
Uncertainties In The Effectiveness of Biological
Control of Stem Borers Under Different Climate
Change Scenarios In Eastern Africa
Ines Gwendolyn Jendritzki  (  ijendrit@uni-bonn.de )

Center for Development Research (ZEF), University of Bonn https://orcid.org/0000-0002-8602-8586

Henri E. Z. Tonnang 
International Centre for Insect Physiology and Ecology

Paul-André Calatayud 
Institut de recherche pour le développement: Institut de recherche pour le developpement

Christian Borgemeister 
University of Bonn, Center for Development Research (ZEF)

Tino Johansson 
Department of Geosciences and Geography, University of Helsinki

Lisa Biber-Freudenberger 
University of Bonn, Center for Development Research (ZEF)

Research Article

Keywords: Kenya, Tanzania, stem borer pests, Integrated Pest Management, Species distribution
modelling, Maxent

Posted Date: September 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-876884/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-876884/v1
mailto:ijendrit@uni-bonn.de
https://orcid.org/0000-0002-8602-8586
https://doi.org/10.21203/rs.3.rs-876884/v1
https://creativecommons.org/licenses/by/4.0/


Title: Uncertainties in the effectiveness of biological control of stem borers under different climate change scenarios in 1 

Eastern Africa 2 

 3 

Abstract 4 

Climate change (CC) is expected to significantly affect biodiversity and ecosystem services. Adverse impacts from CC 5 

in the Global South are likely to be exacerbated by limited capacities to take adequate adaptation measures and existing 6 

developmental challenges. Insect pests today are already causing considerable yield losses in agricultural crop production 7 

in East Africa. Studies have shown that insects are strongly responding to CC by proliferation, shift in distribution or by 8 

altering their phenology, which is why an impact on agriculture can also be expected. Biological control (BC) has been 9 

proposed as an alternative measure to sustainably contain insect pests but few studies predict its efficacy under future CC. 10 

Using the species distribution modelling approach Maxent, we predict the current and future distribution of three 11 

important lepidopteran stem borer pests of maize in eastern Africa, i.e., Busseola fusca (Fuller, 1901), Chilo partellus 12 

(Swinhoe, 1885) and Sesamia calamistis (Hampson, 1910), and two of their parasitoids that are currently used for BC, 13 

i.e., Cotesia flavipes (Cameron, 1891) and Cotesia sesamiae (Cameron, 1906). Based on these potential distributions and 14 

data collected during household surveys with local farmers in Kenya and Tanzania, future maize yield losses are predicted 15 

for a business-as-usual scenario and a sustainable development scenario. Accordingly, we found that BC of the three stem 16 

borer pests by C. flavipes and C. sesamiae will be less effective under more severe CC resulting in a reduced ability to 17 

curb maize yield losses caused by the stem borers. These results highlight the need to adapt BC measures to future CC to 18 

maintain its potential for environmentally-friendly pest management strategies. The findings of this research are thus of 19 

particular relevance to policy makers, extension officers and farmers in the region and will aid the adaptation of 20 

smallholder agricultural practices to current and future impacts of CC. 21 
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1. Introduction 31 

Anthropogenic climate change (CC) will have substantial impacts on human-environment interactions, including the 32 

provisioning of important ecosystem services (IPCC, 2014). Countries in the Global South are predicted to be more 33 

exposed to the impacts of CC (Christensen et al., 2007), as they often lack the financial, institutional and human resources 34 

to cope with climatic and environmental change (Abeygunawardena et al., 2009). Many African countries are particularly 35 

vulnerable (WMO, 2019; Boko et al., 2007) and it is expected that the adverse effects of CC and environmental 36 

degradation will significantly constrain future economic and social development of the continent (AFDB et al., 2019; 37 

Baarsch et al., 2020; Boko et al., 2007) .   38 

Kenya and Tanzania have achieved notable economic growth over the past decades (UN DESA, 2020; UNDP et al., 2018; 39 

World Bank, 2021), which has gradually translated into improved healthcare and education (World Bank, 2021). 40 

Agriculture continues to play an important role in many developing East African economies, and in particular in Kenya 41 

and Tanzania where the agricultural sector contributes significantly to national GDP and constitutes a major source of 42 

labor (ILO, 2021; Salami et al., 2010; World Bank, 2021). Still more than half of the working population works in the 43 

agricultural sector (World Bank, 2021). In East Africa, agricultural activity is dominated by smallholder farmers (Salami 44 

et al., 2010). Smallholder farmers hereby typically cultivate small plots and primarily produce for home consumption. 45 

They are highly vulnerable to external shocks, such as extreme weather events, pest and disease outbreaks or market 46 

fluctuations (Morton, 2007; Salami et al., 2010). Maize is an essential staple crop in sub-Saharan Africa (SSA) and the 47 

most important crop in Kenya and Tanzania (IITA, 2021; FAO, 2021a). In general, agricultural productivity in Africa 48 

remains significantly below the global average and is even lower than in other regions of the Global South (IFPRI, 2016; 49 

Salami et al., 2010). For instance, the average maize yield in East Africa was only 1.95 tonnes per hectare (t/ha) in 2019 50 

(Kenya 1.77 t/ha and Tanzania 1.65 t/ha) compared to the 5.8 t/ha globally (FAO, 2021a). Low agricultural productivity 51 

is one reason why food insecurity is still a major concern in the region (FAO et al., 2020). FAO data from 2019 reveals 52 

the dire situation in the region in terms of food (FAO et al., 2020). Despite some success in reducing undernourishment 53 

in the early 2000s, the figures have recently started to rise again and future projections of undernourishment in East Africa 54 

are worrisome such that Sustainable Development Goal (SDG) 2 by 2030 seems unlikely (FAO et al., 2020). An eminent 55 

threat to agricultural production and food systems is CC (FAO et al., 2020; IPCC, 2019; Thornton et al., 2014). Increasing 56 

climate variability, environmental degradation and the corresponding profound impacts on ecosystems will have direct 57 

effects on agricultural production and food security in East Africa and beyond (Anya et al., 2012; FAO et al., 2020; 58 

Sundström et al., 2014). Furthermore, the forecasted continued strong demographic growth in both countries will most 59 

likely exacerbate the situation (Thomas & Zuberi, 2012; UN DESA Population Division, 2019).  60 

Insect pests are damaging crops and may cause considerable yield losses (De Groote, 2002; Goftishu et al., 2017; Kfir et 61 

al., 2002; Oerke, 2006; Youdeowei, 1989). Recent studies show that pest insects are sensitive to temperature and strongly 62 



respond to CC (Ladányi & Horváth, 2010; Lehmann et al., 2020; Mwalusepo et al., 2015; Stange & Ayres, 2010) by 63 

altering their distribution, abundance and phenology (Biber-Freudenberger et al., 2016; Godefroid et al., 2020; Lehmann 64 

et al., 2020; Mwalusepo et al., 2015; Skendžić et al., 2021; Urvois et al., 2021). This will come with all the inherent 65 

consequences for agricultural production and food security in East Africa and other regions of SSA leading to new 66 

challenges for pest management (Biber-Freudenberger et al., 2016; Lehmann et al., 2020; Mwalusepo et al., 2015; 67 

Skendžić et al., 2021). The use of synthetic pesticides for crop protection has stagnated at a low level in SSA (FAO, 68 

2021b). Across SSA, pesticide-based measures for pest control are of limited relevance to most smallholder farmers, 69 

which is mainly due to financial constraints, limited availability and lack of training (Kamau et al., 2018; Williamson et 70 

al., 2008). However, in response to current developments in many African countries that lead to rising income, a growing 71 

population, increasing food demand and changing dietary preferences, previously used traditional pest control methods 72 

are likely to be progressively replaced by application of synthetic pesticides (Schreinemachers & Tipraqsa, 2012; Snyder 73 

et al., 2018). Though, smallholders are often not equipped with the necessary training to adequately and efficiently apply 74 

agrochemicals (Naidoo et al., 2010) and regulations on pesticide use are lenient (Haggblade et al., 2021; Karungi et al., 75 

2011). Environmental and health concerns are an increasingly visible consequence of this development (Karungi et al., 76 

2011; Negatu et al., 2021; Snyder et al., 2018; Tsimbiri et al., 2015).   77 

Given that CC presumably impacts the distribution and spread of insect pests, it is likely that crop health and yields will 78 

also be affected. Hence, effective, sensible and anticipatory management and mitigation approaches are ever more 79 

important to minimize adverse impacts of CC on agricultural production. This will not only be essential when trying to 80 

build a resilient food system that can secure nutrition for the local population in the long-term, but also with regard to 81 

environmental degradation and the sustainable use of land resources. Integrated Pest Management (IPM), aiming at 82 

promoting healthy crops while minimizing disruptions to the environment and ecosystems (Barzman et al., 2015), can be 83 

an alternative or complementary approach to pesticide-based crop protection (Bale et al., 2008; Barzman et al., 2015). 84 

