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Abstract
Children in low- and middle-income countries are often exposed to higher levels of, and more vulnerable
to, the health effects of air pollution. Little is known about the diversity, toxicity, and dynamics of airborne
chemical exposures at the molecular level.

We developed a work�ow employing state-of-the-art wearable passive sampling technology coupled with
high-resolution mass spectrometry to comprehensively measure 147 children’s personal exposures to
airborne chemicals in Limpopo, South Africa, as part of the VHEMBE study.

637 environmental exposures were detected, many of which have never been measured in this
population, including 50 airborne chemical exposures of concern in the children, including biocides,
plasticizers, organophosphates, dyes, combustion products, and perfumes. Biocides detected in
wristbands included p,p'-DDT, p,p'-DDD, p,p'-DDE, propoxur, piperonyl butoxide, and triclosan. 27% of
exposures were signi�cantly different across seasons. Our study provides the �rst report covering
hundreds of chemical exposures among African children, demonstrating chemical exposures warranting
further study.

Introduction
In 2016 it was estimated that 23% of the global disease burden was attributable to environmental
factors (Prüss-Üstün and Corvalán 2007; Prüss-Üstün et al. 2016). Enhanced vulnerability was identi�ed
in low- and middle-income countries (LMIC) due to increasing chemical production and use, lack of
regulation/enforcement and education on chemical exposure risks, and differences in priorities due to the
need for economic development (Trasande et al. 2011a). Further concerns have been raised regarding the
unique challenges in sub-Saharan Africa related to the lack of infrastructure for waste management and
water treatment, poor availability of low-cost fuels, and high risk for malaria (Fayiga et al. 2018). Over
90% of rural populations in Africa burn refuse or biomass for cooking or heating. This practice can
generate household air pollution (HAP), with �ne particulate matter (PM2.5) levels commonly exceeding
that of the World Health Organization guidelines (Petkova et al. 2013; Vanker et al. 2015, 2017).  Given
the systemic in�ammation and oxidative stress induced by PM2.5, elevated HAP exposure is ranked as
the second environmental factor of concern in global burden of disease (Landrigan et al. 2018; Bigna and
Noubiap 2019). In malaria endemic areas, the adverse effects of PM2.5 may be compounded by
insecticides applied on the interior walls of homes through Indoor Residual Spraying (IRS) for malaria
control. This practice can result in elevated exposure to dichlorodiphenyltrichloroethane (DDT) and
pyrethroids which may interfere with immune function by inducing oxidative stress or by disrupting sex
hormones (Pérez-Maldonado et al. 2005; Nasuti et al. 2007; Han et al. 2008; Meeker et al. 2009;
Yoshinaga et al. 2014; Molina et al. 2021). Environmental exposure to insecticides from IRS in the
Limpopo province of South Africa has recently been associated with accelerated fetal growth (Chevrier et
al. 2019a), reduced social-emotional scores at 1 and 2 years of age (Eskenazi Brenda et al.), allergies in
children at 3.5 yrs (Huq et al. 2020), hypertensive disorders among pregnant mothers (Murray et al. 2018),
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weight gain in girls (Coker et al. 2018), and other health impacts (Bornman et al. 2016; Murray et al. 2018;
Huang et al. 2018; Verner et al. 2018; Chevrier et al. 2019a, b; Huq et al. 2020; Eskenazi Brenda et al.;
Huang Jonathan et al.).

