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Abstract
Background: RNA sequencing allows the measuring of gene expression at a resolution unmet by expression arrays
or RT-qPCR. It is however necessary to normalize sequencing data by library size, transcript size and composition,
among other factors, before comparing expression levels. The use of internal control genes or spike-ins is
advocated in the literature for scaling read counts, but the methods for choosing reference genes are mostly
targeted at RT-qPCR studies and require a set of pre-selected candidate controls or pre-selected target genes.
Results: Here, we report an R-based script to select internal control genes based solely on read counts and gene
sizes. This novel method first normalizes the read counts to Transcripts per Million (TPM) and then excludes
weakly expressed genes using the DAFT script to calculate the cut-off. It then selects as references the genes with
lowest TPM covariance. We used this method to pick custom reference genes for the differential expression
analysis of three transcriptome sets from transgenic Arabidopsis plants expressing heterologous fungal effector
proteins tagged with GFP (using GFP alone as the control). The custom reference genes showed lower covariance
and fold change as well as a broader range of expression levels than commonly used reference genes. When
analyzed with NormFinder, both typical and custom reference genes were considered suitable internal controls, but
the custom selected genes were more stable. geNorm produced a similar result in which most custom selected
genes ranked higher (i.e. were more stable) than commonly used reference genes.
Conclusions: The proposed
method is innovative, rapid and simple. Since it does not depend on genome annotation, it can be used with any
organism, and does not require pre-selected reference candidates or target genes that are not always available.

Background
RNAseq is a technique used since the pioneer studies of Lister et al. [1] (Arabidopsis thaliana), Nagalakshmi et al.
[2] (Saccharomyces cerevisiae), Wilhelm et al. [3] (Schizosaccharomyces pombe), and Mortazavi et al. [4] (Mus
musculus). This technique allows the combination of transcripts discovery and expression levels quantification in
a single assay and has an unlimited dynamic range of detection compared to microarrays or RT-qPCR [5, 6].

For differential expression studies, the gene expression values must be comparable between samples, which
means that count data should be normalized for sequencing depth and other biases such as transcript length, GC
content and transcript coverage. Reads/Fragments per Kilobase per Million (RPKM or FPKM) and Transcripts per
Million (TPM) both normalize count data by transcript length and sequencing depth, but they may give biased
results in the presence of highly expressed genes or when a lot of the genes are expressed in only one sample. This
is because one differentially expressed gene shifts the sequencing effort distributed to the others and all genes
appear to be differentially expressed [7-9]. Other methods such as relative log expression (DESeq2) and trimmed
mean of M-values (edgeR) can work with the carry-over effect of highly expressed genes [8].

The comparison of different softwares for RNAseq analysis is a recurrent subject in the literature [10-12] and many
authors argue over the benefits of using housekeeping genes or spike-in controls to scale the count data, yet the
evaluation of the reference genes used for RNAseq data analysis is not as common. When using internal or
external control genes, the normalization is first performed on the controls and then used to normalize the other
genes. The use of external spike-ins is advocated for introducing little error into the read counts, allowing
identification of global shifts in gene expression [13-15]. However, reports have shown mixed performances with
different normalization methods [16], resulting in high false discovery rates and false positive rates [17]. These may
show differences in amplification depending on the type of tissue studied or the protocol for mRNA enrichment
[18].
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One alternative for external spike-ins is the use of internal control genes, as it is done in qPCR studies. Typical
control genes are actin, tubulin, elongation factor 1, polyubiquitin and ribosomal RNAs, though the stability of
expression of several of those is dependent on the conditions studied [19]. To solve this issue, different algorithms
were proposed to find stably expressed genes, mostly for qPCR applications, but they need a set of predefined
genes of interest (RefGenes, Hruz et al. [20]) or a set of pre-selected candidate reference genes (geNorm,
Vandesompele et al. [21]; NormFinder, Andersen et al. [22]; BestKeeper, Pfaffl et al. [23]). The most frequent
approach is to take previously identified stable genes, as done by Zhuo et al. [9] this however does not ensure that
the selected genes will be stably expressed in the studied organism and conditions.

Here we propose a simple and fast method to identify the most stably expressed genes for each experimental
condition. Our method is aimed at differential expression studies and represents a simple way to select custom
reference genes for any species or any type of experiments. Our method alleviates the problem inherent to
predefined reference genes, which may not be stable across experimental set-ups, are applicable to a single species
and does not necessitate spike-ins.