One approach in IPM is biological control (BC), a long-used and effective method in the prevention and containment of 85 

pest outbreaks, that uses biological agents to control harmful organisms (FAO, 2021c; Bale et al., 2008). Among the BC 86 

agents, larval parasitoid species have been reported to efficiently control open-field crop pests and are also largely used 87 

in the containment of stem borers (Bale et al., 2008; Cugala & Omwega, 2001; Dejen et al., 2013). However, species’ 88 

responses to CC differ (Ladányi & Horváth, 2010) and established interactions of species used in BC programs may be 89 

disrupted (Mwalusepo et al., 2015; Skendžić et al., 2021; Thomson et al., 2010). Such climate-induced disruptions have 90 

the potential to render proven BC relationships ineffective (Thomson et al., 2010). Even though a number of studies are 91 

predicting the future distribution of pest species under CC (Lantschner et al., 2018), little is known about the impact of 92 

CC on the distribution of important BC agents. We therefore investigate the distribution of three maize borer species in 93 



Kenya and Tanzania in relation to the spread of their respective parasitoid BC agents used in the region to predict the 94 

future prevalence of these pests and the role of BC in reducing associated maize yield losses under different CC scenarios. 95 

 96 

2. Materials and methods 97 

2.1.1 Species and presence records 98 

This study investigates the potential current and future habitat suitability and distribution of three important maize pests 99 

in East Africa, the lepidopteran stem borers Busseola fusca (Fuller), Sesamia calamistis (Hampson) (both Lepidoptera: 100 

Noctuidae), and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) (CABI, 2021a; De Groote, 2002; Kfir et al., 2002). 101 

B. fusca attacks different cereal crops, in particular maize and sorghum (CABI, 2021a; Kfir et al., 2002). It is native to 102 

Africa and widely established across the central, eastern and southern parts of the continent (CABI, 2021a). The invasive 103 

stem borer C. partellus, native to Asia (CABI, 2021a), is a major pest of maize, sorghum and pearl millet, but also infests 104 

other important crops (CABI, 2021a). It has a high adaptive capacity and tolerates a wide range of environmental 105 

conditions (CABI, 2021a; Mutamiswa et al., 2017). Hence, C. partellus is a competitive colonizer, that now is widely 106 

present across Africa, and has been reported to increasingly dominate and displace certain native African stem borer 107 

species (CABI, 2021a; Mutamiswa et al., 2017; Kfir et al., 2002). S. calamistis attacks maize, sorghum, pearl millet, rice, 108 

wheat and sugarcane (CABI, 2021a). Indigenous to Africa, it is widely distributed throughout 33 countries in SSA (CABI, 109 

2021a). Despite its presence in East Africa, S. calamistis is of less importance there to maize production than B. fusca and 110 

C. partellus (Cugala & Omwega, 2001; Nsami et al., 2001; Tamiru et al., 2007).  111 

We additionally predict the potential distribution of two important BC agents of stem borers, the gregarious larval 112 

endoparasitoids Cotesia sesamiae (Hampson) and Cotesia flavipes (Hampson) (both Hymenoptera: Braconidae) (CABI, 113 

2021b). The two parasitoids are strategically used as BC agents of stem borer pests in South, Central and East Africa 114 

(Dejen et al., 2013; Kaiser et al., 2017; Overholt et al., 1997). Being native to Pakistan (CABI, 2021b), C. flavipes has 115 

been introduced in Kenya in 1993 as part of a BC program of C. partellus (Kfir et al., 2002; Omwega et al., 2006). Since, 116 

then, use of the paraistoid has been  successful in controlling the spread of stem borers in many countries of SSA (Kaiser 117 

et al., 2017; Overholt et al., 1997). C. flavipes attacks a broad range of insect pests (CABI, 2021b), including B. fusca and 118 

S. calamistis. The endoparasitoid C. sesamiae is indigenous to Africa, widely distributed across SSA with only few proven 119 

records outside the continent (CABI, 2021b). Even though C. sesamiae is less frequently used in BC programs, it can 120 

effectively suppress the spread of different lepidopteran pests, including C. partellus, B. fusca and S. calamistis (CABI, 121 

2021b; Kaiser et al., 2017). 122 

Presence records for the five species (B. fusca: 477, C. partellus: 251, S. calamistis: 260, C. flavipes: 190, C. sesamiae: 123 

190) were obtained from several sources, reflecting different levels of extent and intensity of sampling efforts. Central to 124 

our research were data from a 2018 household survey conducted by researchers from the International Centre of Insect 125 



Physiology and Ecology (icipe) under the cooperative project "Adaptation for Food Security and Ecosystem Resilience 126 

in Africa” (AFERIA) of icipe, the University of Helsinki and the University of York. The coordinates of the surveyed 127 

households that reported species presence were used for the Species Distribution Modelling (SDM) exercise in this study. 128 

These data were complemented by occurrence points downloaded from the Global Biodiversity Information Facility 129 

(GBIF) and data obtained from icipe’s the “Climate Change Impacts on Ecosystem Services and Food Security in Eastern 130 

Africa” (CHIESA) project that was implemented between 2011 and 2015. Additional presence points emanated from 131 

icipe’s "Integrated pest management strategy to counter the threat of invasive fall armyworm to food security in eastern 132 

Africa” (FAW-IPM) project. 133 

 134 

2.1.2 Environmental variables 135 

All environmental variables used for the SDM were downloaded in 2.5 arc minutes resolution from WorldClim version 136 

2.1 [Coupled Model Intercomparison Project Phase 6 (CMIP6)] (Fick & Hijmans, 2017). WorldClim provides data for 137 

19 bioclimatic variables frequently used in SDM, which are derived from temperature and rainfall data and hence 138 

constitute biologically meaningful indicators for species distribution. The bioclimatic variables consider annual averages, 139 

extreme values and seasonality (Fick & Hijmans, 2017). Global data for the bioclimatic variables is available for past, 140 

present and future climate scenarios (Fick & Hijmans, 2017). Current bioclimatic variables are based on the averages of 141 

the years 1970–2000, whereas future bioclimatic variables are derived from extrapolations and comprise the averages of 142 

the 20-year periods 2021–2040, 2041–2060, 2061–2080 and 2081–2100 (Fick & Hijmans, 2017). Future bioclimatic data 143 

is available for different General Circulation Models (GCMs) and four Shared Socioeconomic Pathways (SSPs). Since 144 

the distribution of stem borers is altitude-dependent (Cugala & Omwega, 2001; Mwalusepo et al., 2015), elevation was 145 

included as an additional environmental variable in this study. Elevation data was also retrieved from WorldClim and is 146 

based on Shuttle Radar Topography Mission (SRTM) elevation data (Fick & Hijmans, 2017). For a description of the 147 

environmental variables used for modelling check the supplementary materials. 148 

For the projection of the SDM onto future climatic conditions, the bioclimatic variables were downloaded for three 149 

selected GCMs (CanESM5, CNRM-CM6-1 and MIROC6) that have been found to appropriately describe future climate 150 

in East Africa. The four SSPs describe different trajectories in future global development that entail different degrees of 151 

CC adaptation and mitigation. The SSPs are furthermore linked to distinct Representative Concentration Pathways (RCPs) 152 

that determine the levels of radiative forcing that are associated with the development trajectories and largely determine 153 

the intensity of CC. Accordingly, SSP1-2.6 represents an optimistic narrative of sustainable future global development, 154 

while SSP5-8.5 illustrates the worst-case emission scenario that neglects CC adaptation and will require extensive 155 

mitigation measures (Riahi et al., 2016). Given that an insight into both, the nearer future and longer-term climatic 156 

conditions, are relevant for farmers in the region, the periods 2041–2060 and 2081–2100 were considered.  157 



2.2.1 Distribution modelling approach 158 

The open source software Maxent for modelling species niches and distributions is one of the most popular tools used 159 

among experts. We modelled the species distribution with Maxent using the ‘kuenm’ package in R (Cobos et al., 2019). 160 

Maxent applies a machine-learning technique for maximum entropy modelling (Phillips et al., 2006). It uses a collection 161 

of georeferenced presence-only records of a species and a set of relevant environmental variables (Phillips et al., 2006). 162 

