZY Y Z S13 = −Y 1Y X

S4 = Z1ZX S8 = ZZY Y S14 = −XY 1Y

〈·〉% = Θ 〈·〉% = Λ 〈·〉% = Ξ 〈·〉% = −Σ 〈·〉% = Ω

TABLE I. Elements of the stabilizer of the four-qubit cluster states. The qubit indices A,B,C,D are suppressed here. See the
text for further details.

for a given state. In the τ -inflation of the square network (see Fig. 3), the observable XBXD′ and YAYBZCZD
anticommute, and since τBD′ = %BD and τABCD = %ABCD one has

Ξ2 + Λ2 ≤ 1. (19)

Secondly, we have Eq. (9) of the main text that we reformulate as

Ξ2 + Θ2 + Σ2 ≤ 1. (20)

At last, we consider the observables XAXBXCXD and ZAXBZA′XD′ in the inflation τ . However, the latter is not
a stabilizer of the four-qubit ring cluster state, but we have 〈ZAXBZA′XD′〉τ = 〈ZAXBZA′XD〉γ . Then, using the
fact that for commuting dichotomic measurements, 〈M1M2〉 ≥ 〈M1M3〉+〈M2M3〉−1 [1], one gets 〈ZAXBXDZA′〉γ ≥
〈ZAXBZC〉γ + 〈ZCXDZA′〉γ − 1. Since XAXBXCXD and ZAXBZA′XD′ are anticommuting, from constraints on the
marginals, one finally gets

2Θ− 1 ≤
√

1− Λ2. (21)

Analogously,

2Σ− 1 ≤
√

1− Λ2, (22)

2Θ− 1 ≤
√

1− Ω2, (23)

2Σ− 1 ≤
√

1− Ω2. (24)

By exploiting all these inequalities as constraints on the maximization of the fidelity, we finally get

F =
1

16

(
1 + 4Θ + 4Λ + 2Ξ− 4Σ + Ω

)
≤ 0.737684,

(25)

hence all states with a larger fidelity to the four-qubit ring cluster state cannot be prepared in a square network.

Proof of Observation 1

Here we provide a detailed proof of Observation 1. To do so, we first need to prove the following theorem.

Theorem 3. Let G(V,E) be a graph as in Fig. 4 with three mutually connected vertices A, B and C and let

TABC = NA ∩NB ∩NC , (26)

JAB = (NA ∩NB) \ TABC , (27)

EA = NA \ (NB ∪NC), (28)

etc., where NX is the neighborhood of X (X = A,B,C). Then the graph state |G〉 cannot originate from any network
with only bipartite sources, if one of the following conditions is satisfied:

1. JXY = JXZ = ∅, where X,Y, Z is a permutation of A,B,C;
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FIG. 4. Illustration of the conditions in Theorem 3. We consider a triangle in the graph of a graph state. The vertices A,B,C
share some neighbourhoods, which are indicated by black ellipses. Note that the graph may contain further vertices, also the
vertices in different neighbourhoods may be connected. See the text for further details.

FIG. 5. The bipartite network with complete graph K. This is the network that should generate the graph state from Fig. 4.
Note that here the bipartite links of the network are shown, and not the edges of the graph of the graph state.

2. EX = EY = ∅, where X 6= Y ∈ {A,B,C} ;

3. EX = JXY = ∅, where X 6= Y ∈ {A,B,C}.

Proof. We only need to show that the graph state |G〉 cannot be generated in the network with the complete graph
K as shown in Fig. 5, where the number of vertices is the same than in G.

We start our discussion with the inflation γ as in Fig. 6. Let us denote

gA = XAZNA
, gB = XBZNB

, gC = XCZNC
, (29)

where NA is the neighborhood of the vertex A in the graph G. Then

gAgB = YAYBZRAB
, (30)

gAgC = YAYCZRAC
, (31)

gBgC = YBYCZRBC
, (32)

where RAB = EA ∪ EB ∪ JAC ∪ JBC , and analoguously for RAC and RBC . Since gAgC = (gAgB)(gBgC), we can
apply the usual argument from the GHZ state to conclude that

〈YAYCZRAC
〉γ ≥ 〈YAYBZRAB

〉γ + 〈YBYCZRBC
〉γ − 1. (33)

By comparing the marginals of the states γ and %, we have

〈YAYBZRAB
〉γ = 〈YAYBZRAB

〉% , (34)