Methods
Initial Arabidopsis thaliana Columbia-0 were obtained from Arabidopsis Biological Resources Center (ABRC).
Arabidopsis transgenic plants expressing GFP alone (Control) or fused to a candidate secreted effector protein of
the fungus Melampsora larici-populina (Mlp37347 or Mlp124499), obtained in our laboratory [26], were used for the
transcriptome analysis.

RNA was extracted from pooled aerial tissue of 2-week-old soil-grown plants, doing four replicates per genotype,
with the Plant Total RNA Mini Kit (Geneaid) using RB buffer following manufacturer’s protocol. The samples were
treated with DNAse, then RNA quality was assessed using agarose gel electrophoresis. Libraries were generated
with the NeoPrep Library Prep System (Illumina) using the TruSeq Stranded mRNA Library Prep kit (Illumina) and
100 ng of total RNA following manufacturer’s recommendations. The libraries were then sequenced with Illumina
HiSeq 4000 Sequencer paired-end reads of 100nt.

Libraries were trimmed using Trimmomatic [28]and then aligned to the TAIR10 assembly of the genome of A.
thaliana with TopHat v2.0.14 [29] in Galaxy [30]. The general information of the sequencing results and mapping
data is presented in Additional file 3, the dataset was deposited in NCBI-SRA under BioProject PRJNA528094.
Further analyses were done using R software v.3.2.5. Genomic ranges of Arabidopsis transcripts were obtained
from Ensembl plants [31] with GenomicFeatures and overlaps of sequencing reads with the transcripts were
counted using GenomicAlignments [32], using options for paired-end reads and union mode.

We transformed the counts into TPM [24] and calculated the cutoff for active genes with DAFS [25]. We considered
as reference the 0.5% of the active genes with the lowest covariance (R script in Additional file 1). Next, we used
DESeq2 [33] to confirm that the selected genes were not deregulated. Finally, we compared the custom selected
reference genes against a list of 14 commonly used housekeeping reference genes (Table 1) using NormFinder [22]
and geNorm [21], using TPM values for the expression levels.

Results
Initially three RNAseq transcriptomes were generated using Arabidopsis transgenic plants expressing GFP alone
(control) or GFP-fused to fungal effector genes (Mlp37347 and Mlp124499). We tested the normalization of our
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RNAseq data using two sets of reference genes: commonly used reference genes (Table 1) and the 104 stable
Arabidopsis genes proposed by Zhuo et al. [9]. The first set of reference genes was assessed for stability in three
different permutations of the transcriptome sets as shown in Figure 1A (panel 1: Control vs Mlp37347, panel 2:
Control vs Mlp 124499, panel 3: Mlp37347 vs Mlp124499). In each case, high levels of covariance, ranging from
4.4% (NDUFA8 in Control vs Mlp37347) to 178% (elF4A in Control vs Mlp124499) were obtained. Next, we
performed the same analysis using the 104 genes proposed by Zhuo et al. [9]. For the three permutations of the
transcriptome sets, important fluctuations in the covariance were observed ranging from 2.3% to 48% (Figure 1B).
These results demonstrate that neither the commonly used reference genes presented in Table 1 nor the 104 stable
reference genes proposed by Zhuo et al. [9] were stable genes in our conditions. 

In order to search for more stably expressed genes, we developed a custom method to select reference genes using
only one’s own RNAseq data. We first used a R function to transform the count data into Transcripts per Million [24]
and calculate the average TPM and covariance for each gene. We then used the DAFS function [25] to calculate a
cut-off for the exclusion of weakly expressed genes. Finally, the 0.5% remaining genes with lowest covariance were
selected as reference genes (R script in Additional file 1). This pipeline is thereafter referred to as the custom
selection script.

 To test the developed method, we used the same transcriptome sets described in Figure 1 (the list of selected
genes for each analysis is available in Additional file 2). For each transcriptome set, Figure 2 displays a
comparison in log2 Fold Changes (left) and a log2 average TPM comparison (right) between the genes selected
using the custom selection script (Custom References) and the Common Reference Genes (Table 1). In all pairings
the custom selected reference genes show lower log2 Fold Change (Figure 2A, B, and C), broader range of
expression levels and lower covariance (Figure 2D, E, and F) than the commonly used reference genes.