Children from these rural regions of Africa often spend extended periods of time indoors, near cooking
�res, which can result in high exposure to airborne pollutants. Exposure to environmental contaminants
during critical windows of susceptibility coupled with poverty and malnutrition may enhance vulnerability
(Suk et al. 2003; Sly and Flack 2008). Understanding the extent to which these factors contribute to poor
health, requires a comprehensive assessment of environmental exposures. The studies that have been
conducted to date in sub-Saharan Africa have focused on a limited panel of pesticides or regulated air
pollutants (Bornman et al. 2016; Murray et al. 2018; Huang et al. 2018; Verner et al. 2018; Chevrier et al.
2019a, b; Huq et al. 2020; Eskenazi Brenda et al.; Huang Jonathan et al.). The lack of available
technology which can be feasibly deployed with children in a LMIC context has presented challenges in
the breadth and scale of environmental measurements that can be captured. We recently developed a
lightweight, low-cost, and non-invasive device (the FreshAir wristband) to facilitate population-scale
exposure assessment in LMICs (Figure 1A) (O’Connell et al. 2014; Hammel et al. 2016, 2018; Wang et al.
2019; Koelmel et al. 2020b, a; Lin et al. 2020). The FreshAir wristband is an exposomic sensor technology
for evaluating an individual’s personal exposure to contaminants from combustion, consumer products,
clothing, and dietary (foods and additives) sources (Doherty et al. 2021). While the wristband does not
directly measure the types of products and diet, mixtures of airborne chemicals measured can be used to
specify what is being cooked, used, and worn. The device passively absorbs airborne chemicals into
a polydimethylsiloxane (PDMS) sorbent membrane that is contained in a unique sheltered design that
both minimizes effects of wind on uptake rates(Seethapathy et al. 2008; Zhang et al. 2013) and
eliminates direct dermal contact (Figure 1B). This contained design is especially important for children
who are prone to play with the passive samplers. 

Coupling the wristband technology with gas chromatography high-resolution mass spectrometry (GC-
HRMS) enables evaluation of the occurrence, distribution, and magnitude of expected environmental
contaminants of concern and screening for thousands of unexpected chemical exposures (Koelmel et al.
2020a). After chemical characterization of exposure pro�les, newly introduced methods can be deployed
to rapidly categorize detected compounds based on toxicity using experimental and computational
evidence (Martin et al. 2008; BENFENATI et al. 2009; Zhu et al. 2009; Cassano et al. 2010; Williams et al.
2017; Vegosen and Martin 2020).

The objective of this study was to evaluate the environmental exposures of children in the Limpopo
province of South Africa and identify the exposures of most concern. Exposures were evaluated for
children between the ages of 5 and 6.5 years enrolled in the Venda Health Examination of Mothers,
Babies and their Environment (VHEMBE) Birth Cohort using the Fresh Air wristband. While the health
impacts of criteria air pollutants and insecticide use are recognized (Bornman et al. 2016; Murray et al.
2018; Huang et al. 2018; Verner et al. 2018; Chevrier et al. 2019a, b; Huq et al. 2020; Eskenazi Brenda et
al.; Huang Jonathan et al.), other sources of environmental exposures may be missed in rural African
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populations. We determined likely chemical structures for 637 chemicals, including 50 chemical
exposures of concern consisting of combustion products, insecticides and other biocides, dyes,
fragrances, organophosphates, and plasticizers. This work demonstrates the feasibility of using novel
exposomic sensors in a LMIC context, enabling a holistic exposure assessment approach to identify
regionally speci�c environmental exposure signatures. 

Methods
2.1. Population, site characteristics, and study design

This study leveraged ongoing research from the VHEMBE program, which began as a birth cohort in 2012
with 752 mother-child pairs from rural villages in the Vhembe district of Limpopo, South Africa. The
overall aim of the VHEMBE program is to identify environmental determinants of health and sources of
environmental contaminants to develop interventions to mitigate exposures. Pregnant women were
recruited when they presented to give birth at Tshilidzini Hospital in the town of Thohoyandou between
2012 and 2013.  Enrollment was restricted to women above the age of 18 years who spoke Tshivenda as
their primary language at home, resided less than 20 km from the hospital and did not have intentions of
moving away from the area within the following two years, were not infected with malaria during
pregnancy, had contractions at least 5 minutes apart and gave birth to a live singleton. Further
information about the VHEMBE program has been published previously.1 

Chemical exposure was assessed for 147 children ages 5 to 6.5 years participating in the VHEMBE
program between October 2018 to January 2019 and July 2019 to September 2019. Some families
moved away from the immediate area (>20 km from Tshilidzini Hospital), requiring travel distances
longer than 30 minutes to the homes. Exposures were evaluated using FreshAir wristbands worn over a
72-hour sampling period. Children were instructed to only remove samplers while bathing or swimming.
At the end of the 72 hours (about 3 days), wristbands were collected. 