〈YBYCZRBC
〉γ = 〈YBYCZRBC

〉% , (35)

since A,C 6∈ RAB ∪RBC . In the following, we will also use the notation

R = RAC = EA ∪ EC ∪ JAB ∪ JBC (36)
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FIG. 6. The network for the inflation γ. This is a two-copy inflation, where only the links between AC and A′C′ are rewired.

in order to avoid a plethora of indices.
Then, we consider the inflation η shown in Fig. 7. This is constructed as follows. First, one has two disconnected

complete graphs, K and K ′. Then, one takes the subset R as a subgraph of K and rewires all connections from
vertices in R to A to A′. Similarly, one takes the subset R′ as a subgraph of K ′ and rewires all connections from
vertices in R′ to A′ to A.

By comparing the marginals of γ and η, this time we have

〈YAYCZR〉γ = 〈YA′YCZR〉η . (37)

With this reasoning, we have established that the correlation 〈YA′YCZR〉η is large in η, if the original state % is close
to the graph state. Now we have to identify another anticommuting observables in η with large expectation value in
order to arrive at a contradiction.

A natural first candidate is the stabilizing operator

gB = XBZAZCZR. (38)

with R = EB∪JAB∪JBC ∪TABC of the graph state. This, however, cannot always be identified with some observable
in the inflation η. Still, if

R∩R = ∅ ⇔ JAB = JBC = ∅ (39)

the observable gB is not affected by the rewiring in η, we have 〈gB〉% = 〈gB〉η. Moreover, in η the observables gB and
Y ′AYCZR anticommute. So, in this case we have

〈YAYCZR〉2γ + 〈gB〉2η ≤ 1. (40)

and for the original % we arrive at the condition (assuming 〈YAYBZRAB
〉% + 〈YBYCZRBC

〉% − 1 ≥ 0, as in Eq. (??) in
the main text)

(〈YAYBZRAB
〉% + 〈YBYCZRBC

〉% − 1)2 + 〈gB〉2% ≤ 1 (41)

for states that can be prepared in the network.
Furthermore, in the case that EA = EC = ∅ and by making use of the operator

gAgBgC = XAXBXCZEB∪TABC
, (42)

we arrive at a similar condition on % that is also violated by the graph state |G〉.
Finally, if EA = JAB = ∅, one can make use of the operator

gA = XAZBZCZJAC∪TABC
, (43)

in order to arrive at a condition on % that is not satisfied by the graph state |G〉.
By permuting A,B,C in the above argument, we finish our proof.

In the following, we identify some basic situations where the Theorem 3 can be applied. First, we show that the
conditions of Theorem 3 are met, if there is one vertex with a small degree.
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FIG. 7. The network for the inflation η. This is constructed as follows. First, one has two disconnected complete graphs, K
and K′. Then, one takes the subset R as a subgraph of K and rewires all connections from vertices in R to A to A′. Similarly,
one takes the subset R′ as a subgraph of K′ and rewires all connections from vertices in R′ to A′ to A.

Corollary 4. Let G be connected graph with no less than three vertices. If its minimal degree is no more than three,
the graph state |G〉 cannot be generated by any network with bipartite sources.

Proof. The proof will be done successively for minimal degree one, two and three.
Let v be a vertex whose degree is one and let w be the vertex connected to v. Since G is a connected graph with

no less than three vertices,

Nw \ {v} 6= ∅, (44)

where Nw is the neighbourhood of w. If we apply local complementation on the vertex w, we obtain a new graph G′,
where

u ∼ v, ∀u ∈ Nw \ {v}, (45)

where u ∼ v means that the vertices u, v are connected.
By setting

B = w, A = v, C = u0, (46)

where u0 is an arbitrary vertex in Nw \ {v}, we see that

NB \ {A,C} = TABC ∪ JAB ,
A ∼ B, A ∼ C, B ∼ C.

(47)

Hence, EB = JBC = ∅, which implies |G′〉 cannot be from any network with only bipartite sources. Since |G〉 is
equivalent to |G′〉 up to a local unitary transformation, we come to the same conclusion for |G〉.

