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Abstract 
Studies have shown that there is a certain correlation between air pollution and various 

human diseases, especially lung diseases, so it is very meaningful to monitor the 
concentration of pollutants in the air. Compared with the national air quality monitoring 
station (national control point), the micro air quality detector has the advantage that it can 
monitor the concentration of pollutants in real time and grid, but its measurement accuracy 
needs to be improved. In this paper, the measurement data of the micro air quality detector is 
calibrated with the help of the LASSO regression and NARX neural network combination 
(LASSO-NARX) model using the data measured by the national control point. First, 
correlation analysis is used to test whether the correlation between the concentration of air 
pollutants and its influencing factors is significant. Second, LASSO regression is used to give 
the quantitative relationship between pollutant concentration and various influencing factors. 
Third, the predicted value of each pollutant concentration in the LASSO regression model and 
the measurement data of the micro air quality detector are used as input variables, and the 
LASSO-NARX model is constructed using the NARX neural network. Finally, several 
indicators such as Root Mean Square Error, goodness of fit, Mean Absolute Error and 
Relative Mean Absolute Percent Error are used to compare various air quality models. The 
results show that the prediction results of the LASSO-NARX model are not only better than 
the LASSO model alone and the NARX model alone, but also better than the commonly used 
multilayer perceptron and radial basis function neural network. The LASSO-NARX model 
performed equally well on the training set and test set, indicating that the model has excellent 
generalization capabilities. Using this model to calibrate the measurement data of the micro 
air quality detector can increase the accuracy by 61.3% to 91.7%. 

 

1. Introduction    
With the development of science and technology, the progress of industry and the rapid 

increase of the global population, the environment that people depend on has been greatly 
destroyed. Many areas have experienced environmental problems such as acid rain, species 
extinction, and land desertification. Environmental issues have become one of the common 
concerns of all countries in the world today, and they are also a major challenge facing 
mankind in the 21st century. Especially air pollution, which can easily lead to diseases of 
respiratory diseases, such as acute and chronic bronchitis, asthma, pneumonia, and even lung 
cancer [1-3]. According to estimates by the World Health Organization, 7 million people die 
each year from diseases caused by air pollution [4, 5]. 
   The pollutants in the air are mainly inhalable particles, SO2, NO2 and other substances. The 
commonly used index to measure the quality of air is AQI, which is the Air Quality Index. 
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The larger the AQI value, the more serious the air pollution, and the greater the harm to 
human health. AQI is calculated based on six air pollutants: PM2.5, PM10, CO, NO2, SO2 and 
O3 ���³�W�Z�R�� �G�X�V�W�V�� �D�Q�G�� �I�R�X�U�� �J�D�V�H�V�������� �$�V�� �D�L�U�� �T�X�D�O�L�W�\�� �L�V�� �J�H�W�W�L�Q�J�� �P�R�U�H�� �D�Q�G�� �P�R�U�H�� �D�W�W�H�Q�W�L�R�Q���� �L�W�� �L�V��
particularly important to monitor air quality. 

In order to monitor the air, several national air quality monitoring stations (national 
control points) are generally set up in a key environmental protection city. Multi-parameter 
automatic monitoring equipment is installed in the air quality monitoring station for 
continuous automatic monitoring, and the monitoring results are stored in real time and 
analyzed to obtain relevant data. The construction and maintenance costs of national control 
points are relatively high, so the number of national control points is very small, which makes 
it difficult to conduct comprehensive monitoring of an area. In addition, although the national 
control point data is relatively accurate, it is often not released in real time, so it is difficult to 
realize real-time monitoring of air quality. In order to overcome the shortcomings of grid 
monitoring and real-time monitoring of pollutant concentrations at national control points, 
some companies have developed micro air quality detectors and arranged them in grids (self-
built point). The micro air quality detector has the advantages of low cost, easy installation, 
and convenient data reading. It can conduct real-time monitoring and grid monitoring of 
pollutant data [6-8]. However, since the electrochemical sensor used in the micro air quality 
detector is susceptible to external influences, the range drift and zero point drift will occur 
after a period of use, and the data measured by the self-built point will have a certain error. 
How to use the national control point data to calibrate the self-built point data is a problem 
worthy of study. 