Maxent builds a model based on the distribution of maximum entropy and a set of constraints provided by the 163 

environmental variables that predicts habitat suitability for each grid cell (Phillips et al., 2006). Each cell in the study area 164 

is therewith assigned a probability value between 0 and 1 that categorizes habitat suitability, with 0 indicating no habitat 165 

suitability and 1 marking cells that provide a perfectly suitable habitat (Phillips et al., 2006). Maxent furthermore allows 166 

to project habitat suitability onto new environments in space and time (Elith et al., 2010). The projection into different 167 

geographical settings might reveal habitats where a species has not been recorded yet, whereas projection in time can 168 

provide information on the potential distribution of species in the past or future, which is of particular relevance in 169 

predicting the potential effects of CC on species (Franklin, 2010). For projecting species distribution onto new 170 

environments, the model is trained based on a sample of presence-only points and current data of selected environmental 171 

variables. Based on additional environmental data that characterize habitats in different geographic areas, or represent 172 

past or future environmental conditions, the model of the current distribution can be used to forecast habitat suitability 173 

elsewhere or under future environmental conditions, respectively (Phillips, 2017). 174 

In this study, we model the species’ potential current and future distribution. By including three GCMs from CMIP6 we 175 

account for the inherent uncertainties of climate projection modelling (Beaumont et al., 2008). Future habitat suitability 176 

constitutes an ensemble average across several GCMs that was obtained by calculating mean suitability rasters according 177 

to SSP and time period. The suitability maps were then converted into species distribution maps by application of four 178 

selected suitability threshold levels. For each CC scenario according to SSP and time period, three habitat suitability maps 179 

were calculated, one for each GCM. For each habitat suitability map, four threshold levels were applied to categorize 180 

species presence or absence. As a result, 12 distribution maps were available per scenario and species, which were then 181 

stacked and calculated in their sum to show areas where, based on the different GCMs and thresholds, presence of the 182 

species is more or less likely. 183 

 184 

2.2.2 Estimation of yield loss and BC efficacy  185 

Using the distribution data of the three stem borer species, associated maize yield losses were calculated. Data on maize 186 

yields in the study region were downloaded from the MapSPAM data center (IFPRI, 2020) (see supplementary materials). 187 

Maize yield losses in the study area were quantified via data from the AFERIA household survey. A total sample of 225 188 

household was surveyed out of which 208 households reported maize yield losses by S. calamistis, and 206 and 197 by 189 



B. fusca and C. Partellus, respectively. The respondents were furthermore asked to quantify the yield losses by stem 190 

borers in percent. Based on these survey data, we calculated 95% confidence intervals (CIs) for maize yield losses, which 191 

were then used to project current and future losses by stem borers. We predicted areas with high probability of maize 192 

yield losses by stem borers by multiplying species distribution maps with a raster carrying values on maize yields and a 193 

raster of yield losses caused by them (Equ.1). Consequently, grid cells, where the stem borers are predicted to be present 194 

and the cultivation of maize overlap are identified as areas with potential yield losses by the pests.  195 𝑌𝑐,𝑝 =  𝐴𝑐,𝑝 ∗ 𝑀𝑐 ∗ 𝐿𝑝 196 

(Equation 1) 197 

where Yc,p represents yield losses (kg/ha) for each grid cell c and each stem borer species p, Ac,p= {1,0} indicates each 198 

stem borer species’ presence or absence for each grid cell, Mc indicates maize yield (kg/ha) for each cell and Lp 199 

representing estimated yield losses by each stem borer (%). Furthermore, we predicted the current and future potential of 200 

using the parasitoids C. flavipes and C. sesamiae to control the pests and thereby reduce maize yield losses. As part of 201 

the AFERIA household survey respondents were asked for the potential of using the parasitoids to reduce maize yield 202 

losses caused by the respective stem borer species. Reduction potential was ranked by the respondents according to three 203 

different rank categories with rank 1: low (0–25%), rank 2: medium (25–75%) and rank 3: high (75–100%). For the 204 

calculation of the reduction potential, we used the mean value for each of the ranks, i.e., rank 1: 12.5%, rank 2: 50% and 205 

rank 3: 87.5%. We calculated the 95% CI on maize yield loss reduction to project current and future loss reduction 206 

potential by the two parasitoid species. We furthermore calculated the potential reduction of maize yield losses when 207 

using C. flavipes and C. sesamiae by multiplying the binary range maps of the natural enemy species with the maize yield 208 

loss and the reduction potential (Equ.2). Accordingly, areas where presence of each parasitoid species overlaps with areas 209 

where maize yield losses by the stem borer pests occur were identified and yield loss reduction was calculated as follows: 210 𝑅𝑐,𝑒 =  𝐵𝑐,𝑒 ∗ 𝑌𝑐,𝑝 ∗ 𝑃𝑒 211 

(Equation 2) 212 

where Rc,e represents the potential reduction of yield losses (kg/ha) for each grid cell c by natural enemy e, Bc,e = {1,0} 213 

indicates parasitoid presence or absence for each grid cell, 𝑌𝑐,𝑝 indicates maize yield losses (kg/ha) and Pe represents 214 

estimated potential yield losses reduction by the parasitoids (%). 215 

 216 

2.2.3 Sampling bias 217 

The presence points used for this research have to a large extent been collected within the scope of studies conducted in 218 

Kenya and Tanzania. However, it is not known whether the concentration of presence records can be attributed to more 219 

favorable environmental conditions and hence greater habitat suitability for the species, or whether this agglomeration of 220 



presence points might be due to greater sampling efforts. Geographical bias of occurrence data may, however, result in 221 

low quality models (Phillips et al., 2009) and incorrect predictions of species distribution (Fourcade et al., 2014). In order 222 

to account for the potentially misleading uneven geographical distribution of the presence records used in SDM, a bias 223 

file was constructed. A sample of more than 700,000 presence coordinates of different insect species (Phillips et al., 2009) 224 

recorded on the African continent was downloaded from GBIF. Based on these records, a kernel density estimate map 225 

was constructed using the ‘MASS’ package in R and used to correct for potential sampling bias in the modelling process 226 

(compare Biber-Freudenberger et al., 2016; Fourcade et al., 2014). 227 

 228 

2.2.4 Model calibration and best model selection 229 

Apart from the inputs required to run Maxent, a wide variety of parameter settings can be individually adjusted by the 230 

user to build the best-performing model. For almost all parameters in-built default settings have been validated by the 231 

developers of the software over a wide range of models. However, Morales et al. (2017) and Merow et al. (2013) indicate 232 

that the adoption of Maxent’s default settings may not necessarily produce the optimal model to predict species 233 

distribution. According to Radosavljevic and Anderson (2014) the individual tuning of setting parameters for each species 234 

can lead to better performing models. In order to find the best-performing model for predicting habitat suitability for the 235 

species under current environmental conditions, we calibrated multiple models with different settings and inputs using 236 

the ‘kuenm’ package in R (Cobos et al., 2019) that allows for automated detailed model calibration and hence robust 237 

selection of the best-performing model (Cobos et al., 2019). Accordingly, for each species 279 models were calibrated 238 

using different sets of environmental variables (Set1: 19 bioclimatic variables and elevation, Set2: BIO1, BIO5, BIO6, 239 

BIO12, BIO13, BIO14, elevation, Set3: BIO5, BIO6, BIO13, BIO14, elevation), values for the regularization multiplier 240 

(0.1, 1 and 10) and multiple combinations of feature classes (linear (l), product (p), quadratic (q), hinge (h), threshold (t)). 241 

For all tested models a random sample of 66.6% of presence localities was used as training data for building the models. 242 

The remaining 33.3% of the presence records was set aside for testing the models. The combination of parameters yielding 243 

the best-performing model for each species was selected considering statistical significance [partial Receiver Operating 244 

Characteristics (pROC)], predictive ability [omission rate (OR) at 5%] and complexity [Akaike information criterion 245 

(AICc)]. The model with the best selected settings in Maxent was used for modelling (see supplementary materials).  246 

 247 

3. Results 248 

3.1 Habitat suitability under current and future climatic conditions 249 

The mean Area under the ROC Curve (AUC) values of training data for all five species over 15 replicate models runs are 250 

above 0.98 (supplementary materials) and hence confirm excellent performance of our models. 251 



The probability of habitat suitability was modelled for each species for current climatic conditions and different CC 252 

scenarios. Current habitat suitability in the study area and predicted future suitability for the period 2081–2100 are shown 253 

in Fig. 1. The optimistic scenario SSP1-2.6 that describes sustainable global development with low challenges in 254 

mitigation and adaption is contrasted with the worst-case scenario SSP5-8.5 to demonstrate the changes in suitable 255 

habitats according to two opposing scenario pathways (results for SSP2-4.5 and SSP3-7.0, as well as for all scenarios in 256 