The primary caregivers of study children completed structured questionnaires at the time of the child’s
birth as well as at 1 week and 1, 2, 3.5, and 5 years of age. Questionnaires were also administered to
caregivers in Tshivenda at the time the FreshAir wristband were picked up, to collect data on participants’
household characteristics, the date(s) and time(s) of cooking/burning materials, which fuels were used,
whether �res occurred indoors or outdoors and whether the child was present during biomass burning,
and household characteristics, including poverty status. Other information was recorded on the
questionnaire such as the road and tra�c conditions near their home, their proximity to large
factories/warehouses or other major sources of pollution, the primary area of cooking, if a secondary
cooking area was used, and GPS coordinates for cooking locations and the child’s bedroom. All
participants provided informed consent prior to data collection. This study was approved by Institutional
Review Boards from McGill University, the University of Pretoria, the Limpopo Department of Health and
Social Development, Tshilidzini Hospital and Yale University. 
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2.2. Wristband preparation, deployment, and gas chromatography high resolution mass spectrometry
(GC-HRMS) data-acquisition

Wristband preparation and data-acquisition have been previously described (Lin et al. 2020; Koelmel et al.
2020a). Brie�y, PDMS sorbent bars were custom fabricated and cleaned in a vacuum oven (2 h, 300 °C)
prior to use. PDMS sorbent bars were transported in airtight 2 mL amber glass vials with PTFE septa caps
from Yale University to the study �eld o�ce at Tshilidzini Hospital at room temperature. Immediately prior
to deployment, study �eld staff inserted four pre-cleaned PDMS sorbent bars into the custom designed
PTFE chambers and mounted these chambers into wristband attachments. 

Participants were asked to remove the wristband while bathing or swimming. At the end of the exposure
assessment period, study �eld staff collected and stored the FreshAir wristband in the air-tight container
while being transported back to the study �eld o�ce. Immediately after arrival, the �eld staff removed the
PDMS sorbent bars from each sampler and placed them back into the airtight glass storage vials using
stainless steel forceps. Samples were stored in a refrigerator at the study �eld o�ce and transported
using cold chain shipment to the Yale School of Public Health. Samples were then stored at -20 °C prior to
analysis. Field blanks collected during the study were used to correct for potential contamination. These
PDMS bars (�eld blanks) were processed similarly to participant samples, including both storage and
placement in and out of PTFE chambers and wristband attachments (to simulate sample preparation),
but were not placed on participants.

Though FreshAir wristbands were designed to capture gas-phase chemicals, particle deposition was
observed on all PDMS sorbent bar samples (Figure 1). This observation was expected because only the
main road in the study region was paved, leading to an increased amount of resuspended dust being
captured by the FreshAir sampler during the participant’s daily routine. Furthermore, biomass burning
likely resulted in particle deposition. To remove excess dust debris, PDMS sorbent bars were rinsed
immediately prior to analysis using Optima LC/MS grade water. PDMS sorbent bars were then spiked
with an internal standard mixture which contained 4,4’-dibromoocta�uorobiphenyl, 5'-�uoro-2,3',4,4',5-
pentabromodiphenyl ether, naphthalene-d8, 1-methylnaphthalene-d10, acenaphthene-d10, �uorene-d10,
phenanthrene-d10, �uoranthene-d10, pyrene-d10, perylene-d12, phenol-d5, and p-terphenyl-d10. Sorbent
bars were then placed into pre-cleaned glass autosampler tubes (Gerstel, Linthicum, MD, USA) on a
temperature-controlled autosampler tray maintained at 10 ºC (MéCour, Groveland, MA, USA). For sample
analysis, an autosampler tube was transferred into a thermal desorption unit (TDU; Gerstel, Linthicum,
MD, USA). The TDU was initially held at 30°C for 1.1 min and then ramped at 720 °C per minute to 280 °C
(5 min hold) under a �ow rate of 350 mL/min of helium gas (99.999%). Extracted analytes were cyro-
focused to -90 ºC on a 2mm, glass wool deactivated liner in a cooled injection system (Gerstel, Linthicum,
MD, USA) cooled to -90 ºC. The transfer line between the TDU and cooled liner was maintained at 250 °C.
Analytes were directly transferred to the GC column (TG-5SILMS, 30m x 0.25mm x 0.25 μm; Thermo
Fisher Scienti�c, Waltham, MA). The carrier gas �ow (helium) was set to 1.4 mL/min and the GC oven
was held at 70 °C for one minute and then ramped at 7 °C/min to 300 °C. The �nal temperature was held
for 4.0 min for a total run-time of 37.86 minutes. During the analysis, full-scan electron ionization (EI)
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mass spectra (m/z 53.4 – 800) were recorded at an acquisition rate of 4 Hz, and at 60,000 resolution on
a Q-Exactive Orbitrap mass spectrometer (ThermoFisher, Waltham, MA, USA). QCs and blanks (laboratory
and transport) which were run every 5 samples.