The commonly used pollutant concentration prediction models are mainly divided into 
two categories. The first type is the atmospheric chemistry transmission model, which uses 
the theory of the atmospheric system to simulate the physical and chemical processes of 
pollutants in a specific area, and uses the generated pollutant grid data to predict air quality [9, 
10]. The mechanism of the atmospheric chemistry transmission model is complex, and is 
limited by the accuracy of the ground emission inventory, and its pollutant forecast effect is 
not very good.  

Another commonly used pollutant concentration prediction model is a statistical model 
based on machine learning algorithms. The multiple linear regression model is a more classic 
statistical model, and its biggest advantage is its interpretability. Since the quantitative 
relationship between pollutants and other variables of the model can be intuitively known 
through the regression equation, the construction of a multivariate linear regression equation 
is still a commonly used air quality prediction modeling idea [11, 12]. Lei, M. T., et al used 
meteorological and air quality data from 2013 to 2017 for five years to establish a statistical 
model based on linear multiple regression (MR) and classification regression tree (CART) 
analysis. The model successfully predicted the concentrations of NO2, PM10, PM2.5 and O3 
in Macau on the second day [13]. Liu, Bing, et al. successfully predicted the concentration of 
major pollutants in the air using a combined model of stepwise regression and multilayer 
perceptron neural network [14]. It is difficult for multiple linear regression models to detect 
the complex and potentially non-linear relationship between predictor variables and response 
variables, so machine learning algorithms such as artificial neural networks[15-18], support 
vector machines [19-22], random forest [23-26] and extreme gradient boosting [27-29] have 
become the mainstream of pollutant concentration prediction. The nonlinear auto-regressive 
with exogenous (NARX) input model increases the delay and feedback mechanism, so it 
enhances the ability to remember historical data. In recent years, it is often used for air quality 
prediction. Moursi, A. S. et al. used the PM2.5 concentration, cumulative wind speed and 
cumulative rainfall hours in the past 24 hours as independent variables, and successfully 
predicted the PM2.5 concentration in the next hour using the NARX model [30]. Mohebbi, M. 
R., et.al successfully simulated the carbon monoxide concentration in Shiraz using the NARX 
neural network model without traffic data. The results show that the dynamic neural network 
is better than the static neural network in the prediction accuracy of CO concentration in this 
area [31]. 
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2. Material and methods 
2.1. Data source and preprocessing 

The appearance of the micro air quality detector makes it possible to monitor the 
concentration of pollutants in real time, but the accuracy of its measurement needs to be 
improved. The two sets of data are collected in this paper to build the data calibration model 
of the micro air quality detector. The first set of data is measured by a national monitoring 
station in Nanjing, which provides the concentration of two dusts and four gases from 
November 14, 2018 to June 11, 2019. It has a total of 4200 pieces of data, and the interval of 
each group of data is mostly 1 hour. The second set of data is measured by a self-built point 
equipped with a micro air quality detector. It contains 234,717 pieces of data whose time 
interval does not exceed 5 minutes. The location of the self-built point is juxtaposed with the 
national control point. It not only measures the concentration of the two dust and four gases in 
the same period, but also provides five meteorological parameters of wind speed, pressure, 
precipitation, temperature and humidity. 

Preprocessing of data is a prerequisite for building statistical models. The first step is to 
delete duplicate data and obviously abnormal data (greater than 3 times the average value of 
the left and right neighbors) in the data. In the second step, the self-built point data is 
averaged on an hourly basis, and the averaged self-built point data is used to correspond to the 
national control point data, and the data that cannot be corresponding is deleted [14]. The 
preprocessed data is shown in Table 1. 
Table 1  
Descriptive statistics of pollutant concentrations and meteorological parameters measured by 
national control points and self-built points. 