2041–2060 available in supplementary materials). Under current climatic conditions, high suitability for B. fusca is 257 

predicted in the border areas of Kenya and Tanzania but is forecasted to decline under both projected pathway scenarios. 258 

While under SSP1-2.6 habitat suitability is predicted to decrease only in areas with currently very high suitability, in 259 

scenario SSP5-8.5 habitat suitability declines at a significantly higher rate and across the whole study region. Regions 260 

that are now highly suitable are predicted to become largely unsuitable for the stem borer under this scenario. It is therefore 261 

to be expected, that under more severe CC the associated changes in habitat suitability will have considerable adverse 262 

effects on B. fusca. A similar observation can be made from the projections of habitat suitability for S. calamistis. At 263 

present, the border regions of both countries show relatively high habitat suitability, which is predicted to decline in the 264 

future under both SSPs. However, in case of SSP5-8.5 the decline in habitat suitability is dramatic for the period 2081–265 

2100, indicating that habitat, which is currently highly suitable, will become largely unsuitable. Furthermore, overall 266 

habitat suitability in the study area will decrease remarkably and areas providing suitable habitats for S. calamistis will 267 

be restricted to only a few scattered localities. Current and predicted future habitat suitability for B. fusca and S. calamistis 268 

is noticeably lower than for the invasive C. partellus, reflecting the greater tolerance for a wide range of environmental 269 

conditions and high adaptability of the latter species that also facilitates its successful invasion into new environments. 270 

Current probability of habitat suitability for C. partellus is high to very high across large areas of the study region. Yet 271 

also this invasive stem borer is predicted to be impacted by changing future climate under the shown SSPs. While for 272 

SSP1-2.6 areas with very high habitat suitability are forecasted to slightly decrease, these are predicted to be considerably 273 

reduced under scenario SSP5-8.5. Hence, also for C. partellus habitat suitability is likely to be more adversely impacted 274 

under more severe CC. Habitat suitability for the natural enemies C. flavipes and C. sesamiae is also predicted to decline 275 

in the future under both SSPs. This decline is, however, less pronounced under SSP1-2.6. Areas of currently very high 276 

suitability for C. flavipes will shrink. For SSP5-8.5 in 2081–2100 areas that are highly suitable at present will become 277 

unsuitable, while regions of medium suitability will establish in northwestern Kenya. Currently there is only limited 278 

habitat suitability for the native C. sesamiae concentrating in the border region of Kenya and Tanzania. However, 279 

suitability is predicted to further decline for the considered time period and both SSPs. Under the pessimistic scenario 280 

SSP5-8.5 only a few scattered regions of medium suitability will remain. Accordingly, under severe CC large parts of the 281 

study region are predicted to become unsuitable for C. sesamiae. Furthermore, habitat suitability for the native species B. 282 



fusca, S. calamistis and C. sesamiae will be more adversely impacted by severe CC than for the non-native ones, i.e., C. 283 

partellus and C. flavipes.  284 

 285 

Fig. 1 Probability of habitat suitability under current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-8.5 286 

calculated as multi-model average from GCMs CanESM5, CNRM-CM6-1 and MIROC6. Probability of habitat suitability 287 

ranges between 0 (low probability of suitable habitat) and 1 (perfectly suitable habitat). Grid cells with great suitability 288 

carry high probability values and are displayed in dark red, whereas cells with low suitability show low probability values 289 

and are colored in lighter red and white 290 

 291 

In this study different suitability threshold levels were selected (Balance training omission, predicted area and threshold 292 

values Cloglog threshold (thereafter bto), Maximum training sensitivity plus specificity Cloglog threshold (mtss), Equal 293 

training sensitivity and specificity Cloglog threshold (etss), 10th percentile training presence Cloglog threshold (tp)) to 294 

convert habitat suitability maps into binary species range maps (for specific values see supplementary materials). 295 

Selection of several threshold values has advantages over application of a single threshold, as it considers the inherent 296 

uncertainties. 297 

The potential distribution of the stem borer and parasitoid species under current climatic conditions, as well as for the CC 298 

scenarios SSP1-2.6 and SSP5-8.5 in 2081–2100 varies significantly (Fig. 2). Among the stem borers the invasive C. 299 

partellus is predicted to be currently most widely distributed, whereas distribution of the native stem borers concentrates 300 

around the border area of the study region. The modelled current distribution of the parasitoids is less widespread than 301 

for the stem borers. Under future CC the distribution of all five species is predicted to slightly shift or decrease for SSP1-302 

2.6. Areas that currently show high likelihood of species presence are less likely to inhabit them in the future. For SSP5-303 

8.5 a significant reduction in the distribution of all five species is forecasted. Under the worst-case scenario, C. sesamiae 304 

becomes extremely rare in the study region, while the distribution of C. flavipes will shift towards northwestern Kenya. 305 

The predicted presence of the stem borer species is reduced across the entire study area 306 

 307 

Fig. 2 Sum of 4 binary range maps (current distribution) and 12 binary range maps (future distribution) obtained by 308 

application of 4 threshold levels, with each binary layer showing either species presence (1) or absence (0). Predicted 309 

species distribution under current climatic conditions and for pathways SSP1-2.6 and SSP5-8.5 for period 2081–2100. 310 

Grid cells where predicted species presence is likely are colored in red and orange, whereas grid cells where presence is 311 

less likely are colored in blue 312 

 313 



3.2 Pest impact on maize yields 314 

We calculated 95% CIs of maize yield losses for each stem borer based on the household survey data. With an average 315 

loss of 28.72%, [95% CI 26.65, 30.79], yield losses by C. partellus are highest, followed by B. fusca with an average loss 316 

of 27.86%, [95 % CI 25.77, 29.96], and S. calamistis with 27.25%, [95% CI 24.9, 29.59]. Predicted mean current and 317 

future yield losses by the three stem borers shown as mean value and for suitability threshold level bto (Fig. 3) (for 318 

minimum and maximum losses, as well as losses for SSP2-4.5 and SSP3-7.0, time period 2041–2060 and thresholds mtss, 319 

etss and tp see supplementary materials). Compared to current levels, maize losses are predicted to slightly decrease for 320 

B. fusca in SSP1-2.6, while remaining relatively stable for C. partellus and S. calamistis. Yield losses by all three species 321 

are predicted to decrease significantly until 2081–2100 under pathway SSP5-8.5. This decrease can be attributed to the 322 

notable decline in habitat suitability (Fig. 1), which is projected to result in reduced future species presence in the study 323 

area (Fig. 2). Hence, maize yield losses associated with the stem borer species are expected to decline under more severe 324 

CC, while remaining at a higher level for SSP1-2.6. Nevertheless, the degree of yield losses largely depends of the 325 

suitability threshold applied (see supplementary materials), with bto showing a remarkably larger area of predicted yield 326 

losses. 327 

 328 

Fig. 3 Predicted mean maize yield losses (in kg/ha) by the stem borers B. fusca, C. partellus and S. calamistis under 329 

current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-8.5 for suitability threshold bto. Grid cells with 330 

high predicted yield losses are colored in darker orange to brown, whereas cells where maize yield losses by the species 331 

are low are colored in lighter orange and white 332 

 333 

3.3 Future role of BC in reducing maize yield losses by stem borers 334 

Based on the household survey data, C. flavipes is with 53.68% [95% CI 50.2, 57.16], slightly more effective than C. 335 

sesamiae with 51.39% [95% CI 47.84, 54.93] in reducing yield losses by stem borers. The potential of using the natural 336 

enemies C. flavipes and C. sesamiae to reduce maize yield losses caused by the stem borer species varies depending on 337 

the two scenarios SSP1-2.6 and SSP5-8.5 in 2081–2100 (Figs. 4 and 5) (for minimum and maximum reduction potential, 338 

as well as possible reduction of yield losses by BC for SSP2-4.5 and SSP3-7.0, time period 2041–2060 and thresholds 339 

mtss, etss and tp see supplementary materials). In general, C. flavipes has a greater potential to reduce B. fusca maize 340 

yield losses than C. sesamiae. Yet, its potential to reduce losses by B. fusca is predicted to decline for both developmental 341 

pathways, especially in SSP5-8.5. Furthermore, C. flavipes is predicted to be more effective in reducing maize yield losses 342 

caused by the invasive C. partellus than C. sesamiae. For both BC agents the potential to reduce maize yield losses by C. 343 

partellus is predicted to decline. Whereas SSP1-2.6 entails a less significant decrease, the worst-case scenario SSP5-8.5 344 

is predicted to result in a remarkably lower reduction potential. The same is true for containing maize yield losses caused 345 



by S. calamistis; here also C. flavipes shows a higher reduction potential. However, areas in which stem borer-caused 346 

maize yield losses can be reduced by BC with the two parasitoids are predicted to decline under the studied CC scenarios. 347 