2.3. Suspect screening and data-processing work�ow

Data-processing consisted of spectral deconvolution, compound annotation, and alignment in Compound
Discoverer 3.2 (Thermo Fisher Scienti�c, Waltham, MA). Compound Discoverer was used for the
determination of the relative abundances and possible identi�cations (annotations) of compounds
across all participants. In-house scripts performed �ltering to determine the highest con�dence
annotations, remove noise and measured chemicals unrelated to exposures, and normalize the signal for
comparison across instrument batches and between compounds. Alkanes were used to calculate Kovat’s
retention indices (Kováts 1958) for all features. The work�ow has been described in-depth previously
(Koelmel et al. 2020a).  

The raw mass spectrometry datasets were �rst converted to a table of aligned features (retention times
and associated deconvoluted fragments) using Compound Discoverer 3.2. The table consisted of
chemical abundances across all samples and �eld blanks, tentative annotations using a composite score
of retention index (RI) matching, a dot-product search index (SI) and reverse search index (RSI), high-
resolution mass �lter (HRMF) and reverse high resolution mass �lter (RHRMF). Tentative annotations
were assigned using the NIST 2017, Wiley 11th edition, and GC-Orbitrap (Thermo Fisher Scienti�c) EI
spectral libraries, together covering over 740,000 unique chemical structures. All tentative annotations
containing a calculated RI and library RI were removed if RI differences were higher than 100. 

After processing in Compound Discoverer, the dataset was exported as an Excel �le, and an in-house
script was used to designate annotations as “high con�dence”, “medium con�dence,” or “low con�dence.”
High con�dence annotations had molecular ions observed if in the library, retention index matches within
50 units, RHRMF scores greater than 75, SI scores greater than 500, and RSI scores greater than 600.
These con�dent annotations accurately de�ne the exact chemical structure or a closely resembling
isomer (for example the methyl positions for dimethyl naphthalene will not be known). Medium
con�dence scores were those meeting the same criteria, except retention index and molecular ion
matching. All the remaining scores were designated as low con�dence. Manual review of 25 high
con�dence annotations of interest was performed to validate the method, as well as con�rmation of the
top hit from the scoring method using over 70 standards. Following ranking of con�dence, blank feature
�ltering (BFF) (Patterson et al. 2017), duplicate removal (by name and CAS-RN), batch-wise median
normalization, and TIC recalculation was performed as described previously (Koelmel et al. 2020a). 