Input variable Ranges Mean Standard deviation Skewness Kurtosis 

PM2.5/(�…�P/m3) 1~216.883 64.127 37.328 0.988 0.701 

PM10/(�…�P/m3) 2~443.25 102.391 65.267 1.476 2.862 

CO/(�…�P/m3) 0.05~3.895 0.863 0.452 1.463 3.136 

NO2/(�…�P/m3) 0.947~157.136 45.209 28.403 0.653 -0.259 

SO2/(�…�P/m3) 1~651.3 19.397 18.723 12.781 342.11 

O3/(�…�P/m3) 0.579~259 61.586 40.941 1.091 2.035 

Wind speed/(m/s) 0.133~2.387 0.7 0.346 0.862 0.748 

Pressure /(Pa) 996.871~1039.8 1018.8 8.889 -0.093 -0.599 

Precipitation /( mm/m2) 0~312.1 132.084 87.004 0.245 -0.728 

Temperature /(�- ) -3.882~37.944 11.882 8.603 0.625 -0.399 

Humidity /( rh%) 10.667~100 68.903 21.931 -0.487 -0.756 

 
2.2. Data exploratory analysis 

Due to the influence of internal factors and external factors, there are certain errors in the 
data measured by the micro air quality detector. This article draws a time series chart to show 
the difference between self-built point and national control point [20, 32]. The discussion 
method of the two dusts and four airs is similar. We randomly select O3 for analysis.  

It can be seen from Fig. 1 that the change trend of O3 concentration at the self-built point 
is roughly the same as that at the national control point. However, there is a certain difference 
between the O3 concentration of the self-built point and the national control point. In the first 
1500 hours, the O3 concentration of self-built point was generally higher than that of national 
control points. After 1500 hours, the fluctuation degree of O3 concentration at the national 
control point is generally greater than the fluctuation degree of the O3 concentration at the 
self-built point. 
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Fig.1. Comparison of hourly average O3 concentration data between national control points and 
self-built points. Figures are generated using Matlab (Version R2016a, https://www.mat-   
hworks.com/) [Software]. 

Fig.2. Compare the O3 concentration of national control points (Ncp) and self-built points (Sbp) 
on a monthly basis. Note that there is no data from July to October. 

Since there are certain differences in meteorological parameters in each month, in order to 
reflect the influence of meteorological parameters on the concentration of pollutants, we have 
drawn a box plot [33] as shown in Fig. 2. It can be seen that the difference in O3 concentration 
between self-built point and national control point is different every month. In November, 
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December, January and February, the O3 concentration difference between the self-built point 
and the nationally controlled point is large. The reason is that the low temperature and low 
humidity during this period affect the accuracy of the electrochemical sensor. It can be seen 
that meteorological parameters are also factors that affect the concentration of pollutants. 

2.3. Correlation analysis 

The key to air quality prediction is the prediction of the concentration of pollutants such 
as two dusts and four gases. Predicting the concentration of pollutants must find out the main 
factors that affect it [10]. Because the factors that affect the concentration of pollutants in the 
air are more complex, and the factors themselves also affect each other, quantitative indicators 
are needed to describe them. Pearson correlation coefficient (Eq. (1)) is a statistical indicator 
used to reflect the degree of correlation between variables [13, 29]. 

Table 2 shows the correlation between the concentration of six types of pollutants and 
meteorological parameters. It can be seen that at a significant level of 0.05, all variables have 
a significant correlation with each other except for the NO2 concentration and temperature. 
The absolute value of the correlation coefficient between many of these variables exceeds 0.8, 
indicating that they are highly correlated. The matrix color block diagram can intuitively 
show the correlation coefficient between the variables. In Fig. 3, the area of the sector 
represents the absolute value of the correlation coefficient, light color represents positive 
correlation, dark color represents negative correlation, and the lighter the color, the larger the 
correlation coefficient. 