While the reduction potential by C. flavipes is predicted to be significantly reduced under SSP5-8.5, the BC potential of 348 

C. sesamiae will have almost entirely vanished under that scenario. Analysing the predictions for the future effectiveness 349 

of using the two natural enemy species to reduce maize yield losses by the three stem borers in the study region, we 350 

therefore conclude that the more severe CC will be, the bigger is the decrease in the BC reduction potential of the two 351 

Cotesia species. 352 

 353 

Fig. 4 Predicted mean reduction of maize yield losses (in kg/ha) by B. fusca, C. partellus and S. calamistis through use 354 

of C. flavipes under current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-8.5 for suitability threshold 355 

bto. Grid cells where parasitoid application significantly reduces the amount of maize yield losses caused by the stem 356 

borer are colored in darker green, whereas cells with lower predicted reduction of maize yield losses are colored in lighter 357 

green and white 358 

 359 

Fig. 5 Predicted mean reduction of maize yield losses (in kg/ha) by B. fusca, C. partellus and S. calamistis through use 360 

of C. sesamiae under current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-8.5 for suitability threshold 361 

bto. Grid cells where parasitoid application significantly reduces the amount of maize yield losses caused by the stem 362 

borer are colored in darker green, whereas cells with lower predicted reduction of maize yield losses are colored in lighter 363 

green and white 364 

 365 

4. Discussion and conclusions 366 

The three studied maize stem borers and their two associated larval parasitoids are very likely to respond to CC, regardless 367 

of the respective change scenario. The uncertainties inherent when making predictions on future climate and 368 

environmental conditions were considered by investigating species distribution using different CC models, 369 

socioeconomic pathways and time periods. Under all investigated CC scenarios habitat suitability is going to change and 370 

the species are predicted to adjust their distribution. We also found that all species’ future distribution strongly depends 371 

on the magnitude of CC. More severe CC is predicted to cause a notable decrease in the presence of the stem borers, 372 

which will result in a decline in predicted maize yield losses associated with the pests. This decline in yield losses is, 373 

however, predicted to be accompanied by a decreasing potential to reduce losses caused by stem borers through the use 374 

of C. flavipes and C. sesamiae. The distribution of the two natural enemies is forecasted to significantly decline under 375 

severe CC, which may render established mechanisms of BC ineffective or not viable. This finding is of direct relevance 376 



to farmers in the study area that control stem borers with the parasitoids, as they will likely need to adjust their pest 377 

management strategies in the future.  378 

For the calculation of maize yield losses, we assumed that the maize yield in the study area remains constant over time. 379 

Yet, the possible introduction of improved crop varieties with higher resilience to climate variability and attack by stem 380 

borers, the emergence of higher-yielding varieties or changes in productivity could affect future yields (Bänziger et al., 381 

2006; IFPRI, 2016). We also did not consider the impact of CC on maize plants and yields themselves and assume that 382 

the geographic distribution of maize cultivation and yields remains constant over time, despite changing environmental 383 

conditions. Though, maize plants will be affected by CC and consequently the suitability of certain regions in Africa for 384 

maize production might change (Tito et al., 2018). This may eliminate maize cultivation in some areas while enabling it 385 

in others (Jones & Thornton, 2003; Luhunga, 2017). The potential shift in habitat suitability for maize may create new 386 

overlaps with the distribution of pests and parasitoids, which in turn impacts yields, yield losses and opportunities for BC. 387 

When investigating the impact of CC on pests and agricultural crops, it is also important to determine how climate 388 

variability affects the crop species. Moreover, stem borers not only damage maize but a whole range of cereal crops 389 

(CABI, 2021a). Considering the potential impact of stem borers on food security, it would therefore be of great interesting 390 

to investigate their relevance for other important staple crops, in particular sorghum and millet whose cultivation in the 391 

region is currently pushed forward as of greater drought resilience (Burke et al., 2009; CSIRO, 2021; IFAD, 2017). 392 

Other studies have also assessed the potential future distribution of pests and other species under future CC. Our findings 393 

are in line with Thomson et al. (2010) outlining that CC influences interactions between herbivores and natural enemies, 394 

e.g. by resulting in a mismatch in their distribution, which can reduce the effectiveness of using natural enemies for pest 395 

control. Mwalusepo et al. (2015) investigated the impact of temperature change on the future distribution of maize stem 396 

borers and their BC agents at a local scale along Mount Kilimanjaro and the Taita Hills of Tanzania and estimated the 397 

impact on maize yields. They confirm that temperature is a key factor in determining the distribution of stem borer pests 398 

and their natural enemies, corroborating results from our study. Yet, Mwalusepo et al. (2015) predict a worsening of pest 399 

impact on maize production along the two mountain gradients, whereas we forecast, especially for the more distant future 400 

(2081–2100), stem borer-associated maize yield losses to decline under the impact of more severe CC. Furthermore, 401 

Mwalusepo et al. (2015) predict a geographical disruption in the distribution of stem borers and their natural enemies, 402 

with decreased but also increased levels of BC at higher and lower altitudes, respectively. In contrast, we conclude that 403 

the studied BC relationships will become less effective and even unviable under future CC. The discrepancies in the 404 

findings of our study and the research by Mwalusepo et al. (2015) stem from the different modelling approaches applied 405 

and inputs used. Mwalusepo et al. (2015) predict species distribution based on temperature-driven phenology models, 406 

whereas our research employs a correlative method for SDM that uses maximum entropy density estimations. One 407 

advantage of the latter method is that it allows to incorporate the range in potential modelling outputs by assigning habitat 408 



suitability as a probability value, thereby also considering uncertainty. Furthermore, Mwalusepo et al. (2015) analyze 409 

potential future species distribution according to different levels of altitude in the study area. Our study, however, included 410 

elevation as homologous to the bioclimatic variables into model calibration and does not distinguish modelling outputs 411 

based on elevation but draws conclusions on country level. Dynamically downscaled Regional Climate Models (RCMs), 412 

as used by Mwalusepo et al. (2015), provide data at a finer resolution and capture mesoclimatic dynamics more accurately 413 

which potentially results in better simulations of regional climate than coarse resolution GCMs (Beaumont et al., 2008; 414 

Giorgi, 2019). In our study, we explicitly used data for the bioclimatic variables in 2.5 arc minutes resolution which is 415 

based on the latest version of GCMs from CMIP6. This approach is reasonable when examining the effects of climatic 416 

changes, i.e., changes in temperature and precipitation, on species distribution.  417 

We focused our study at three stem borer pests and two important natural enemy species. The emergence of new pests or 418 

BC agents as a result of CC was not part of this study. For instance the 2016 introduction into Africa and subsequent wide 419 

spread of the neotropical fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (Goergen 420 

et al., 2016) initially lead to spectacular increases in maize losses and near suppression of all other lepidopteran stem 421 

borer species in the FAW affected countries (Hailu et al., 2021; Sokame et al., 2021). This new pest will probably also 422 

modify the expected changes in the distribution and abundance of the here modelled stem borers and their parasitoids. 423 

Such developments pose new challenges for pest management that will, among others, require the adaption of BC 424 

strategies. It is hence of great interest to investigate the distribution of a broader range of pests and their natural enemies 425 

to obtain a more holistic picture on relevant insect pests, their impact on staple crop production and the potential of BC 426 

to be able to offer more concrete advice to farmers (Biber-Freudenberger et al., 2016). We found that the invasive stem 427 

borer C. partellus and the exotic parasitoid C. flavipes are and will be more widely distributed under CC, indicating that 428 

they are less prone to CC. Hence, research on invasive pests and possibilities for their containment, e.g., via BC, needs to 429 

be intensified. For that, modelling could be indefinitely repeated using presence data for all organisms of interest. Given 430 

the low agricultural productivity in the region and the prevailing deficiencies in the food system (IFPRI, 2016), we 431 

demonstrate that maize stem borers are and to a certain extend will continue to be a threat to food security in the future. 432 

Therefore, effective control measures need to be applied to mitigate their proliferation and reduce associated yield losses. 433 

Empowering relevant actors to anticipate changes in insect distribution triggered by CC will be essential in building a 434 

more resilient food system that is less prone to external shocks (Bottrell & Schoenly, 2018).  435 

