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Abstract
Background: Renal cell carcinoma (RCC) is the most common form of kidney cancer in adults. Approximately 50% to 80% of sporadic RCCs are
associated with mutations in the von Hippel-Lindau (VHL) gene in Western countries. The aim of this study is to elucidate the possible etiological role
of molecular pathogenesis in sporadic RCCs in Taiwan.

Methods: Fifteen patients with RCC were screened for mutations in the VHL gene and methylation statuses of promoters of 24 tumor suppressor genes.
Mutations were identi�ed by PCR and Sanger sequencing. Methylation statuses were determined on methylation sensitive multiplex ligation-dependent
probe ampli�cation (MS-MLPA) analysis.

Results: Inactivation of VHL gene was observed in 5 cases: three missense somatic mutations, V155G in case 1, N141S in case 5, and E52D in case 9;
promoter methylation in case 3; and small deletion in case 13. RCCs were most frequently methylated at APC (100%, 14/14), CDKN2B (92.9%, 13/14),
CASP8, MLH1_167, and KLLN (85.7.4%, 12/14), but not at FHIT, MLH1_463, DAPK1, or HIC1 (0%).

Conclusions: In addition to VHL inactivation, promoter methylation of APC and CDKN2B may play important roles in the tumorigenesis of RCC.
Methylation of APC may be a very early pathognomonic event in tumorigenesis of RCC and a candidate diagnostic and therapeutic biomarker.

Background
Kidney cancer affects about 300,000 people worldwide and is responsible for 129,000 deaths annually [1]. The global age-standardized incidence rate
is 4 per 100,000 people per year [2]. Moreover, age standardized incidence rate increased from 3.35/100,000 individuals in 2002 to 5.09/100,000
individuals in 2012 in Taiwan [3]. Renal cell carcinoma (RCC) is the most common form in adults, accounting for around 90% of all kidney cancer [4].
The incidence rates have increased over time in most populations, but mortality rates have levelled off or decreased since the 1990s [5]. Based on the
2016 WHO classi�cation, the major subtypes are clear cell, papillary, and chromophobe, which comprise 65–70%, 15–20%, and 5–7% of all RCCs,
respectively [6]. Clear cell RCC accounts for most kidney cancer-related deaths and is characterized by cells with clear cytoplasm [7].

The genetic feature most closely associated with sporadic clear cell RCC is loss or mutation of the von Hippel-Lindau (VHL) tumor suppressor gene [8–
10]. However, inactivation of VHL alone is not su�cient to cause RCC [11, 12]. Other genes are likely to be important in its development including
PBRM1 (29–41% of tumor samples), SETD2 (8–12%), BAP1 (6–10%), KDM5C (4–7%), and MTOR (5–6%) [5]. Epigenetic inactivation of tumor
suppressor genes by methylation of promoter region of CpG dinucleotides has also been implicated in the pathogenesis of RCC [13, 14]. Early studies
have demonstrated that VHL, CDKN2A/p16INK4a, and RASSF1A tumor suppressor genes are frequently inactivated by methylation in clear cell RCC [14,
15]. More recent studies have demonstrated tumor-speci�c promoter methylation of genes BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1, and
COL15A1 in more than 30% of RCCs [13].

The genetic aspects of RCC have received little attention in Taiwan. Acquired cystic disease-associated RCC has been reported to be associated with
frequent abnormalities on chromosome 3 [16]. Yano et al. noted that the CpG islands of connexin 32 gene are methylated in RCCs of hemodialysis
patients [17]. The aim of this study is to elucidate the possible etiological role of molecular pathogenesis in sporadic RCCs in Taiwan. A total of 15
patients with RCC were screened for mutations in the VHL gene and methylation statuses in 24 tumor suppressor genes. Mutations were identi�ed by
PCR and Sanger sequencing. Methylation statuses were determined on methylation sensitive multiplex ligation-dependent probe ampli�cation (MS-
MLPA) analysis.

