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Note1. ST-FMR spectra for various frequencies
Figure S1a shows the schematic illustration of the ST-FMR measurement [S1, S2], of which details are discussed in the Method section of the main text. Figures S1b-S1d show the ST-FMR spectra of the Co/Ni sample with different ’s for various frequencies ranging from 10 to 21 GHz, which were measured while sweeping magnetic fields along the z-direction. 
[image: ]
Figure S1. ST-FMR measurement of Co/Ni sample for various frequencies. a, Schematic diagram of the device structure of the ST-FMR measurement set-up. b-d, ST-FMR spectra of the Co/Ni sample for various frequencies ranging from 10 to 21 GHz with sequentially applied gate voltages  = 0 V (initial) (b),  = +5 V (c), and  = -5 V (d). The dotted lines are the fitting curves based on Eq. (2) of the main text.

Note 2. Voltage-driven frequency modulation in Co/Ni sample with a different thickness 
To show the reproducibility of the voltage-driven frequency modulation, we fabricated another Co/Ni device of Ta (3 nm)/Pt (5 nm)/[Co (0.4 nm)/Ni (0.6 nm)]7/Co (0.4 nm)/AlOx (2 nm), where a slightly thinner Co (0.4 nm) is used compared to the sample used in the main text has a [Ta (3 nm)/Pt (5 nm)/[Co (0.45 nm)/Ni (0.6 nm)]7/Co (0.45 nm)/AlOx (2 nm)]. We first check PMA of the sample using the ST-FMR measurement with the same procedure used in Fig. 2 of the main text. Figure S2 shows the resonance frequency () of ST-FMR spectra as a function of the resonance field () for two Co/Ni samples having different Co thicknesses. As the y-intercept indicates the PMA field () according to the Kittel formula  [S3], demonstrating that the sample with a thinner Co has a stronger PMA. 
[bookmark: _Hlk76500095]We then fabricate an SHNO with a constriction width of 100 nm. The experimental procedure for the power spectral density (PSD) measurement is the same as used in Fig. 3 of the main text, except for a dc current () of 1.8 mA used. Figures S3a-S3c show the color plots of PSD as a function of a magnetic field (), where gate voltages of +5 V and -3V were sequentially applied. The auto-oscillation peak is clearly observed, and its frequency is increased by the positive voltage and restored by the subsequent negative voltage. Figure S3d shows the auto-oscillation spectra for a magnetic field of  for different gate voltages, extracted from Figs. S3c-S3g. The frequency modulation of the sample with a thinner Co is about a few GHz, confirming the reproducibility of the voltage-driven frequency modulation of the SHNO.


[image: ]
Figure S2. ST-FMR measurement. Resonance frequency () of ST-FMR spectra as a function of the resonance field () for the samples of Ta (3 nm)/Pt (5 nm)/[Co (0.45 nm)/Ni (0.6 nm)]7/Co (0.45 nm)/AlOx (2 nm) (black squares) and Ta (3 nm)/Pt (5 nm)/[Co (0.4 nm)/Ni (0.6 nm)]7/Co (0.4 nm)/AlOx (2 nm) structures (red circles).
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[bookmark: _Hlk76493553][bookmark: _Hlk76475128]Figure S3. Voltage-driven frequency modulation in SHNO of Ta (3 nm)/Pt (5 nm)/[Co (0.4 nm)/Ni (0.6 nm)]7/Co (0.4 nm)/AlOx (2 nm). a-c, PSDs versus a magnetic field for sequentially applied gate voltages,  = 0 V (initial state) (a),  = +5 V (b), and  = -3 V (c). = 1.8 mA. d, Auto-oscillation spectra for  for different gate voltages, extracted from Figs. S3c-S3g. The yellow line is the Lorentz fit of the auto-oscillation spectra. 
Note 3. Gate voltage effect on the current-induced SOT
We investigated the gate voltage effect on current-induced spin-orbit torque (SOT) using in-plane harmonic measurements. For the measurement, we fabricated a Hall bar device with a 10 μm × 10 μm cross using the Ta (3 nm)/Pt (5 nm)/[Co (0.45 nm)/Ni (0.6 nm)]7/Co (0.45 nm)/AlOx (2 nm) film. The first and second harmonic Hall resistance ( and ) were simultaneously measured with an a.c. current of 15 mA and a frequency of 11 Hz while rotating the sample (azimuthal angle φ) under an in-plane magnetic field (). The  ranges from 0.3 T to 4.0 T, which is larger than the perpendicular magnetic anisotropy field ), so the magnetization is aligned in the magnetic field direction. The gate voltage was applied to the top electrode for 5 minutes at 150 ℃ before the measurement. Figure S4a shows the  as a function of  under a magnetic field of 0.6 T for various gate voltages. The  can be expressed as [S4, S5], 
,   (2)
where ,  and  are the anomalous Hall resistance, planar Hall resistance and thermal effect contribution, respectively;  and  are the damping-like effective field and field-like effective field including Oersted field, respectively;  is the effective magnetic field (. Figures S4b and S4c show the magnetic field-dependence of the  and () components of , respectively. Figure S4d demonstrates that the extracted  and  values of the sample, which are not changed by the gate voltage. 
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Figure S4. Gate voltage effect on current-induced SOT. a, Second-harmonic Hall resistance  versus azimuthal angle  under an in-plane magnetic field of 0.6 T for sequentially applied gate voltages. b,  component of  as a function of  for sequentially applied gate voltages. c, () component of  as a function of  for sequentially applied gate voltages. The gate voltages were applied in the sequence indicated by the black arrows in Figs. S4a-S4c. d, The variation of the SOT-induced  (black square) and  (black triangle) values with sequentially applied gate voltages.


Note 4. Threshold current for current-induced magnetization auto-oscillation
We determine the threshold current () at which auto-oscillation begins to occur by a linear fit of the inverse of the PSD integral. Figures S5a-S5e show the (integral of PSD)-1 versus current for sequentially applied gate voltages, where Ith is obtained by the x-intercept of the linear fit (solid red lines) [S6, S7]. Figure S4f displays the variation of  with gate voltages, which is the same as Fig. 4f in the main text.
[image: ]
Figure S5. Threshold current for current-induced magnetization auto-oscillation. a-e, (integral of PSD)-1 as a function of current for sequentially applied gate voltages, Vg = 0V (initial) (a),  = +4 V (b),  = +5 V (c),  = -2 V (d), and  = -3 V (e). . f,   according to the sequentially applied gate voltages, extracted from Figs. S5a-S5e.
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