�N L
�Ã �:�Ù

�Ô�8�-�ë�Ô�?�ë�;�:�ì�Ô�?�ì�;

§�Ã �:�Ù
�Ô�8�-�ë�Ô�?�ë�;�. �®§�Ã �:�Ù

�Ô�8�-�ì �Ô�?�ì�;�.
                                                     (1) 

Table 2  
Pearson linear correlation coefficients between six types of air pollutant concentrations and 
meteorological parameters (Band * indicates significant correlation at a significant level of 0.05). 

Variable PM2.5       PM10 CO NO2 SO2 O3 
Wind 
speed 

Pres- 
sure 

Precip- 
itation 

Temp- 
erature 

Humi-
dity 

PM2.5 1.00   0.89*  0.66* 0.26* 0.29* -0.26* -0.23* 0.89* -0.70* -0.16* 0.18* 
PM10    1.00  0.63* 0.34* 0.35* -0.19* -0.18* 0.38* -0.10* -0.03* -0.09* 

CO   1.00 0.30* 0.31* -0.27* -0.31* -0.07* 0.08* -0.05* 0.22* 
NO2    1.00 -0.34* -0.26* -0.36* -0.10* -0.14* -0.02 -0.11* 
SO2     1.00 -0.28* -0.19* 0.19* 0.27* -0.10* 0.11* 
O3      1.00 0.39* -0.45* -0.12* 0.68* -0.62* 

Wind speed       1.00 0.09* 0.06* 0.07* -0.32* 
Pressure        1.00 0.23* -0.85* 0.15* 

Precipitation         1.00 -0.14* 0.86* 
Temperature           1.00 -0.49* 

Humidity           1.00 
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Fig. 3. Matrix color block diagram of the correlation coefficient matrix between the concentration 
of six air pollutants and five meteorological parameters. 

3. Establishment of sensor calibration model 
3.1. Introduction to basic principles 

Least absolute shrinkage and selection operator (LASSO) was first proposed by Tibshirani 
in 1996. This method is a compression estimation. It constructs a penalty function to obtain a 
more refined model, so that it can compress some coefficients, and at the same time set some 
coefficients to zero, to achieve the effect of subset shrinkage [29, 34]. 

In a general regression model, the observed values of each data are generally considered to 
be independent of each other. Because there are many variables in the model, their 
dimensions are often different. In order to eliminate the interference of dimensions, all 
independent variables �: �ÜL �:�T�Ü�5�á �T�Ü�6�á �® �á �T�Ü�à�; need to be standardized transformation. The 
standardized �V�Ü�5�á �V�Ü�6�á �® �á �V�Ü�à mean is 0, and the variance is 1. Eq. (2) is the LASSO estimate 
of the regression model, where �� R �r is the harmonic parameter. For any �•, the estimate of �= 
is �=Ý L �U$.In order to reduce the overall regression coefficient, only the harmonic parameter �• 
needs to be adjusted. When �š L �r, the coefficients of some variables will decrease, or even 
close to 0 or equal to 0. These irrelevant or weakly correlated independent variables will be 
filtered out, thereby improving the accuracy and interpretability of the regression model. 

��k�ÙÜ�á �Ú��oL �ƒ�”�‰ �•�‹�•
�:���á�	�;

�Ã �:�U�ÜF �Ù F�Ã �T�Ü�Ý
�ã
�Ý�@�5 �Ú�Ý�;�6

�á
�Ü�@�5   
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Eqs. (3)-(4) is often used to solve LASSO regression coefficients and evaluate the pros and 
cons of regression models, where �J represents the total number of samples; �L represents the 
number of independent variables in the subset regression model; �5�5�'�ã represents the sum of 
squares of the residuals after the dependent variable �;  is regressed; �Ü�6 represents the 
prediction of the mean value of the variance when all independent variables regress the 
dependent variable �; . According to this, the model when �%�ã is the minimum value is obtained, 
and the best subset of variables in the global scope is obtained, and the regression equation 
with the best effect is generated at the same time [35, 36]. 