Methods
Study subjects

Fifteen para�n-embedded tumor and normal tissue samples (Cases 1 to 15, 8 males and 7 females, Table 1) were provided by the Tumor Tissue Bank
of Koo Foundation Sun Yat-Sen Cancer Center which is funded by the National Science and Technology Program for Pharmaceuticals and
Biotechnology (#NSC89-2323-B-368-001). The study procedures were approved by the Institutional Review Board of Chung Shan Medical University
Hospital (reference number CS2-03052). All procedures that involved human participants were conducted in accordance with the ethical standards of
the institutional and/or national research committee and the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.
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Table 1
RCC patients with and without somatic inactivation of VHL gene

        Inactivation of VHL gene VHL Exon Mutation   VHL Promoter

# Age Stage Clear cells Nucleotide Protein   Tumor Tumor/Normal

1 ≥ 50 III Yes Yes 677T > G V155G   - -

2 < 50 I Yes ND ND ND   ND ND

3 ≥ 50 III Yes Yes ND ND   Hypermethylation 1.88

4 ≥ 50 II Yes ND ND ND   ND ND

5 ≥ 50 I Yes Yes 635A > G N141S   ND ND

6 < 50 I Yes ND ND ND   ND ND

7 ≥ 50 I Yes ND 312G > T ND   ND ND

8 ≥ 50 III Yes ND ND ND   ND ND

9 ≥ 50 I Yes Yes 369G > T E52D   ND ND

10 ≥ 50 II or III Yes ND ND ND   ND ND

11 < 50 I Yes Partial ND ND   CNR 0.478 0.904

12 ≥ 50 I Yes Partial ND ND   CNR 0.621 1.048

13 ≥ 50 II Yes Yes ND ND   Deletion 0

14 ≥ 50 I Yes ND ND ND   CNR 0.734 0.956

15 ≥ 50 I No Partial ND ND   CNR 0.612 0.728

GenBank accession number NM_000551.3 for nucleotide and NP_000542.1 for amino acid.

ND, no somatic changes were detected.

Hypermethylation means that 5 normal reference DNA samples were unmethylated and tumor DNA samples were methylated.

CNR, copy number rate compared to 5 normal reference DNA samples.

 
DNA extraction

Genomic DNA was extracted from the sections with the QIAamp Tissue Kit (Qiagen), according to the manufacturer’s instructions and �nally dissolved
in 100 µl of TE buffer (10 mM Tris-HCl, pH 8.0, and 1 mM EDTA). DNA concentration of each sample was measured using NanoDrop UV-VIS
Spectrophotometer.
Polymerase chain reaction (PCR) and direct sequencing

The three exons of the VHL gene were ampli�ed in 7 fragments with published primers under published conditions (Additional File 1) [18]. PCR
products were puri�ed using QIAquick PCR Puri�cation kits (Qiagen GmbH., Hilden, Germany). The puri�ed PCR products were sequenced via the cycle
sequencing method with �uorescently labelled dideoxy chain terminators from ABI Prism kit (Applied Biosystems, Taipei, Taiwan) in an ABI Model 377
automated DNA sequencer, according to the distributor’s protocol. The sequencing primers were the same as those for the preceding PCRs. When a
mutation was detected, the nucleotide sequence was con�rmed on both strands.
Copy number and methylation analyses

MS-MLPA analysis was performed using Salsa MS-MLPA kit ME001-C2 Tumor suppressor-1 (MRC-Holland) according to the manufacturer’s
instructions. Samples were then subjected to capillary electrophoresis on an ABI PRISM 3130XL (Applied Biosystems). Twenty-six MS-MLPA probes
were used to detect the methylation statuses of promoter regions of 24 different tumor suppressor genes by HhaI digestion (Additional File 2). MLPA
results were analyzed using GeneMarker version 3.2.1 (SoftGenetics, LLC) to determine copy numbers and methylation statuses of the HhaI sites. For
copy number, each sample peak area was divided by the nearest control peak areas. Relative copy number was obtained by comparing this ratio with
that of a control sample [19]. The internal methylation ratio was calculated by comparison of the HhaI digested aliquot with the paired undigested
aliquot from each sample with intra-sample data normalization according to the manufacturer’s instructions [20]. Methylation, compared to normal
reference, was assessed by comparing the probe methylation percentages obtained for the test sample with the percentages of the 5 normal reference
samples. Copy number ratio of 1.0 and methylation ratio of 0 were expected in most genes in normal reference. If so, the methylation compared to
normal reference was unlimited (∞). If methylation ratios of test sample and normal reference samples were appropriate, methylation compared to
normal reference was around 1.0.
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Results
VHL gene inactivation: mutation and promoter methylation

The DNA sequences of VHL gene were determined via direct sequencing. Four mutations were identi�ed in the exon region of VHL gene in the DNA
samples from para�n-embedded tumor specimens (Table 1). Among them were three missense mutations. Valine was substituted for glycine via
heterozygous mutation at codon 155 (V155L) in exon 3, 677T > G in case 1 (Fig. 1A); asparagine was substituted for serine via heterozygous mutation
at codon 141 (N141S) in exon 2, 635A > G in case 5 (Fig. 1B); and glutamate was substituted for aspartate via heterozygous mutation at codon 52
(E52D) in exon 1, 369G > T in case 9 (Fig. 1D). There was one silent mutation, with no change in amino acid sequence, via heterozygous mutation at
codon 33 in exon 1, 312G > A in case 7 (Fig. 1C).