We believe our results to be of high relevance for farmers, extension officers and policy makers in Kenya and Tanzania, 436 

as they provide estimations not only of future pest distributions, but also of associated yield losses and the potential of 437 

BC to contain these pests. Hence, this study can serve as a blueprint to identify future pests as well as their potential 438 

natural enemies in East Africa and beyond, which will help farmers to adjust their farming and pest management strategies 439 

to changing environmental conditions. As anticipatory and effective pest management is fundamental in reducing yield 440 



losses, policy makers and extension officers could support farmers in adapting their practices to increase the resilience of 441 

local agricultural systems. To our knowledge this is one of very few studies that combines the prediction of future pest 442 

species distribution with the potential of BC under different CC scenarios while also considering the impact on maize, 443 

which is the most relevant crop in the study area. Pesticide-based pest control measures are increasing in importance; 444 

however, sustainable methods of pest control need to be promoted to avoid adverse impacts on health and the 445 

environment. The examined BC relationships have been proven effective at present, but we forecasted that their potential 446 

under future CC will substantially decline. Assuring the continued efficacy of BC to avoid dis-adoption, increasing 447 

skepticism among farmers and turn towards synthetic pesticides, is key in building a sustainable and environmentally-448 

friendly food system. We therefore suggest an increasing consideration of pest species as well as the potential of different 449 

BC strategies under varying environmental and climatic conditions. 450 

 451 

Supplementary materials 452 

1) Presence records 453 

2) Overview presence records and sources 454 

3) Distribution of species’ presence points used for modelling 455 

4) Description of environmental variables 456 

5) Overview of best-performing calibrated models 457 

6) Summary of mean of training AUC of best-performing model 458 

7) Contribution of environmental variables to the models 459 

8) Habitat suitability maps for all scenarios 460 

9) Overview of suitability thresholds applied and their specific values 461 

10) Distribution maps for all scenarios 462 

11) Maize yields in the study area 463 

12) Maize yield losses caused by stem borers, all scenarios 464 

13) Potential of BC to reduce maize yield losses by stem borers, all scenarios 465 

References 466 

Abeygunawardena, P., Vyas, Y., Knill, P., Foy, T., Harrold, M., Steele, P., Tanner, T., Hirsch, D., Oosterman, M., 467 

Rooimans, J., Debois, M., Lamin, M., Liptow, H., Mausolf, E., Verheyen, R., Agrawala, S., Caspary, G., Paris, 468 

R., Kashyap, A., … Sperling, F. (2009). Poverty and Climate Change: Reducing the Vulnerability of the Poor 469 

through Adaptation. http://documents.worldbank.org/curated/en/534871468155709473/Poverty-and-climate-470 

change-reducing-the-vulnerability-of-the-poor-through-adaptation 471 



African Development Bank (AFDB) Group, UNEP, & UNECA. (2019). Climate Change Impacts on Africa’s Economic 472 

Growth. 473 

Anya, M. I., Ofem, N. I., Binang, W. B., & Umoren, E. P. (2012). Climate Change and Food Security in Africa. Asian 474 

Journal of Agricultural Research, 6(2), 52–59. https://doi.org/10.3923/ajar.2012.52.59 475 

Baarsch, F., Granadillos, J. R., Hare, W., Knaus, M., Krapp, M., M., S., & Lotze-Campen, H. (2020). The impact of 476 

climate change on incomes and convergence in Africa. World Development, 126. 477 

https://doi.org/https://doi.org/10.1016/j.worlddev.2019.104699 478 

Bale, J. S., Van Lenteren, J. C., & Bigler, F. (2008). Biological control and sustainable food production. Philosophical 479 

Transactions of the Royal Society B: Biological Sciences, 363, 761–776. https://doi.org/10.1098/rstb.2007.2182 480 

Bänziger, M., Setimela, P. S., Hodson, D., & Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize 481 

adapted to southern Africa. Agricultural Water Management, 80, 212–224. 482 

https://doi.org/10.1016/j.agwat.2005.07.014 483 

Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., 484 

Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., & 485 

Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 486 

1199–1215. https://doi.org/10.1007/s13593-015-0327-9 487 

Beaumont, L. J., Hughes, L., & Pitman, A. J. (2008). Why is the choice of future climate scenarios for species 488 

distribution modelling important? Ecology Letters, 11(11), 1135–1146. https://doi.org/10.1111/j.1461-489 

0248.2008.01231.x 490 

Biber-Freudenberger, L., Ziemacki, J., Tonnang, H. E. Z., & Borgemeister, C. (2016). Future risks of pest species under 491 

changing climatic conditions. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0153237 492 

Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo, R., & Yanda, P. (2007). 493 

Africa. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the 494 

Fourth Assessment Report of the Intergovernmental Panel on Climate Change (M. L. Parry, O. F. Canziani, J. P. 495 

Palutikof, P. J. van der Linden, & C. E. Hanson (eds.); pp. 433–467). Cambridge University Press. 496 

Bottrell, D. G., & Schoenly, K. G. (2018). Integrated pest management for resource-limited farmers: Challenges for 497 

achieving ecological, social and economic sustainability. The Journal of Agricultural Science, 156, 408–426. 498 

https://doi.org/10.1017/S0021859618000473 499 



Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050, and the implications for 500 

crop improvement and genetic resources conservation. Global Environmental Change, 19(3), 317–325. 501 

https://doi.org/10.1016/j.gloenvcha.2009.04.003 502 

Centre for Agriculture and Bioscience International (CABI). (2021a). Crop Protection Compendium. 503 

https://www.cabi.org/cpc 504 

Centre for Agriculture and Bioscience International (CABI). (2021b). Invasive Species Compendium. 505 

https://www.cabi.org/isc/ 506 

Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W.-T., 507 

Laprise, R., Rueda, V. M., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A., & Whetton, P. (2007). 508 

2007: Regional Climate Projections. In M. T. and H. L. M. Solomon, S., D. Qin, M. Manning, Z. Chen, M. 509 

Marquis, K.B. Averyt (Ed.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I 510 

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University 511 

Press. https://doi.org/10.1007/978-81-322-1967-5_4 512 

Cobos, M. E., Townsend Peterson, A., Barve, N., & Osorio-Olvera, L. (2019). kuenm: An R package for detailed 513 

development of ecological niche models using Maxent. PeerJ. https://doi.org/10.7717/peerj.6281 514 

Commonwealth Scientific and Industrial Research Organisation (CSIRO). (2021). An agri-food system innovation in 515 

Kenya? Will smallholders be the winners? https://research.csiro.au/foodglobalsecurity/an-agri-food-system-516 

innovation-in-kenya-will-smallholders-be-the-winners/ 517 

Cugala, D., & Omwega, C. O. (2001). Cereal stemborer distribution and abundance, and introduction and establishment 518 

of Cotesia flavipes Cameron (Hymenoptera: Braconidae) in Mozambique. International Journal of Insect Science, 519 

21(4), 281–287. https://doi.org/https://doi.org/10.1017/S1742758400008365 520 

De Groote, H. (2002). Maize yield losses from stemborers in Kenya. Insect Science and Its Application, 22(2), 89–96. 521 

https://doi.org/10.1017/s1742758400015162 522 

Dejen, A., Getu, E., Azerefegne, F., & Ayalew, A. (2013). Distribution and extent of Cotesia flavipes Cameron 523 

(Hymenoptera: Braconidae) Parasitism in Northeastern Ethiopia. International Journal of Insect Science, 5, 9–19. 524 

https://doi.org/10.4137/ijis.s11009 525 

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for 526 

ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x 527 



FAO, IFAD, UNICEF, WFP, & WHO. (2020). The State of Food Security and Nutrition in the World 2020. 528 

Transforming food systems for affordable healthy diets. FAO. https://doi.org/10.4060/ca9692en 529 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. 530 

International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 531 

Food and Agriculture Organization of the United Nations (FAO). (2021a). FAO Term Portal. 532 

http://www.fao.org/faoterm 533 

Food and Agriculture Organization of the United Nations (FAO). (2021b). FAOSTAT data. FAOSTAT Data. 534 

http://www.fao.org/faostat/en/#data 535 

Food and Agriculture Organization of the United Nations (FAO). (2021c). Pesticides indicators. 536 

http://www.fao.org/faostat/en/#data/EP/visualize 537 

Fourcade, Y., Engler, J. O., Rödder, D., & Secondi, J. (2014). Mapping Species Distributions with MAXENT Using a 538 

Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting 539 

Sampling Bias. PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0097122 540 

Franklin, J. (2010). Mapping Species Distributions: Spatial Inference and Prediction (Ecology, Biodiversity and 541 