Now, let us consider graphs with minimal degree equal to two, and let v be a vertex with degree two, and w and
u be the two vertices connected to v. If w 6∼ u, we can apply a local complementation on v to connect them. Hence,
we can assume w ∼ u without loss of generality. By setting

A = w, B = v, C = u, (48)

we have

EB = JAB = JBC = TABC = ∅, (49)

which leads to the desired conclusion.
Lastly, let v be a vertex with degree three and let w, u and t be the three vertices connected to v. Since we can

apply local complementation on v, without loss of generality, we can assume that there are at least two edges among
w, u and t, more specifically, w ∼ u and w ∼ t. Let us take

A = w, B = v, C = u, (50)
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FIG. 8. The six inequivalent graphs with four vertices up to permutations and complementation.

hence we see that

EB = ∅, JAB = ∅ or JBC = ∅. (51)

This implies that the graph state |G〉 with a vertex of degree three cannot be from any network with only bipartite
sources.

Under certain conditions, we can also exclude a network structure for graphs with minimal degree four:

Corollary 5. Let G be a graph that has a vertex v of degree four. If the induced subgraph on the neighborhood Nv is
not a line graph, then |G〉 cannot be generated in any network with bipartite sources.

Proof. As shown in Fig. 8, there are six inequivalent graphs with four vertices up to permutation and complementation.
In case (a), we can set B = v,A = u1, C = u2, then

TABC = {u3, u4}, EB = JAB = JBC = ∅. (52)

In case (b) and (c), we can set B = v,A = u3, C = u4, then

EB = {u1, u2}, JAB = JBC = TABC = ∅. (53)

In case (d) and (e), we can set B = v,A = u1, C = u3, then

EB = {u2}, TABC = {u4}, JAB = JBC = ∅. (54)

In all the above cases, Theorem 3 implies that the graph state |G〉 cannot be from any network with only bipartite
sources. In case (f), the neighbourhood Nv of v is a line graph whose complementation is also a line graph.

Having established these results, we can discuss graphs with a small number of vertices. Here. previous works have
established a classification of all small graphs with respect to equivalence classes under local complementation. In
detail, this classification has been achieved for up to seven vertices in Ref. [10], for eight vertices in Ref. [14] and for
nine to twelve vertices in Ref. [15]. These required numerical techniques are advanced, as, for instance, for 12 qubits
already 1 274 068 different equivalence classes under local complementation exist. We can use this classification now,
and apply our result on it to obtain:

Theorem 6. No graph state with up to 12 vertices can originate from a network with only bipartite sources.

Proof. Using the tables in Ref. [15] one can directly check that except the graph Gd5 in Fig. 9, all graphs with no
more than 12 vertices, up to isomorphism and local complementation, satisfy at least one condition in Corollary 4
and 5.

For the graph Gd5, the minimal degree is no less than 5 whatever local complementation is applied. However, if we
set

B = v1, A = v4, C = v5, (55)
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then

EB = {v2, v3}, TABC = {v6}. (56)

Thus, JAB = JBC = ∅, which implies that the graph state |Gd5〉 cannot originate from a network with only bipartite
sources.

All in all, no graph state with more than 12 vertices can originate from a network with only bipartite sources.

1
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12

9

5

11

8

7

4

3

FIG. 9. The graph Gd5 with twelve vertices, where the minimal degree is no less than five whatever local complementation is
applied.

The statements in Observation 1 concerning the two- or three-dimensional cluster states follow directly from Corol-
lary 5 (in the 2D case) or the application of a local complementation and Theorem 3.

SUPPLEMENTARY NOTE 4: PERMUTATIONALLY SYMMETRIC STATES

Before proving our main results, let us give some definitions. As introduced in the main text, we define N -
partite permutationally symmetric (bosonic) states as states that satisfy Π+

ij%Π+
ij = % for all i, j ∈ {1, . . . , N} with

2Π+
ij = 1+Fij and Fij being the flip operator that exchanges parties i and j. We can also introduce fermionic states

that are antisymmetric for a pair of parties {ij}, i.e. Π−ij%Π−ij = %, with 2Π−ij = 1 − Fij . For our discussion we need
several basic facts. We stress that the following Lemma 7 and 9 are well known [16–18], while Lemma 8 is a simple
technical statement.

Lemma 7. Let % =
∑
k pk|ψk〉〈ψk| be a multipartite state and let Π be a projector such that Π%Π = %. Then

Π|ψk〉 = |ψk〉 for all k.