MLPA results were analyzed to determine copy numbers and methylation statuses of the HhaI sites in the promoter region of VHL gene located in
chromosome 3p25.3 (Table 1). In case 3, methylation ratios were unlimited (∞) in both normal and tumor tissue DNA compared to average normal
reference (Table 1, Fig. 2A and 2B). This indicated that the VHL gene is inactivated by its promoter methylation in both germline and somatic DNA.
Copy number ratio of 0 was detected in tumor somatic DNA from case 13, and meaning that the VHL probe failed to hybridize with its promoter region
due to a small deletion (Table 1, Fig. 2E and 2F). In addition, partial inactivation of VHL gene was identi�ed due to copy number ratio decreases in
cases 11, 12, and 15 in both normal and tumor tissue DNA compared to average normal reference (Table 1).

Copy number and methylation analyses
MS-MLPA analysis was performed with DNA from case 2 to case 15 using Salsa MS-MLPA kit ME001-C2 Tumor suppressor-1. Increases in copy
number ratio of CADM1 were found in all RCCs. Copy number ratios were 1.38, 1.40, 1.20, 1.29, 1.27, 1.37, 1.42, 1.26, 1.40, 1.30, 1.58, 1.43, 1.54 and
1.22, respectively. For case 13, in addition to the VHL gene, copy number ratio of 0 was detected in the FHIT gene indicating a small deletion (Fig. 2E
and 2F).

Methylation of APC (100%) was found in all RCCs (Fig. 2, Table 2). The second most commonly methylated gene was CDKN2B (92.9%). Only case 11
was found to be unmethylated. Methylation of CASP8 (not in case 11 or 13), MLH1_167 (not in case 2 or 11), and KLLN (not in case 13 or 14) was
found in 12 out of 14 (85.7%) RCCs (Table 2). Methylation of RASSF1_382 (not in case 2, 4, 6, or 11), CDH13 (not in case 8, 11, 13, or 14), and CDKN2A
(not in cases 11 to 14) was found in 10 out of 14 (71.4%) RCCs. Frequencies of 9 genes with medium level of methylation were ATM 64.3%,
RASSF1_328 57.1%, CD44 50.0%, TP73 42.9%, RARB, ESR1, and BRCA1 35.7%, TIMP3 and GSTP1 28.6%. Moreover, methylation of CDKN1B (case 12),
BRCA2 (case 12), and CADM1 (case 2) was identi�ed in only one (7.1%) RCC. Methylation of CHFR was identi�ed in only two RCCs, case 3 and case 8.
Twenty-one out of 26 MS-MLPA probes showed somatic DNA methylation only. CDKN2B, MLH1_167, CDH13, RASSF1_328 and RARB demonstrated
germline DNA methylation (data not shown). Somatic DNA methylation means that methylation is found in RCC tissue only, not in their corresponding
normal tissues.
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Table 2
RCC patients with and without methylation in the promoter of 24 tumor suppressor genes