�%�ã L
�W�W�I�Û

�� �. F �J E �t�L                                 (3) 

�5�5�'�L L �Ã �:�;�ÜF �;�ã�Ü�;�6
�á
�Ü�@�5                                 (4) 

A typical NARX neural network is mainly composed of input layer, hidden layer, output 
layer and input and output delay. NARX neural network model is a kind of nonlinear discrete 
system, which can be represented by a nonlinear difference equation (Eq. (5)), where �U 
represents the output variable; �T represents the external input variable; �@ represents the delay 
step. Different delay steps can be set for output variables and input variables to control the 
time step of continuous prediction.  

Eq. (6) is the calculation formula for the output of each layer, where �T�Ü represents the input 
of each layer of neurons, that is, the output of the previous layer of neurons; �ñ�Ü�á�Ý represents 
the weight between layers;���>�Ý represents the threshold of the layer; �B represents the activation 
function. The activation function of the hidden layer of the NARX neural network uses the 
hyperbolic tangent function (Eq. (7)), and the output layer uses the linear function (Eq. (8)). 

�U�:�P�; L �B�:�T�:�P F �s�;�á �T�:�P F �t�;�á �® �á �T�:�P F �@�;�á �U�:�P F �s�;�á �U�:�P F �t�;�á �® �á �U�:�P F �@�;�; (5) 

                     �*�ÝL �B�:�Ã �ñ�Ü�á�Ý�T�ÜF �>�Ý
�á
�Ü�@�5 �;                                  (6) 

                                      �–�ƒ�•�Š�:�š�; L
�Ø�ã�?�Ø�7�ã

�Ø�ã�>�Ø�7�ã                                               (7) 

                                            �Ž�‹�•�‡�ƒ�”�:�š�; L �š                                                      (8) 

3.2. LASSO regression model construction 

From the correlation analysis, we can see that there is a strong correlation between the 
concentration of various pollutants, and between the pollutants and meteorological parameters. 
In this paper, the pollutant concentration at the national control point is used as the dependent 
variable, and the pollutant concentration and meteorological parameters measured at the self-
built point are used as independent variables to establish a multiple linear regression model. 
An important requirement of multiple linear regression models is that the independent 
variables are independent of each other. Through the multicollinearity diagnosis of the model, 
we can see that the maximum variance inflation factor of the multiple linear regression model 
is 26.631, which is greater than 10. Therefore, the multiple linear regression model has 
serious multicollinearity. Multicollinearity will make the air quality prediction model very 
unstable and cause over-fitting problems. 

Commonly used methods to solve multicollinearity in practical problems are: (i) Selecting 
the independent variables, and the representative methods include forward regression, 
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backward regression and stepwise regression. (ii ) Perform dimensionality reduction 
processing on independent variables. Representative methods include principal component 
regression and partial least squares regression. (iii) Biased estimation of regression 
coefficients, representative methods include ridge regression and LASSO regression. This 
study uses LASSO regression to solve the problem of multicollinearity. Compared with ridge 
regression, LASSO regression can select variables and eliminate some variables that have no 
significant influence on the dependent variable. Compared with stepwise regression, LASSO 
regression can retain those variables that are between significant and non-significant effects 
on the dependent variable, so the estimation deviation is not too large. 

Fig. 4. The trace diagram of all input variables, where the dependent variable is the O3 
concentration measured by the national control point. 

The analysis of LASSO regression using SPSSAU (https://spssau.com/) software is 
divided into two steps: (i) Find the best K value based on the trajectory graph. The selection 
principle of K value is the minimum K value when the standardized regression coefficient of 
each independent variable becomes stable. The smaller the K value, the smaller the deviation, 
when the K value is 0, it is an ordinary linear OLS regression. (ii ) Manually input K value for 
regression modeling. For the K value, generally the smaller the better, and it is generally 
recommended to be less than 1.After determining the K value, we can manually enter the K 
value to get the Lasso regression model estimate. 