To further test the stability of the custom reference genes in our experiment, we used NormFinder [22] and geNorm
[21] to compare commonly used control genes and custom selected reference genes from the proposed pipeline
using log2 transformed TPM values. Both sets of genes were under the stability threshold of NormFinder (0.5),
meaning that the software considers them suitable references genes, however the custom selected genes (shown in
black) were more stable than the commonly used genes (shown in red) (Figure 3). This was also the case for most
genes tested with geNorm.

Discussion
The use of reference genes in RNAseq studies is suggested in the literature [13-15], yet the methods for the
selection of these genes are designed for qPCR data and require a set of preselected reference or target genes or
the selection of conditions similar to that of one’s own experiment [20-23], which are not always available. As there
is no previous transcriptomic study of plants constitutively expressing fungal effectors and since the information
available on these effectors is scarce [26], it is not possible to know a priori their function and which host genes are
impacted by the presence of these fungal proteins. For these reasons, we propose a new R-based function which
enables the selection of custom reference genes regardless of the organisms used or of the experimental
conditions.

The method developed here only requires information available from the RNAseq analyses. It uses Transcripts per
Million as a proxy for the expression level and the DAFS algorithm [25] to exclude genes with low counts, which
may be inactive [27]. We first assessed whether the most commonly used reference genes (Table 1) or a set a
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published stable reference genes for Arabidopsis [9] were indeed stable in our experimental conditions. As
demonstrated in Figure 1, both sets of reference genes show a high level of covariance in our experimental
conditions, indicating that they were not suitable reference genes for our differential expression analysis.

Having a high level of variability in the expression of the reference genes results in skewed quantitative analysis
and may causes the loss of some differentially expressed genes which show modest variation in gene expression
[19]. Thus, to alleviate the bias inherent to the use of inappropriate reference genes, we devised a R-based pipeline
to select custom reference genes for one’s own experimental data. As presented in Figure 2, in all the pairings of the
data used, the custom selected reference genes outperformed the common reference genes in their stability of
expression, presenting lower fold changes and lower covariances. Our method also allows the selection of more
reference genes (the final number is user defined), giving more reference points, hence more robustness, to the
normalization of genes expressed at different levels.

Conclusions
Our results show the need for a new R-based pipeline for the selection of custom reference genes in transcriptomic
studies. Our method can be applied to any organism and to any type of experimental conditions, and can easily be
implemented or modified in R. This tool provides an alternative to spike-in controls and represents an improvement
over pre-defined reference genes which may not be stable in one’s own experimental conditions.
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Tables
Table 1. Common reference genes used in this study for comparison against custom selected reference genes.

Symbol Name ATG
Actin 2                                      ACT2 AT3G18780
Actin 7                                      ACT7 AT5G09810
Actin 8                                      ACT8 AT1G49240
Adenine phosphoribosyltransferase 1          APT1 AT1G27450
Elongation factor 1-α                      EF1α AT5G60390
Eukaryotic translation initiation factor 4A-1 elF4A AT3G13920
NADH-ubiquinone oxidoreductase 19-kDa subunit NDUFA8 AT5G18800
Tubulin β-2/β-3 chain TUB2 AT5G62690
β-tubulin 6 TUB6 AT5G12250
Tubulin β-9 chain TUB9 AT4G20890
Polyubiquitin                                UBQ4 AT5G20620
Ubiquitin extension protein                  UBQ5 AT3G62250
Polyubiquitin                                UBQ10 AT4G05320
Polyubiquitin        UBQ11 AT4G05050

Figures
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Figure 1

Evaluation of covariance distribution the three transcriptome data sets. A) among a set of 14 commonly used
reference genes B) a set of 104 reference genes proposed by Zhuo et al. [9].
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Figure 2

Comparison of custom selected reference genes with commonly used reference genes for three sets of data. A, B
and C show the distribution of log2 Fold Change by -log10 adjusted pValue for A) Control vs Mlp37347, B) Control
vs Mlp124499 and C) Mlp37347 vs Mlp124499. D, E and F depict the distribution of log2 average TPM values by
covariance for D) Control vs Mlp37347, E) Control vs Mlp124499 and F) Mlp37347 vs Mlp124499
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Figure 3

Comparison of custom selected reference genes (black border) and commonly used reference genes (red border)
with geNorm ranking, NormFinder stability index and covariance for three sets of data.
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