Size Gene # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14 # 15

148 APC 0.071 0.118 0.112 0.044 0.047 0.072 0.220 0.111 0.111 0.175 0.064 0.303 0.193 0.096

High                              

211 CDKN2B 0.128 0.107 0.228 0.159 0.261 0.122 0.137 0.174 0.163 0 0.091 0.438 0.182 0.161

265 CASP8 0.035 0.040 0.026 0.021 0.020 0.075 0.089 0.097 0.042 0 0.059 0 0.086 0.050

167 MLH1 0 0.122 0.080 0.046 0.047 0.097 0.107 0.067 0.070 0 0.165 0.309 0.138 0.074

292 KLLN 0.083 0.056 0.063 0.040 0.055 0.060 0.045 0.034 0.032 0.297 0.081 0 0 0.049

382 RASSF1 0 0.378 0 0.319 0 0.174 0.183 0.180 0.384 0 0.650 0.376 0.296 1.084

436 CDH13 0.077 0.139 0.098 0.048 0.048 0.047 0 0.080 0.065 0 0.221 0 0 0.070

161 CDKN2A 0.086 0.107 0.050 0.033 0.047 0.061 0.124 0.064 0.038 0 0 0 0 0.061

Medium                              

184 ATM 0 0.118 0.083 0 0 0.127 0.057 0.060 0.052 0 0 0.535 0.158 0.096

328 RASSF1 0 0.463 0 0.321 0 0.122 2.051 0.180 0.296 0 0.486 0 0 0.805

319 CD44 0.135 0 0 0.175 0.147 0 0 0 0.041 0 0.073 0.160 0 0.075

400 TP73 0 0 0 0 0 0 0.113 0.075 0.088 0 0.080 0 0 0.131

193 RARB 0 0 0.117 0.056 0 0 0.209 0.092 0.038 0 0 0 0 0

373 ESR1 0 0 0 0.107 0.097 0 0 0.113 0.189 0 0 0 0 0

246 BRCA1 0 0 0 0 0.023 0 0.034 0.043 0 0 0.057 0 0 0

142 TIMP3 0 0.217 0 0 0 0 0.154 0.057 0.049 0 0 0 0 0

454 GSTP1 0 0 0 0 0 0 0 0.071 0.046 0 0.810 0 0 0.101

Low                              

238 CHFR 0 0.327 0 0 0 0 0.069 0 0 0 0 0 0 0

274 CDKN1B 0 0 0 0 0 0 0 0 0 0 0.090 0 0 0

301 BRCA2 0 0 0 0 0 0 0 0 0 0 0.115 0 0 0

427 CADM1 0.080 0 0 0 0 0 0 0 0 0 0 0 0 0

409 FHIT 0 0 0 0 0 0 0 0 0 0 0 0* 0 0

463 MLH1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

346 DAPK1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

220 HIC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data are presented as internal methylation ratio.

*, deleted due to copy number equaling zero.

 
Four of the 24 genes (FHIT, MLH1_463, DAPK1, and HIC1) did not show detectable promoter region methylation (Table 2).
Patient characteristics in relation to methylations statuses in tumor suppressor genes

Age (≥ 50, < 50), clear cell type RCC (yes/no), and tumor stage (early, stage I and II; late, stage III to IV) are dichotomous variables based on Moore's
work [21]. Pathological stage is an important determinant of survival. We found a novel and interesting correlation between methylation of the CHFR
gene promoter and late stage. No other gene associations for promoter methylation were found for age, or clear cell type RCC. RCC incidence is higher
in men than in women [5]. However, there was no signi�cant difference in the numbers of males and females in this study (8 males and 7 females).

Discussion
It has been suggested that the VHL tumor suppressor gene is a major gatekeeper gene for clear cell RCC [22]. About 50%-80% of sporadic RCCs are
shown to have mutations of the VHL gene [23, 24]. In this study, which was conducted in Taiwan, the frequency of VHL mutation events for sporadic
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RCCs was only 20% (3/15), which is much lower than in Western countries. Our results showed promoter hypermethylation in 1 of 15 (6.6%) tumors.
This ratio is also lower than that of a previous study in which silencing of the VHL gene by DNA methylation occurred in about 20% of RCCs [10, 23].
Recently, it has been reported in the Cancer Genome Atlas that 7% of clear cell RCCs showed epigenetic silencing at VHL [7, 25]. The discrepancy may
be attributed to ethnic effects. However, further studies using larger samples are recommended to verify our results. In the present study, both FHIT and
VHL deletions were found in case 13 (age ≥ 50, stage II). A previous study has suggested that FHIT deletion is an early event and VHL deletion as an
early and/or late event in RCC [26].

Dulaimi et al. reported that the frequencies of hypermethylation in 100 kidney tumors were RASSF1A (45%), APC (14%), RARB2 (12%),
CDKN2A/p16INK4a (10%), and VHL (8%) [14]. Morris et al. noted that RCCs are most frequently methylated at DAPK (24%), not at RARB2 (0%),
CDKN2A/p16INK4a (0%) or CDH13 (3%) [27]. However, these results were not veri�ed by this study as RCCs were found to be most frequently
methylated at APC (100%), CDH13 (71.4%, 10/14), CDKN2A (71.4%, 10/14), RARB2 (35.7%, 5/10), and VHL (7.14%, 1/14), not at DAPK1 (0%). Based on
the results of this study, frequencies of promoter methylation in RASSF1A, 76.9% (10/13) for RASSF1A_382, and 61.5% (8/13) for RASSF1A_382, in
8/14 cases were much higher than in previous studies in which RASSF1A promoter methylation was detected in 56% and 40% of primary clear cell
RCCs, respectively [28, 29]. In this study, neither germline nor somatic DNA methylations in DAPK1 were identi�ed, which is inconsistent with the
�ndings of a previous study [30]. The reasons for this discrepancy are unclear but may be related to the sensitivity of the methods used. With older
molecular methods based on radio-labeled primers and polyacrylamide gel electrophoresis, small minor bands may be missed or mistaken. Capillary
gel electrophoresis with �uorescence detection allows for the analysis of methylation status with high sensitivity. Dulaimi et al. also noted that
RASSF1A methylation is signi�cantly associated with high-grade tumors [14]. Recent studies have highlighted that 16% of RCC cases have loss of
CDKN2A through mutation, deletion, or promoter hypermethylation [7, 31].