For the LASSO regression model of O3 concentration prediction, it can be seen from Fig. 
4 that when k=0.05, the standardized regression coefficients of each independent variable tend 
to be stable, so this paper takes k=0.05 to establish the LASSO regression model. In the 
model, PM2.5 concentration, CO concentration, SO2 concentration, pressure and precipitation 
have no effect on O3 concentration, so they are excluded from the model. The F value in the 
model test is 1123.756, and the corresponding p value is less than 0.01, indicating that at the 
significance level of 0.01, the overall variables introduced into the model have a significant 
impact on the pollutant concentration. The coefficient of determination of the LASSO model 
is 0.750, indicating that 75% of the change in O3 concentration can be explained by the 
change in the independent variables introduced into the model, and the model has a high 
degree of goodness of fit. The results of the remaining pollutants LASSO regression model 
are shown in Table 3. 
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Table 3  
LASSO regression model of six types of air pollutant concentrations. In the model, the dependent 
variable is the concentration of the six pollutants at the national control point, and the independent 
variable is the variable monitored by the self-built point (�²  represents the variables eliminated in 
the model). 
Independent variable PM2.5 PM10 CO(H�s�r�?�6) NO2 SO2 O3 

Constant 8.663 47.475 2.127 174.759 -303.100 63.734 

PM2.5 0.724 0.890 0.005 0.070 �  �  
PM10 �  �  �  �  0.034 -0.0315 

CO 1.022 24.0446 0.197 -10.787 31.255 �  
NO2 �  0.247 0.002 0.368 0.038 -0.550 

SO2 �  �  �  0.012 �  �  
O3 �  �  �  -0.148 0.081 0.264 

Wind speed �  �  -0.033 -14.472 -2.268 12.520 

Pressure  �  �  -0.002 -0.111 0.289 �  
Precipitation  �  -0.00467 �  -0.030 0.0015 �  
Temperature  �  �  �  �  �  2.188 

Humidity  -0.083 -0.760 �  -0.363 �  -0.375 

k value 0.050 0.040 0.010 0.020 0.020 0.050 

F value 2307.828 1339.744 284.478 308.185 237.27 1123.756 

P value 0.000 0.000 0.000 0.000 0.000 0.000 

R2 0.860 0.781 0.431 0.451 0.388 0.750 

 

3.3. LASSO-NARX model construction 

The LASSO regression model gives a quantitative linear relationship between the pollutant 
concentration and various influencing factors [31]. However, there is a nonlinear relationship 
between pollutant concentration and influencing factors, and the accuracy of pollutant 
prediction needs to be improved. Taking into account the time sequence of pollutant 
concentration, this paper uses NARX neural network to improve the accuracy of pollutant 
concentration prediction. We take the predicted value of LASSO regression and the data 
measured by self-built points as input, and the concentration of six pollutants as output to 
establish the NARX neural network model. This combined model is called the LASSO-
NARX model in this paper, and the specific process is shown in Fig. 5. 

Fig.5. The frame structure of the LASSO-NARX model, where the input is the predicted value of 
the LASSO regression model and the measured value of the self-built point 

In the NARX neural network, it can be known from the Kolmogorov theorem that at most 
two hidden layers can identify arbitrary nonlinear characteristics, so this paper selects the 
default one hidden layer in Matlab. The number of nodes in the hidden layer of the neural 
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network is determined by considering the training effect and training time. For the delay order 
in the model, determine the order change range based on experience, and find out the order 
when it no longer changes significantly as the model delay order according to the change of 
the mean square error of the model under different orders. 