Proof. One has

1 = Tr(%) =Tr(Π%Π)

=
∑
k

pk〈ψk|Π|ψk〉. (57)

So 〈ψk|Π|ψk〉 = 1, and since Π is a projector, Π|ψk〉 = |ψk〉, for all k.

This holds in particular for Π = Π±ij . As a second lemma, we have

Lemma 8. If the reduced state on AB of some state is symmetric or antisymmetric under the exchange of parties A
and B, then the global state also is.

Proof. Let % =
∑
k pk|ψk〉〈ψk| be the state of some tripartite system ABC. Let us prove that if FAB (TrC(%)) =

±TrC(%), then (FAB ⊗ 1)% = ±%. If one considers the Schmidt decomposition of |ψk〉 wrt the bipartition AB|C, one
has

% =
∑
k

pk
∑
i,j

sk,is
∗
k,j |φABk,i 〉〈φABk,j | ⊗ |χCk,i〉〈χCk,j |. (58)
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From that, %AB =
∑
k pk

∑
i |sk,i|2|φABk,i 〉〈φABk,i | and since it is a permutationally symmetric (respectively antisymmet-

ric) state, from Lemma 7 all states in its decomposition also are and thus (FAB ⊗ 1)% = ±%.

We note that for both those lemma, the converse is trivial. Finally, we have:

Lemma 9. (a) A N -partite symmetric state %s is either genuinely N -partite entangled or fully separable. (b) A
N -partite antisymmetric state is always N -partite entangled.

Proof. Due to Lemma 7 we only need to consider pure states. Let |Ψ〉 be a N -partite (anti)symmetric state that is
not N -partite entangled, hence it is separable for some bipartition. Without loss of generality, we assume that

|Ψ〉 = |ϕ1,...,t〉 ⊗ |φt+1,...,N 〉. (59)

Thus, by tracing out the first t parties, we have a pure state. The symmetry of |Ψ〉 implies that the reduced state is
pure after tracing out any t parties. This can only be true if |ϕ1,...,t〉, |φt+1,...,N 〉 are fully separable.

Besides, denote |ab . . . c〉 a normalized fully separable antisymmetric state, we have |ab . . . c〉 = −|ba . . . c〉. This
implies that −1 = 〈ab . . . c|ba . . . c〉 = | 〈a|b〉 |2 ≥ 0, hence we arrive at a contradiction.

We note that the notions of entanglement used in this Lemma are the standard ones for non-symmetric states, as
these are the relevant ones for the main text. In principle, for indistinguihable particles one may separate the “formal”
entanglement due to the wave function symmetrization from the “physical” entanglement [16].

Now, let us prove the Observation 2 of the main text. For completeneness, we restate it here in the full formulation:
Observation 2’. Let % be a permutationally symmetric multiparticle state. Then, % can be generated in a quantum
network with N − 1-partite sources if and only if it is fully separable. If % be a permutationally antisymmetric, then
it cannot be generated in a network.

Proof. Let % be a N -partite permutationally (anti)symmetric state. Let us assume that it can be generated in a
network of N nodes with some at most (N − 1)-partite sources. Note that any state that can be generated in a
network of N nodes with no N -partite sources, can also be generated in a network of N nodes with N different
(N − 1)-partite sources. Let us denote by ςi the source used to generate % that distributes parties to all nodes except
the ith one.

If we assume that % is a network state, then the inflation η build the following way is a physical state: Consider a
network of 2N nodes {Ai, A′i : i = 1, . . . , N} and 2N sources {ζk, ζ ′k : k = 1, . . . , N} that distribute parties to

ζk : A1 . . . Ak−1A
′
k+1 . . . A

′
N , (60)

ζ ′k : A′1 . . . A
′
k−1Ak+1 . . . AN , (61)

where ζk = ζ ′k = ςk for all k. The state η is the network state build with these sources and the same channels on the
nodes than % (with some shared randomness). From the inflation technique, we know that for the reduced states

ηAiAi+1
= ηA′

iA
′
i+1

= %AiAi+1
, ∀i ≤ N − 1, (62)

ηA1A′
N

= ηA′
1AN

= %A1AN
. (63)

Since the state % is fully (anti)symmetric, Lemma 8 and Eq. (62) imply that the state η is also fully (anti)symmetric.
Now, we consider the inflated state τ , whose sources {ωk, ω′k : k = 1, . . . , N} distribute states to

ωk : A1A2A3 . . . Ak−1Ak+1 . . . AN

ω′k : A′1A
′
2A
′
3 . . . A

′
k−1A

′
k+1 . . . A

′
N .