Although there were differential methylation patterns of the 24 tumor suppressor genes among the 14 RCCs, at least two (mean = 10.7) genes were
methylated in each tumor sample. In this study, all RCCs showed methylation of APC speci�c to RCC, not in normal tissues, which did not change with
age. APC gene encodes a 312-kDa protein that acts as an antagonist of the Wnt signaling pathway [32]. Deregulation of Wnt signal pathway through
APC de�ciency or loss of heterozygosity has recently been implicated in human RCC [33–35]. Aberrant methylation of the APC gene promoter has been
reported not only in colon [36], but also in breast and lung carcinomas [37]. The accumulation of a variety of genetic aberrations is necessary for the
initiation and progression of RCCs [38]. These results indicated that methylation of APC is a very early pathognomonic event in tumorigenesis of RCC
and can be a candidate diagnostic and therapeutic biomarker as it is found early in the process of carcinogenesis.

In addition to APC methylation, there were a variety of other genetic aberrations. CDKN2B gene methylation was observed in all RCCs, except for case
11. CDKN2B gene on 9p21.3 encodes the p15INK4B protein that binds to and inhibits activation of CDK4 or CDK6 [39]. Germline mutations in CDKN2B
have been identi�ed as a novel cause of familial RCC [40]. CASP8 gene encodes Caspase-8 that is an apoptosis-related cysteine peptidase [41].
Methylation at CASP8 has been demonstrated in 16% of RCCs [27]. MLH1 gene encodes proteins that detect and repair DNA mismatches [42].
Expression of mismatch repair proteins MLH1 has been shown to be reduced in 83.7% (118/141) of sporadic RCCs [43]. KLLN gene encodes the protein
killin, which is a p53-regulated nuclear inhibitor of DNA synthesis [44]. Bennett el al. found germline methylation in 23/41 (56%) RCC patients and
somatic methylation in 19/20 (95%) advanced RCC patients [45]. These results indicated that methylation of APC, CDKN2B, CASP8, MLH1_167, and
KLLN is important in the tumorigenesis of RCC, which may inform its diagnostic, clinical, and therapeutic management.

Conclusions
Inactivation of VHL gene was observed in 5 cases: three missense somatic mutations, V155G in case 1, N141S in case 5, and E52D in case 9, promoter
methylation in case 3, and small deletion in case 13. RCCs were most frequently methylated at APC (100%, 14/14), CDKN2B (92.9%, 13/14), CASP8,
MLH1_167, and KLLN (85.7.4%, 12/14), but not at FHIT, MLH1_463, DAPK1, and HIC1 (0%). Rate of VHL inactivation and promoter methylation pro�le
for RCCs in the Taiwanese population differ from those in Western populations. This may be attributed to ethnic effects. However, larger sample size is
required to con�rm these �nding. Moreover, methylation of APC may be a very early pathognomonic event in tumorigenesis of RCC and a candidate
diagnostic and therapeutic biomarker.
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Figures

Figure 1

Partial sequencing chromatograms represent the genetic pro�les of fragment 5 in reverse directions from case 1 (A), fragment 4 in forward directions
from case 5 (B), and fragment 2 in reverse directions from case 7 (C) and case 9 (D), respectively. The mutated nucleotides are marked with a red arrow.
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Figure 2

Detection of the methylation statuses of 24 different tumor suppressor genes in RCCs by MS-MLPA. The capillary electrophoresis pattern was observed
from undigested DNA of case 3 (A), case 7 (C), and case 13 (E) and from the same sample but digested with HhaI site (B, D, F). Red arrows indicate
fragment locations of APC, CDKN2B, VHL, and FHIT.
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