2.4. Statistics and data interpretation

Resulting annotations were ranked to determine potential chemicals of most concern. Predicted acute
toxicity and AMES mutagenicity for screening likely carcinogens was performed using the US-EPA
CompTox Chemicals Dashboard (Williams et al. 2017) (from here on referred to as the Dashboard) batch
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search function (using CASRN as inputs). Chemicals were ranked by predicted mammalian acute toxicity
(rat oral LD50, 24 hours) (Zhu et al. 2009), developmental toxicity (Cassano et al. 2010) and
mutagenicity (BENFENATI et al. 2009; Sushko et al. 2010) to determine the top compounds of concern.
Furthermore, chemicals were screened to determine those chemicals deemed as high priority due to
human health and environmental concerns by various governmental organizations using lists contained
in the Dashboard (Williams et al. 2017). These lists included: 

1. the EPA Toxics Release Inventory (Lynn and Kartez 1994; US EPA 2013), which lists 677 chemicals
which either have acute or chronic human health effects (e.g., cancer causing compounds) or
signi�cant adverse environmental effects
<https://comptox.epa.gov/dashboard/chemical_lists/TRIRELEASE>. 

2. The Agency for Toxic Substances and Disease Registry (ATSDR) (U.S. Department of Health and
Human Services) list contained in the Toxic Substances Portal (200 chemicals deemed toxic to
human health) <https://comptox.epa.gov/dashboard/chemical_lists/ATSDRLST> (2020)

3. The Minnesota Department of Health Chemicals of High Concern and Priority Chemicals list which
was established under the Toxic Free Kids act (1643 chemicals of health concern, especially to
vulnerable population including children and pregnant mothers)
<https://comptox.epa.gov/dashboard/chemical_lists/MNDOHTOXFREE> (Minnesota Department of
Health 2019a)

4. The 20 high priority chemicals selected from the Toxic Substances Control Act Chemical (TSCA)
Substance Inventory (41,587 active chemicals) (US EPA 2015) which are undergoing further review
based on health concerns <https://comptox.epa.gov/dashboard/chemical_lists/TSCAHIGHPRI>.

5. The NORMAN European Food Safety Authority Priority Substances (178 chemicals of 2336
chemicals assessed which were selected based on toxicity, environmental release, lack of
biodegradation, and bioaccumulation in food)
<https://comptox.epa.gov/dashboard/chemical_lists/EFSAPRI> (Oltmanns et al. 2019).

�. The NORMAN Potential Persistent, Mobile and Toxic (PMT) substances (269 chemicals)
<https://comptox.epa.gov/dashboard/chemical_lists/UBAPMT> (Örtl 2019).

Furthermore, chemicals with the highest inhalation and dermal toxicity, ocular irritation, and
carcinogenicity  were identi�ed using the prototype EPA Hazard Comparison Dashboard (EPA-HCD), an
application resulting from adding additional data and functionality to the reported Alternatives
Assessment Dashboard (Vegosen and Martin 2020). This dashboard compiles both experimental and
predicted toxicities from various organizations and categorized chemicals from low to very high in
categories spanning both health hazards and chemical properties.  

Multivariable analysis (Principal Component Analysis) and univariate analysis (ANOVA and volcano
plots) were performed in Metaboanalyst 5 (Chong et al. 2018) to compare exposures across seasons.
Participants were grouped based on date of sampling, with 99 participants falling under the dry season
(July/August, with 8 of these 99 participants falling in the transition month of September). The remaining
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participants were classi�ed as falling within the wetter season (October/November/December).
Furthermore, levels of chemicals were compared across poverty and cooking fuel types and frequencies.
For all univariate tests p-values were adjusted using the Hochberg method to correct for multiple testing
errors. Food poverty (yes or no) was de�ned as having a household income below R547 per person per
month when children were 5 years old based on Statistics South Africa guidelines.

Results And Discussion
Personal exposure assessment using the FreshAir wristband (Figure 1) is a relatively low-cost method for
investigating the external exposome of vulnerable individuals including children. This study had a
relatively high participation rate, attributable to the long-term partnerships between the study �eld staff
and participants’ families, as well as the comfortable and aesthetically pleasing design of the FreshAir
wristbands. Early on in this study the PDMS sorbent bars of a few wristbands were lost because
participants opened the wristband chamber. To minimize loss, and increase participation rate, we
prevented the chamber from being opened using torx headed screws. The combination of this
'childproofed' design and a t-shirt offered as a reward for returning an intact wristband, increased sample
recovery. 