In the NARX model, 4135 samples are randomly divided into training set, validation set 
and test set at a ratio of 7:1.5:1.5. For comprehensive comparison, the input delay of NARX 
neural network is selected as 2, and the number of hidden layer nodes is 10. The training 
algorithm adopts the Levenberg-Marquardt algorithm with shorter training time, and the 
LASSO-NARX model is established with the help of Matlab software. 

Fig.6. The prediction effect of O3's LASSO-NARX model on the training set, validation set, test 
set and all sets. 

In order to visually show the prediction effect of the LASSO-NARX model, we have 
drawn the O3 concentration regression effect diagram. It can be seen from Fig. 6 that whether 
it is the training set, the validation set or the test set, the correlation coefficient between the 
predicted value of the model and the true value of the national control point exceeds 0.95, and 
the coefficients of each regression model are close to 1. It shows that the LASSO-NARX 
model has achieved good results in prediction. Fig. 7 is a time series diagram of the model. It 
can be seen that the predicted value of the model almost coincides with the measured value of 
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the national control point, and the residuals are mostly randomly distributed between [-40, 40], 
which also verifies that the LASSO-NARX model has good accuracy. 

 

 

Fig.7. Residual test of LASSO-NARX model. The comparison between the predicted value of the 
model and the measured value of the national control point is at the top. The error vs. time chart is 
shown below. 

4. Discussion 
In the data calibration problem of the micro air quality detector, the LASSO model alone 

and the NARX neural network model alone can predict the concentration of pollutants. This 
paper also chooses a multilayer perceptron (MLP) and a radial basis function (RBF) neural 
network to compare with the LASSO-NARX model. Taylor diagrams are often used to 
visually compare the accuracy of various models [8]. The scattered points in the Taylor 
diagram represent the model, the radial line represents the correlation coefficient (Eq. (1)), the 
horizontal and vertical axis represents the standard deviation (Eq. (9)), and the dashed line 
represents the center root mean square error (Eq. (10)). 
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Fig. 8 is a Taylor analysis chart of O3 concentration. It can be seen that compared with 
the O3 concentration measured by the national control point, the O3 concentration measured 
by the self-built point has the lowest accuracy, the LASSO model and the RBF neural 
network model have good accuracy, and the MLP neural network and NARX model have 
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higher accuracy. The LASSO-NARX model proposed in this article performs best in 
comparison with other models. 

 

Fig. 8. Taylor diagrams of predicted values of five models and measured values of self-built points, 
where SBP stands for self-built points. 

Root Mean Square Error (RMSE), goodness of fit (R2), Mean Absolute Error (MAE) and 
Relative Mean Absolute Percent Error (MAPE) can also be used to compare various air 
quality prediction models. Eqs. (11)-(14) are specific formulas, where �U�ç is the measured 
value at the national control point, �U$ is the average value of the national control point, and �S�ç 
is the regression value of the model [25, 28]. 
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It can be seen from Table 4-7 that in the comparison with the data of the national air 
quality monitoring station, the measurement data of the micro air quality detector has a large 
error, so it needs to be calibrated. The LASSO regression model and RBF neural network 
model can calibrate self-built point data, but the effect needs to be improved. The MLP neural 
network and NARX model have a good effect on the calibration of self-built point data, and 
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the LASSO-NARX model given in this article is the best in each evaluation index. In the 
index of goodness of fit, several self-built points are negative, which is caused by the large 
error of self-built points. Among the other three indexes, the most improved is the MAPE of 
NO2, which is an increase of 91.7%, and the least improved is the RMSE of PM2.5, which is 
an increase of 61.3%. 

