Protist.Guru: A Comparative Transcriptomics Database for the Protist Kingdom

Erielle Marie Fajardo Villanueva
Nanyang Technological University

Peng Ken Lim
Nanyang Technological University

Jolyn Jia Jia Lim
Nanyang Technological University

ShanChun Lim
Nanyang Technological University

Pei Yi Lau
Nanyang Technological University

Kenny Koh
Nanyang Technological University

Emmanuel Tan
Nanyang Technological University

Ryanjit Singh Kairon
Nanyang Technological University

Wei An See
Nanyang Technological University

Jian Xiang Liao
Nanyang Technological University

Ker Min Hee
Nanyang Technological University

Varsheni Vijay
Nanyang Technological University

Ishani Maitra
Nanyang Technological University

Chong Jun Boon
Nanyang Technological University

Kevin Fo
Nanyang Technological University

Yee Tat Wang
Nanyang Technological University

Ryan Jaya
Abstract

Summary: During the last few decades, the study of microbial ecology has been enabled by molecular and genomic data. DNA sequencing has revealed the surprising extent of microbial diversity and how microbial processes run global ecosystems. However, significant gaps in our understanding of the microbial world remain, and one example is that microbial eukaryotes, or protists, are still neglected. To address this gap, we used gene expression data from 15 distinct protist species to create protist.guru: an online database equipped with tools for identifying functional co-expression networks, gene families, and enriched gene clusters. Here, we show how our database can be used to reveal genes involved in essential pathways, such as the synthesis of secondary carotenoids in *Haematococcus lacustris*. We expect protist.guru to serve as a valuable resource for protistologists, as well as a catalyst for discoveries and new insights into the biological processes of microbial eukaryotes.

Availability: The database and co-expression networks are freely available from http://protist.guru/. The expression matrices and sample annotations are found in the supplementary data.

Introduction

Microbial eukaryotes, or protists, are a phylogenetically broad group of single-celled organisms. The term “protist” was employed in the 19th century by the artist and biologist Ernest Haeckel (Haeckel, 1866) to all eukaryotes that were not plants, animals, or fungi. Today, we know that although most of the described species of eukaryotes belong to the multicellular groups of animals (Metazoa), plants, and fungi, these lineages only represent a very small proportion of the eukaryotic diversity (Ibarbalz *et al*., 2019; Mahé *et al*., 2017). Together with bacteria and fungi, protists form the engine of every biogeochemical cycle central to all ecosystems on earth. Through their microbial processes, they drive the cycling of nutrients and the energy flow between all planet spheres (e.g., biosphere and atmosphere).

Despite their impact on human health and on a planetary scale, the understanding of gene function in protists has lagged behind other microbial taxa. The reasons for this are numerous and range from technical challenges to a lack of readily cultivable strains. In addition, protists have much larger genomes and more complicated gene expression patterns when compared to bacteria. These features have led to minimal knowledge about the gene number, identity, and function within several protistan lineages (del Campo *et al*., 2014). Since gene sequence alone can only result in a partial prediction and is not useful for genes that do not show sequence similarity to characterized genes (Rhee and Mutwil, 2014), methods based on gene expression have increasingly been used to predict gene function. Co-expression analysis finds functionally related genes by identifying genes that exhibit similar expression profiles across different growth conditions and genotypes (Mutwil *et al*., 2011).

To improve our understanding of protists’ gene functions and expressions, the protist.guru database was constructed based on 1,651 transcriptomes. Protist.guru is equipped with a plethora of tools, empowering
users to analyze gene expression profiles and co-expression networks across 15 protist species and allowing for the study of novel genes essential for biological processes in protists.

Implementation

Our database has multiple tools to allow for different analyses of the genomic and transcriptomic data. The data can be viewed with ease through pages such as species (www.protist.guru/species), genes (www.protist.guru/sequence/view/48072), gene families (www.protist.guru/family/view/186501), co-expression clusters (www.protist.guru/cluster/view/600), neighborhoods (www.protist.guru/network/graph/39535), family phylogenetic trees (www.protist.guru/tree/view/48179), Pfam domains (www.protist.guru/interpro/view/13405), and Gene Ontology terms (www.protist.guru/go/view/4133). Each page contains additional information relevant to the type of data being displayed. For instance, the gene pages contain information about cDNA and protein sequences, functional annotations, expression profiles, co-expression neighborhoods, and more. On the other hand, Gene Ontology pages show GO annotations, the genes in the 15 protists with the same GO term, and enriched co-expressed clusters for genes that have that particular GO term. The features page (www.protist.guru/features) lists a complete description of search functions and tools.

To exemplify how our tool can be used to uncover novel genes and conserved gene clusters in biosynthetic pathways, we analyzed the secondary carotenoid biosynthesis pathway in *Haematococcus lacustris* via co-expression analysis. *Haematococcus lacustris* is a unicellular freshwater microalga that is a rich source of astaxanthin, a highly valued red xanthophyll known for its potent antioxidant activity (Han *et al.*, 2019).

Since phytoene is the first carotenoid precursor for astaxanthin biosynthesis, we queried our database with phytoene desaturase, one of the first two fundamental enzymes that catalyzes the conversion of C40 phytoene to ζ-carotene, an essential precursor for beta carotene, and hence astaxanthin. Upon entering the key intermediary enzyme, phytoene desaturase (lcl|BLLF01000057.1_cds_GFH06801.1_1278) for astaxanthin production in *Haematococcus lacustris* into our database, we arrive at its gene page (https://protists.sbs.ntu.edu.sg/sequence/view/152450). Stress inducing conditions have been shown to increase the yield of astaxanthin in *Haematococcus lacustris* cells, by inducing a preferential morphological transformation of vegetative, green, motile cells to mature, non-motile cysts filled with red astaxanthin (Minhas *et al.*, 2016). An overview of the gene expression of phytoene desaturase in different strains of *Haematococcus lacustris*, developmental stages and physicochemical conditions, such as high-light illumination across different time periods and in different acidic cultures, can be found on the gene page.