(64)

Again, the local channels and shared randomness are the same than for %. This is the two-copy inflation considered
several times in the main text. One has

τA1...AN
= τA′

1...A
′
N

= %. (65)

Moreover,

τAiA′
i

= ηAiA′
i

(66)

hence τ is permutationally fully (anti)symmetric under the exchange of all its parties. However, τ is separable wrt
the bipartition A1 . . . AN |A′1 . . . A′N . In the fully symmetric case, this means that τ is fully separable. Therefore % is
also fully separable. So, if a network state is permutationally symmetric, it needs to be fully separable. In the fully
antisymmetric case, the full separability of τ contradicts with the assumption that τ is fully antisymmetric. So, no
network state can be permutationally antisymmetric.
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FIG. 10. A typical graph for a network where the link AC is missing. See text for further details.

Finally, we note that cyclic symmetric states may be generated in network scenarios, as already pointed out by
Ref. [2]. As an example, we consider three Bell pairs |Φ+〉 as sources in the triangle network, and no channels
applied. The global 3 × 4-partite state is |Ψ〉ABC = |Φ+〉A2B1 |Φ+〉B2C1 |Φ+〉C2A1 , with A = A1A2 and so on. With
the appropriate reordering of the parties and by mapping |ij〉X 7→ |2i+ j〉X for X = A,B,C, one gets

|Ψ〉ABC =
1

2
√

2

(
|000〉+ |012〉+ |120〉+ |201〉+ |132〉+ |321〉+ |213〉+ |333〉

)
, (67)

which is a symmetric state under cyclic permutations of the 3× 4-dimensional system ABC.

SUPPLEMENTARY NOTE 5: CERTIFYING NETWORK LINKS

Here, we prove the statement made in the main text, which can be formulated as follows:

Observation 10. If a state % can be prepared in a network with bipartite sources but without the link AC, then

〈XAXCPR1
〉2 + 〈YAYCPR2

〉2 + 〈ZAZCPR3
〉2 ≤ 1. (68)

Here the PRi
are arbitrary observables on disjoint subsets of the other particles, Ri ∩ Rj = ∅. If the state % was

indeed prepared in a real quantum network, then violation of this inequality proves that the link AC is working and
distributing entanglement.

Proof. Without loss of generality, we assume that

R1 = {E}, R2 = {B}, R3 = {D}. (69)

Otherwise, we can prove the result similarly. The disconnected nodes A and C may be connected via some source
with the Ri or not, but this is not essential. Then, the graph has a structure as the graph in Fig. 10.

We consider a three-copy inflation ξ of this graph, where the observables in Eq. (68) overlap only in the node A.
This inflation is constructed as follows: All links from B to C are rewired from B to C ′ and all links from D to C are
rewired from D to C ′′. This is shown schematically in Fig. 11.

The anticommuting relations imply that

〈XAXCPE〉2ξ + 〈YAYC′PB〉2ξ + 〈ZAZC′′PD〉2ξ ≤ 1. (70)

By comparing the marginals of % and ξ, we have

〈XAXCPE〉ξ = 〈XAXCPE〉% , (71)

〈YAYCPB〉ξ = 〈YAYCPB〉% , (72)

〈ZAZCPD〉ξ = 〈ZAZCPD〉% . (73)

By substituting the mean values with state ξ by the ones with % in Eq. (70), we complete our proof.
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FIG. 11. Schematic view of the third order inflation ξ of the network in Fig. 10. See text for further details.

Finally, we give a simple example where this criterion can detect the functionality of a link, while a simple concen-
tration on the reduced two-qubit density matrix does not work. Consider the state

% =
1

2
(|s1〉〈s1|+ |s2〉〈s2|), (74)

where

|s1〉 = (|00〉AC + |11〉AC)⊗ |00〉BD, (75)

|s2〉 = (|00〉AC − |11〉AC)⊗ |11〉BD. (76)

Here, we want to check whether the link AC works or not. Since the reduced state on AC is separable, we cannot
use the criteria which acts only on AC. It is easy to verify that

〈XA1BXC1D〉 = 0,

−〈YA1BYCZD〉 = 〈ZA1BZC1D〉 = 1,
(77)

which violates Eq. (70). Hence, our criteria can detect the link AC more effectively.
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