Table 4 
RMSE of six types of air pollutant concentrations between self-built points, model forecast values 
and national control point. 
Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP 

PM2.5 22.436 12.515 8.800 8.687 19.323 8.649 10.777 

PM10 66.263 21.495 13.911 13.208 30.570 11.656 19.126 

CO 0.679 0.344 0.158 0.156 0.385 0.175 0.304 

NO2 37.183 18.035 8.081 7.715 19.029 7.725 13.216 

SO2 26.24 15.627 5.104 4.874 15.449 4.116 9.984 

O3 45.673 24.003 12.477 12.190 25.638 11.304 18.603 

 
Table 5 
R2 of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point. 
Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP 

PM2.5 0.551 0.860 0.931 0.933 0.667 0.933 0.907 

PM10 -1.076 0.781 0.909 0.918 0.558 0.938 0.827 

CO -0.929 0.507 0.895 0.899 0.380 0.872 0.708 

NO2 -1.333 0.451 0.890 0.900 0.389 0.899 0.752 

SO2 -0.726 0.388 0.935 0.941 0.402 0.958 0.786 

O3 0.094 0.750 0.932 0.936 0.715 0.945 0.864 
 

Table 6 
MAE of six types of air pollutant concentrations between self-built points, model forecast values 
and national control point. 
Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP 

PM2.5 18.181 9.193 6.070 5.951 13.709 5.821 7.763 

PM10 50.151 15.037 9.218 8.981 22.349 7.080 13.184 

CO 0.549 0.263 0.100 0.098 0.288 0.110 0.237 

NO2 29.838 13.877 4.924 4.806 14.166 4.658 9.991 

SO2 12.867 10.421 2.684 2.464 9.998 2.116 7.246 

O3 36.63 18.683 7.948 7.788 18.930 7.647 14.396 

 
Table 7 
MAPE of six types of air pollutant concentrations between self-built points, model forecast values 
and national control point. 
Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP 

PM2.5 0.447 0.242 0.151 0.146 0.370 0.133 0.185 

PM10 0.887 0.264 0.147 0.146 0.428 0.107 0.210 

CO 0.478 0.317 0.096 0.095 0.379 0.112 0.283 

NO2 2.129 0.760 0.1816 0.177 0.737 0.170 0.471 

SO2 0.685 0.737 0.161 0.131 0.735 0.131 0.530 

O3 4.322 1.487 0.428 0.397 1.446 0.373 1.002 
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5. Conclusions 
The human body needs to inhale 10-12 cubic meters of air every day, so the quality of air 

is closely related to human survival. The main pollutants that affect air quality are PM2.5, 
PM10, CO, NO2, SO2 and O3 [1, 3]. Only by real-time monitoring of the concentration of 
pollutants, the government and relevant departments can take appropriate measures to the 
pollution source in a timely manner. 

The national control points established by some countries can measure the concentration 
of pollutants more accurately. However, due to various reasons, the number of national 
control points is too small, and it is difficult to form grid monitoring. Another disadvantage of 
the national control point is that the release of data is lagging, so it is difficult to form real-
time monitoring. The appearance of the micro air quality detector overcomes these 
shortcomings of the national control point, but because the electrochemical sensor used is too 
sensitive, the accuracy of the measurement needs to be improved. 

The LASSO regression model can calibrate the data measured by the micro air quality 
detector and give the quantitative relationship between the pollutant concentration and each 
influencing factor, but it cannot find the nonlinear relationship between the pollutant 
concentration and each influencing factor. The NARX model can find the nonlinear 
relationship between the pollutant concentration and various influencing factors, and the 
prediction accuracy is significantly higher than the LASSO regression model. However, it 
cannot give a quantitative relationship between pollutant concentration and various 
influencing factors. 

The LASSO-NARX air quality combined model proposed in this study combines the 
advantages of the two models. It can not only reflect the quantitative relationship between the 
pollutant concentration and the influencing factors, but also has a higher prediction accuracy 
than the NARX neural network model alone. The LASSO-NARX model performs very well 
on the training set and test set, indicating that it has a strong generalization ability. The model 
uses a total of 4135 sets of data, and the data of the four seasons are all covered in the model, 
which also shows that the model is relatively stable. However, due to the different climatic 
conditions in different regions, this model may not be applicable to other regions. In the 
future, our team will try to collect data from other regions to further validate the model. 
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