The phytoene desaturase gene (lcl|BLLF01000057.1_cds_GFH06801.1_1278) is also found in a co-expression cluster (Cluster 8: https://protists.sbs.ntu.edu.sg/cluster/view/2936), which represents groups of functionally related genes. The cluster page can be navigated from the gene page and displays a cluster expression profile that takes into account the TPM values of gene members across different

Page 4/8
conditions (Fig 1A). Information on significantly enriched Gene Ontology (GO) terms (corrected p-value <0.05), InterPro Domains, and gene families for gene members are also available. Based on the expression profile, we saw that the expression of the genes in the cluster showed the highest expression after 24 hours of high light exposure with a corresponding decrease in expression after 48 hours. This suggests that transient stress induction via high light exposure could be ideal to obtain the highest yield of astaxanthin. Thus, the expression profile analysis can reveal the conditions when a given gene and its associated pathway is highly expressed.

The co-expression cluster consists of 76 genes that are involved in various processes such as acetyl-CoA and pyruvate synthesis, methylerythritol phosphate pathway (MEP) of isoprenoid biosynthesis, fatty acid biosynthesis, β-carotenoid biosynthesis, astaxanthin biosynthesis, transcriptional regulation and starch synthesis (Fig 1B). The presence of these processes in the cluster implies functional relevance between the processes. Acetyl-CoA and pyruvate are essential first precursors for carotenoid biosynthesis, which could be fed into mevalonate (MVA) or MEP pathway for isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) synthesis. IPP and DMAPP are precursors for synthesis of terpenoids such as β-carotene, which is an intermediate for astaxanthin production. Stoichiometric coordination and interdependence between fatty acid biosynthesis and astaxanthin production pathways were also reportedly observed in *Haematococcus lacustris* with some fatty acid biosynthesis acyltransferases postulated to be involved in astaxanthin esterification (Chen *et al.*, 2015). Through co-expression analysis, the genes identified using our tool could provide greater insights into potential crosstalk between pathways that could affect astaxanthin biosynthesis in *Haematococcus lacustris*. This could be immensely useful for the metabolic engineering of *Haematococcus lacustris* cells to increase astaxanthin production.

The gene pages provide links to the respective gene families and gene trees. For example, the phytoene desaturase gene (lcl|BLLF01000057.1_cds_GFH06801.1_1278) belongs to a gene family (https://protists.sbs.ntu.edu.sg/family/view/183185) comprising 23 genes found in 15 species (Figure 1C). The phylogenetic relationships between the genes can be also viewed by clicking on the phylogenetic tree link (https://protists.sbs.ntu.edu.sg/tree/view/44863), available on the gene page or gene family page (Figure 1D).

Additionally, information on similar clusters from all species is available from the cluster page and can be compared using the “compare” button. Here, we present a similar cluster to *Haematococcus lacustris*’s cluster 8 in another astaxanthin producing microalga, *Chromochloris zofingiensis* with a Jaccard index of 0.094. Upon clicking “Compare” to compare the clusters, we arrive at a page showing the co-expression network comprising genes in the conserved clusters in the two organisms (Fig 1E). The genes conserved between these clusters are involved in acetyl-CoA, pyruvate, and fatty acid biosynthesis (Fig 1E). As demonstrated in this example, our tool allows for the easy identification of novel genes in different biological pathways and functional orthologs through comparing conserved neighbourhoods with genes in the same orthogroup and with similar co-expression.
Conclusion

We developed protist.guru, a comparative transcriptomics database with multiple tools to analyze and visualize gene co-expression networks and expression profiles among 15 protists. Through this database, we hope to aid the investigation of gene function in protists and facilitate a deeper understanding of these microbial eukaryotes.

Declarations

SUPPLEMENTARY DATA

Supplemental tables

Due to the large size of the tables (~300Mb), they can be downloaded from https://doi.org/10.6084/m9.gshare.15097419.v1

References

Figures
Figure 1

Outline of the tools available on Protist.guru exemplified with Haematococcus lacustris. A) Expression profile of cluster 8 with the average TPM values for all genes present in the cluster. Different strains and sample conditions are represented on the x-axis whereas gene expression values in Transcript Per Million (TPM) are represented on the y-axis. Dots and bars represent the maximum/minimum gene expression values and average gene expression values respectively. B) Co-expression network of genes identified in
the same co-expression cluster as phytoene desaturase (lcl\BLLF01000057.1_cds_GFH06801.1_1278).
Nodes represent genes and co-expressed genes are connected by edges in the network. Novel genes
encoding for hypothetical proteins and proteins with generic pfam domains were removed from the
network. Node colors indicate genes encoding for common Pfam domains and orthogroups. C)
Proportion of sequences in OG_03_0001542 gene family across all 15 protists. A total of 23 sequences
across 15 protists were identified. D) Phylogenetic tree for OG_03_0001542 gene family across 15
protists in the database. E) Comparative gene co-expression networks for similar clusters in
Haematococcus lacustris and Chromochloris zofingiensis. Only genes that have a common homolog or
Pfam domains are shown. For brevity, repetitions in gene descriptions were trimmed. Solid lines denote
co-expressed genes whereas dashed lines denote homologous genes across the 2 clusters.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigureS1.pdf
- SupplementaryMethods.docx