Future work is still needed to improve sample recovery and quality. Our study staff encountered
numerous challenges trying to recover the wristbands. These included claims like the wristbands were
lost and that other children had removed them; but our study children also tended to hide the bands from
the staff. There was evidence of tampering with the device such as chew marks trying to open the
cassettes and others left stones inside the cassettes. Screws were not always holding tight, or the
mothers had to sew back the bands after they were torn. We also heard explanations such as that the
children had lost the bands in the pit toilets after visiting the toilet. These challenges were probably
re�ecting the poor socio-economic conditions of the mothers and therefore, pre-emptive action should be
taken in similar future studies.

Exposure pro�les were assessed for 147 children enrolled in the VHEMBE study between the age of 5 and
6.5 years. Due to various sources of emissions of concerns, including cookstoves using plastic and
biomass for cooking (Figure 1A and Figure 1B), un�ltered vehicle exhaust (Figure 1C), open refuse
disposal and biomass and refuse burning (Figure 1D), and indoor and outdoor pesticide application
(Figure 1E), a diverse array of exposures were expected. Thousands of chemical signatures from various
sources were detected in these children, showing the breadth of coverage of this technique. Across the
children that were included in the study, 3,580 chemicals were annotated after removing any signatures
from transport or other background sources. Of these, 637 were assigned a chemical structure with “high
con�dence”, meaning that the exact structure or a close structural isomer are likely the correct annotation
(see methods). A further 1,209 chemical annotations were assigned with “medium con�dence”, meaning
that the chemical class was likely correct, but the exact structure may not be (see the Supplemental Data
for all detected compounds, con�dence assignments, and relative abundances). 
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Chemical exposures detected using the FreshAir wristbands were screened against chemical priority lists
developed by various non-pro�t and government agencies in Europe and the United States to determine
chemical exposures which may pose health risks (Figure 2). These lists consist of chemicals with acute
or chronic toxic effects, or those suspectced of being toxic which were under further review by
government agencies. Certain lists also accounted for environmental fate and transport and the exposure
potential to each chemical. Of special relevance was the Minnesota Department of Health Chemicals of
High Concern and Priority Chemicals List which was established under the Toxic Free Kids (TFK) Act and
consists of 1,643 chemicals (referred to here on out as the “TFK list”) (Minnesota Department of Health
2019a). The TFK List contains chemicals of health concern, especially to vulnerable populations such as
children. Forty-six of the 637 chemical exposures assigned with high con�dence were found in at least
one of the six priority lists, with 20 occurring in 2 or more lists, and 37 occurring on the TFK list (Figure 2).
These chemicals were found across multiple sources including biocides (e.g., insecticides), plasticizers
(e.g., phthalates), combustion products (polycyclic aromatic hydrocarbons (PAHs) and furans), �ame
retardants, fragrances, dyes, and personal care products (Figure 2). This shows the diverse sources of
chemicals of potential health concern in this rural population of South Africa. 

The lists of chemicals of concern screened in this study were developed by government agencies and
organizations in the United States and Europe. Interestingly, these children in remote African villages are
exposed to a plethora of synthetic chemicals also impacting children in developed countries, including
�ame retardants, (e.g., tris(2-carboxyethyl) phosphine (TCEP), tris(2-chloroisopropyl) phosphate (TCPP),
and triphenyl phosphate) (Figure 2). The priority lists developed in high income countries may not re�ect
the chemical risks of those living in developing countries, because exposure potential in the two settings
may be different. Furthermore, developing and emerging economies use, and production of manmade
chemicals is increasing overtime, and local communities often do not have the funding to characterize
these chemical exposures in a non-targeted fashion.(Trasande et al. 2011b) Therefore, as in this study,
personal exposures must be characterized across various cultural, economic, and geographically diverse
populations in order to better understand potential chemicals of concern from a high exposure
standpoint. Furthermore, priority lists should account for these diverse populations, so that region speci�c
lists of chemicals of concern can be more effectively deployed, without missing chemicals which do not
appear in Western countries with different regulations, for example. Finally, experimental toxicity values
can then account for a wide range of chemicals which are not prioritized in the West.