Conservation). Cambridge University Press. https://doi.org/doi:10.1017/CBO9780511810602 542 

Giorgi, F. (2019). Thirty Years of Regional Climate Modeling : Where Are We and Where Are We Going next ? 543 

Journal of Geophysical Research : Atmospheres. Journal of Geophysical Research: Atmospheres, 124, 5696–544 

5723. https://doi.org/10.1029/2018JD030094 545 

Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C., & Rossi, J. P. (2020). Current and future distribution of the 546 

invasive oak processionary moth. Biological Invasions, 22, 523–534. https://doi.org/10.1007/s10530-019-02108-4 547 

Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall 548 

armyworm spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and 549 

Central Africa. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0165632 550 

Goftishu, M., Assefa, Y., Niba, A., & Fininsa, C. (2017). Cereal stem borer management practices in subsistence farms 551 

of eastern Ethiopia. International Journal of Pest Management, 63(4), 289–298. 552 

https://doi.org/10.1080/09670874.2016.1258500 553 

Haggblade, S., Diarra, A., & Traoré, A. (2021). Regulating agricultural intensification: Lessons from West Africa’s 554 

rapidly growing pesticide markets. Development Policy Review. https://doi.org/10.1111/dpr.12545 555 



Hailu, G., Niassy, S., Bässler, T., Ochatum, N., Studer, C., Salifu, D., Agbodzavu, M. K., Khan, Z. R., Midega, C., & 556 

Subramanian, S. (2021). Could fall armyworm, Spodoptera frugiperda (J. E. Smith) invasion in Africa contribute 557 

to the displacement of cereal stemborers in maize and sorghum cropping systems. International Journal of 558 

Tropical Insect Science, 41, 1753–1762. 559 

Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of 560 

Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 561 

Intergovernmental Panel on Climate Change (IPCC). (2019). Summary for Policymakers. In J. M. P.R. Shukla, J. Skea, 562 

E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van 563 

Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, 564 

K. Kissick, M (Ed.), Climate Change and Land: an IPCC special report on climate change, desertification, land 565 

degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 566 

International Food Policy Research Institute (IFPRI). (2016). Agricultural productivity in Africa: Trends, patterns, and 567 

determinants (S. Benin (ed.)). IFPRI. https://doi.org/http://dx.doi.org/10.2499/9780896298811 568 

International Food Policy Research Institute (IFPRI). (2020). Spatially-Disaggregated Crop Production Statistics Data 569 

in Africa South of the Sahara for 2017. https://doi.org/https://doi.org/10.7910/DVN/FSSKBW 570 

International Fund for Agricultural Development (IFAD). (2017). Sorghum - a new hope in dry times. 571 

https://www.ifad.org/fr/web/latest/-/story/sorghum-a-new-hope-in-dry-times 572 

International Institute of Tropical Agriculture (IITA). (2021). Maize. https://www.iita.org/cropsnew/maize/ 573 

International Labour Organization (ILO). (2021). ILOSTAT. https://ilostat.ilo.org/data/country-profiles/ 574 

Jones, P. G., & Thornton, P. K. (2003). The potential impacts of climate change on maize production in Africa and 575 

Latin America in 2055. Global Environmental Change, 13(1), 51–59. https://doi.org/10.1016/S0959-576 

3780(02)00090-0 577 

Kaiser, L., Dupas, S., Branca, A., Herniou, E. A., Clarke, C. W., Capdevielle Dulac, C., Obonyo, J., Benoist, R., 578 

Gauthier, J., Calatayud, P. A., Silvain, J. F., & Le Ru, B. P. (2017). The Cotesia sesamiae story: insight into host-579 

range evolution in a Hymenoptera parasitoid and implication for its use in biological control programs. Genetica, 580 

145(6), 455–468. https://doi.org/10.1007/s10709-017-9989-3 581 

Kamau, J. W., Stellmacher, T., Biber-Freudenberger, L., & Borgemeister, C. (2018). Organic and conventional 582 

agriculture in Kenya: A typology of smallholder farms in Kajiado and Murang’a counties. Journal of Rural 583 



Studies, 57, 171–185. https://doi.org/10.1016/j.jrurstud.2017.12.014 584 

Karungi, J., Kyamanywa, S., Adipala, E., & Erbaugh, M. (2011). Pesticide Utilisation, Regulation and Future Prospects 585 

in Small Scale Horticultural Crop Production Systems in a Developing Country. In Pesticides in the Modern 586 

World - Pesticides Use and Management. https://doi.org/10.5772/17170 587 

Kfir, R., Overholt, W. A., Khan, Z. R., & Polaszek, A. (2002). Biology and management of economically important 588 

lepidopteran cereal stem borers in Africa. Annual Review of Entomology, 47(1), 701–731. 589 

https://doi.org/https://doi.org/10.1146/annurev.ento.47.091201.145254 590 

Ladányi, M., & Horváth, L. (2010). A review of the potential climate change impact on insect populations - general and 591 

agricultural aspects. Applied Ecology and Environmental Research, 8(2), 143–152. 592 

https://doi.org/10.15666/aeer/0802_143151 593 

Lantschner, M. V., de la Vega, G., & Corley, J. C. (2018). Predicting the distribution of harmful species and their 594 

natural enemies in agricultural, livestock and forestry systems: An overview. International Journal of Pest 595 

Management, 65(3), 190–206. https://doi.org/https://doi.org/10.1080/09670874.2018.1533664 596 

Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode, S. D., Jepsen, J. U., Kalinkat, G., Neuvonen, S., 597 

Niemelä, P., Terblanche, J. S., Økland, B., & Björkman, C. (2020). Complex responses of global insect pests to 598 

climate warming. Frontiers in Ecology and the Environment, 18(3), 141–150. https://doi.org/10.1002/fee.2160 599 

Luhunga, P. M. (2017). Assessment of the impacts of climate change on maize production in the southern and western 600 

highlands sub-agro ecological Zones of Tanzania. Frontiers in Environmental Science, 5(51). 601 

https://doi.org/10.3389/fenvs.2017.00051 602 

Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: 603 

What it does, and why inputs and settings matter. Ecography, 36, 1058–1069. 604 

https://doi.org/https://doi.org/10.1111/j.1600-0587.2013.07872.x 605 

Morales, N. S., Fernández, I. C., & Baca-González, V. (2017). MaxEnt’s parameter configuration and small samples: 606 

Are we paying attention to recommendations? A systematic review. PeerJ. 607 

https://doi.org/https://doi.org/10.7717/peerj.3093 608 

Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the 609 

National Academy of Sciences of the United States of America, 104(50), 19680–19685. 610 

https://doi.org/10.1073/pnas.0701855104 611 



Mutamiswa, R., Chidawanyika, F., & Nyamukondiwa, C. (2017). Dominance of spotted stemborer Chilo partellus 612 

Swinhoe (Lepidoptera: Crambidae) over indigenous stemborer species in Africa’s changing climates: ecological 613 

and thermal biology perspectives. Agricultural and Forest Entomology, 19, 344–356. 614 

https://doi.org/10.1111/afe.12217 615 

Mwalusepo, S., Tonnang, H. E. Z., Massawe, E. S., Okuku, G. O., Khadioli, N., Johansson, T., Calatayud, P. A., & Le 616 

Ru, B. P. (2015). Predicting the impact of temperature change on the future distribution of maize stem borers and 617 

their natural enemies along East African mountain gradients using phenology models. PLoS ONE, 10(6). 618 

https://doi.org/10.1371/journal.pone.0130427 619 

Naidoo, S., London, L., Rother, H. A., Burdorf, A., Naidoo, R. N., & Kromhout, H. (2010). Pesticide safety training and 620 

practices in women working in small-scale agriculture in South Africa. Occupational and Environmental 621 

Medicine, 67, 823–828. https://doi.org/10.1136/oem.2010.055863 622 

Negatu, B., Dugassa, S., & Mekonnen, Y. (2021). Environmental and Health Risks of Pesticide Use in Ethiopia. 623 

Journal of Health and Pollution, 11(30). https://doi.org/10.5696/2156-9614-11.30.210601 624 

Nsami, E., Pallangyo, B., Mgoo, V., & Omwega, C. O. (2001). Distribution and species composition of cereal 625 

stemborers in the eastern zone of Tanzania. International Journal of Insect Science, 21(4), 347–351. 626 

https://doi.org/10.1017/S1742758400008444 627 

Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43. 628 

https://doi.org/10.1017/S0021859605005708 629 

Omwega, C. O., Muchugu, E., Overholt, W. A., & Schulthess, F. (2006). Release and establishment of Cotesia flavipes 630 

Cameron (Hymenoptera: Braconidae) an exotic parasitoid of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) 631 

in East and Southern Africa. International Journal of Entomology, 42(3–4), 511–517. 632 

https://doi.org/https://doi.org/10.1080/00379271.2006.10697486 633 

Overholt, W. A., Omwega, C. O., Mbapila, J., Sallam, M. N., & Ofomata, V. (1997). A review of the introduction and 634 

establishment of Cotesia flavipes Cameron in East Africa for biological control of cereal stemborers. Insect 635 

Science and Its Application, 17(1), 79–88. https://doi.org/https://doi.org/10.1017/S1742758400022190 636 

Phillips, S. J. (2017). A Brief Tutorial on Maxent. http://biodiversityinformatics.amnh.org/open_source/maxent/ 637 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic 638 

distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 639 



Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection 640 

bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological 641 

Applications, 19(1), 181–197. https://doi.org/10.1890/07-2153.1 642 

Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, 643 

overfitting and evaluation. Journal of Biogeography, 41, 629–643. 644 

https://doi.org/https://doi.org/10.1111/jbi.12227 645 

Riahi, K., Van Vuuren, D. P., Kriegler, E., & O’Neill, B. (2016). The Shared Socio-Economic Pathways (SSPs): An 646 

Overview. 647 

Salami, A., Kamara, A. B., & Brixiova, Z. (2010). Smallholder Agriculture in East Africa: Trends, Constraints and 648 

Opportunities. (Issue Working Papers Series N° 105 African Development Bank). https://doi.org/10.1111/j.1467-649 

937X.2007.00447.x 650 

Schreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low 651 

income countries. Food Policy, 37(6), 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003 652 

Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural 653 

insect pests. Insects, 12(440). https://doi.org/https://doi.org/10.3390/ insects12050440 654 

Snyder, J., Cairns Smart, J., Goeb, J., & Tschirley, D. (2018). Pesticide use in Sub-Saharan Africa: Estimates, 655 

Projections, and Implications in the Context of Food System Transformation. 656 

Sokame, M., Musyoka, B., Obonyo, J., Rebaudo, F., Abdel-rahman, E. M., Subramanian, S., Kilalo, D. C., Juma, G., & 657 

Calatayud, P. (2021). Impact of an Exotic Invasive Pest , Spodoptera frugiperda (Lepidoptera  : Noctuidae), on 658 

Resident Communities of Pest and Natural Enemies in Maize Fields in Kenya. Agronomy 2021, 11(1074). 659 

https://doi.org/https://doi.org/10.3390/ agronomy11061074 660 

Stange, E. E., & Ayres, M. P. (2010). Climate Change Impacts: Insects. In Encyclopedia of Life Sciences (ELS). John 661 

Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9780470015902.a0022555 662 

Sundström, J. F., Albihn, A., Boqvist, S., Ljungvall, K., Marstorp, H., Martiin, C., Nyberg, K., Vågsholm, I., Yuen, J., 663 

& Magnusson, U. (2014). Future threats to agricultural food production posed by environmental degradation, 664 

climate change, and animal and plant diseases - a risk analysis in three economic and climate settings. Food 665 

Security, 6(2), 201–215. https://doi.org/10.1007/s12571-014-0331-y 666 

Tamiru, A., Getu, E., & Jembere, B. (2007). Role of some ecological factors for an altitudinal expansion of spotted stem 667 



borer, Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). SINET: Ethiopian Journal of Science, 30(1), 71–76. 668 

https://doi.org/10.4314/sinet.v30i1.18285 669 

Thomas, K. J. A., & Zuberi, T. (n.d.). Demographic Change, the IMPACT Model, and Food Security in Sub-Saharan 670 

Africa (No. 2012–003). 671 

Thomson, L. J., Macfadyen, S., & Hoffmann, A. A. (2010). Predicting the effects of climate change on natural enemies 672 

of agricultural pests. Biological Control, 52(3), 296–306. https://doi.org/10.1016/j.biocontrol.2009.01.022 673 

Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate 674 

change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581 675 

Tito, R., Vasconcelos, H. L., & Feeley, K. J. (2018). Global climate change increases risk of crop yield losses and food 676 

insecurity in the tropical Andes. Global Change Biology, 24, e592–e602. https://doi.org/10.1111/gcb.13959 677 

Tsimbiri, P. F., Moturi, W. N., Sawe, J., Henley, P., & Bend, J. R. (2015). Health Impact of Pesticides on Residents and 678 

Horticultural Workers in the Lake Naivasha Region, Kenya. Occupational Diseases and Environmental Medicine, 679 

3, 24–34. https://doi.org/10.4236/odem.2015.32004 680 

United Nations Department of Economic and Social Affairs (UN DESA). (2020). World Economic Situation and 681 

Prospects 2020. https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2020_Annex.pdf 682 

United Nations Department of Economic and Social Affairs (UN DESA) Population Division. (2019). World 683 

Population Prospects 2019: Highlights. 684 

https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf 685 

United Nations Development Programme (UNDP), United Republic of Tanzania (URT), & Economic and Social 686 

Research Foundation (ESRF). (2018). Tanzania Human Development Report 2017: Social Policy in the Context 687 

of Economic Transformation. ESRF. http://www.esrf.or.tz/docs/thdr2017launch.pdf 688 

Urvois, T., Auger-Rozenberg, M. A., Roques, A., Rossi, J. P., & Kerdelhue, C. (2021). Climate change impact on the 689 

potential geographical distribution of two invading Xylosandrus ambrosia beetles. Scientific Reports, 11(1339), 690 

1–11. https://doi.org/10.1038/s41598-020-80157-9 691 

Williamson, S., Ball, A., & Pretty, J. (2008). Trends in pesticide use and drivers for safer pest management in four 692 

African countries. Crop Protection, 27, 1327–1334. https://doi.org/10.1016/j.cropro.2008.04.006 693 

World Bank. (2021). World Development Indicators. https://databank.worldbank.org/reports.aspx?source=World-694 

Development-Indicators 695 



World Meteorological Organization (WMO). (2019). State of the Climate in Africa 2019 (Issue 1253). WMO. 696 

Youdeowei, A. (1989). Major arthropod pests of food and industrial crops of Africa and their economic importance. In 697 

H. R. Yaninek, J.S., Herren (Ed.), Biological Control: A Sustainable Solution to Crop Pest Problems in Africa 698 

(pp. 31–50). IITA. 699 

 700 



Figures

Figure 1

Probability of habitat suitability under current climatic conditions and in 2081–2100 for SSP1-2.6 and
SSP5-8.5 calculated as multi-model average from GCMs CanESM5, CNRM-CM6-1 and MIROC6.
Probability of habitat suitability ranges between 0 (low probability of suitable habitat) and 1 (perfectly



suitable habitat). Grid cells with great suitability carry high probability values and are displayed in dark
red, whereas cells with low suitability show low probability values and are colored in lighter red and white

Figure 2

Sum of 4 binary range maps (current distribution) and 12 binary range maps (future distribution)
obtained by application of 4 threshold levels, with each binary layer showing either species presence (1)
or absence (0). Predicted species distribution under current climatic conditions and for pathways SSP1-



2.6 and SSP5-8.5 for period 2081–2100. Grid cells where predicted species presence is likely are colored
in red and orange, whereas grid cells where presence is less likely are colored in blue

Figure 3

Predicted mean maize yield losses (in kg/ha) by the stem borers B. fusca, C. partellus and S. calamistis
under current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-8.5 for suitability threshold
bto. Grid cells with high predicted yield losses are colored in darker orange to brown, whereas cells where
maize yield losses by the species are low are colored in lighter orange and white



Figure 4

Predicted mean reduction of maize yield losses (in kg/ha) by B. fusca, C. partellus and S. calamistis
through use of C. �avipes under current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-
8.5 for suitability threshold bto. Grid cells where parasitoid application signi�cantly reduces the amount
of maize yield losses caused by the stem borer are colored in darker green, whereas cells with lower
predicted reduction of maize yield losses are colored in lighter green and white



Figure 5

Predicted mean reduction of maize yield losses (in kg/ha) by B. fusca, C. partellus and S. calamistis
through use of C. sesamiae under current climatic conditions and in 2081–2100 for SSP1-2.6 and SSP5-
8.5 for suitability threshold bto. Grid cells where parasitoid application signi�cantly reduces the amount
of maize yield losses caused by the stem borer are colored in darker green, whereas cells with lower
predicted reduction of maize yield losses are colored in lighter green and white
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