Chemicals were additionally screened by predicted oral acute toxicity and mutagenicity, as well as
compiled experimental evidence of “very high” acute inhalation toxicity, dermal toxicity, carcinogenicity,
and ocular irritation using the EPA-HCD (Vegosen and Martin 2020) (Figure 3). The hazard scores of low
(L), moderate (M), high (H), or very high (VH) hazard represented in the EPA-HCD are based on the DfE
Alternatives Assessment Criteria for Hazard Evaluation which provides guidance for converting values
from a variety of different sources and formats into the consistent L, M, H, and VH scores (US EPA Design
for the environment program alternatives assessment criteria for hazard evaluation Version 2.0.
https://www.epa.gov/sites/production/�les/2014-01/documents/aa_criteria_v2.pdf.). “Very high” is the
highest category of toxicity on the EPA-HCD. Carcinogenic compounds that the children were exposed to
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that were categorized as “very high” toxicity included those from combustion products (PAHs: chrysene,
benzo(k)�uoranthene, and benz(a)anthracene), phthalates, and components of insecticides used to
control malaria in the villages including   p,p'-DDT and its degradation product, p,p’-DDE (dichlorodiphenyl
dichloroethylene) (Figure 3). Chemicals with exceedingly high acute dermal toxicity detected included
benzothiazole (used in car tires and found in other consumer/industrial products) and piperonyl butoxide
(used as a synergist to enhance insecticide e�cacy against malaria carrying mosquitoes in Africa
(Gleave et al. 2018a)). Inhalation toxicity is of special relevance in this study. The FreshAir wristband
design has a perforated chamber that eliminates direct contact of the PDMS sorbent bar with the skin;
any chemicals monitored were volatile or semi-volatile chemicals in the air. Therefore, all chemicals
detected are likely being inhaled by the children to some degree. Of great concern are the �ve chemicals
detected with very high acute inhalation toxicity (pyrene, p-cresol, triclosan, and propoxur; Figure 3).

Insecticides are sprayed on the interior walls of residences in the study region to control malaria through
IRS practices; DDT is primarily applied to interior walls of unpainted mud dwellings and the pyrethroids
deltamethrin or cypermethrin are primarily applied to homes with painted walls.(Bouwman et al. 2006)
DDT and its breakdown product, DDE has been detected in serum collected from the mothers of VHEMBE
participants (Gaspar Fraser W. et al.). p,p'-DDT and p,p'-DDE were also detected by FreshAir wristbands
worn by children in the current study. p,p'-DDD, DEET, piperonyl butoxide (Gleave et al. 2018b) and
propoxur (Gericke A. et al. 2002) were additionally observed, which are all active ingredients in
insecticides, insecticide transformation products, or used in mosquito repellant products. Most children
had detectable levels of these insecticides and insecticide synergists (Figure 3), with, for example, all
insecticides, insecticide synergists, and insecticide transformation products were detected in 75% or more
of the participants (Figure 3 and Figure 4C). The distributions of these chemicals were similar across
participants (Figure 3), with most children having pesticide exposure within 2 orders of magnitude of
each other (Figure 3). To our knowledge, while over 40 pesticide exposures have been measured in Africa
(Anderson et al. 2014; Jepson et al. 2014; Donald et al.), including airborne exposures to p,p'-DDT and
p,p'-DDE, this is the �rst study to measure exposures to propoxur, piperonyl butoxide, and DEET, as well as
triclosan, another biocide, in rural Africa. These unique surrogate measurements of inhaled chemical
exposures in children raise concern, as both propoxur and triclosan likely have very high acute inhalation
toxicity as determined by the EPA-HCD.

Another source of chemical exposure for these children was from combustion of wood and refuse used
for cooking in huts with little ventilation (Figure 2). Overall, over 10 plasticizers (including phthalates) and
over 150 potential PAHs were detected (See Supplemental Data), showing the vast diversity of exposures
children have to chemicals falling under these classes of compounds. A substantial portion of chemicals
were signi�cantly higher in abundance for children whose parents reported longer durations of cooking
time (> 8 hours) compared to those with no cooking or shorter cooking times (< 4 hours) during the
sampling period. Plasticizer exposures, on the other hand, were not correlated to cooking time suggesting
combustion may not be the major source. It is interesting to note, that when comparing poverty across
individuals for each seasonal period, participants with higher poverty had higher exposure to certain
combustion products (e.g., benzo[k]�uoranthene) suggesting poverty may play a role in exposure to these
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toxic chemicals (Figure S1). Whereas total PAHs and individual PAHs have been monitored in Africa,
exposures to most PAHs determined in this study have not been previously reported in exposure studies
in Africa (Chimuka et al. 2016). Hence further work looking into the complex array of individual PAHs and
their potential health impacts on these children is warranted, as PAH toxicity can drastically differ
depending on chemical species (Gao et al. 2015; Geier et al. 2018). 

Exposures of concern among the children differed from child to child, often ranging several orders of
magnitude (Figure 3). Some of the chemicals with the highest variance in exposure levels across children
were chemicals with speci�c uses to which children may not be universally exposed: these included
active ingredients of pesticides, nicotyrine (a metabolite of nicotine), and caffeine. Caffeine had the
widest range in exposure levels across children, ranging across 7 orders of magnitude. Comparing
between chemicals, the phthalates had the highest signal of all detected compounds. For example, the
average signal across all participants for all 637 chemicals was highest for di(2-ethylhexyl) phthalate,
followed by butyl isobutyl phthalate ranked as 7th   and diisobutyl phthalate as 8th highest exposure
compound. 

Exposures also differed across seasons for the cohort studied. Limpopo, South Africa, has two main
seasons: the wet, hot season and the dry, cold season. PCA showed distinct personal exposure pro�les as
a factor of season, suggesting that seasonality was the main force in�uencing variation in measured
exposure pro�les (Figure 4A). Of the 637 chemicals con�dently annotated, 27% (171) varied signi�cantly
across season (Hochberg corrected p-value < 0.05 and a greater than 2-fold change difference) (Figure
4B). The vast majority of these 171 chemicals were higher in the dry season (78%). 

During the dry season, dust may be dispersed by wind, vehicles, and by other means, increasing the load
of particulate matter captured by the passive samplers. Furthermore, the lower level of numerous
chemicals during the wet season, including certain chemicals of concern, is attributed to wet deposition
of airborne pollutants by precipitation (Jayamurugan et al. 2013; Olszowski 2016). An example is shown
for exposure levels of common volatile wood and plant emissions (longipinene, D-limonene, and 3-
carene) with D-limonene and 3-carene decreasing by at least an order of magnitude on average during the
wet season (Figure 4C). In contrast, certain chemicals of concern were elevated during the wet season
suggesting environmental changes and/or seasonal changes in behaviors enhancing their emission or
exposure. Active ingredients in insecticides (e.g., propoxur and p,p'-DDT) and mosquito repellant (e.g.,
DEET) were all signi�cantly increased during the warmer wet season when mosquito populations are
higher, suggesting increased insecticide use in the wet season (Figure 4C). Field observations also show
that this is the season when indoor residual spraying is conducted. 

While this study focused on chemicals of potential health hazard for the children in the villages studied,
the chemical pro�les measured could be used to answer several questions related to the children’s
behavior and environment. For example, numerous �avor related compounds were measured, as well as
active ingredients in beverages (e.g., caffeine) and a metabolite in cigarettes (nicotyrine) which could help
assess the children’s or family’s diet/activities. Certain chemicals detected (e.g., nylon-6) could determine
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the type of plastics used or combusted by the community or family (depending on proximity to other
villagers). Detected dye related chemicals (e.g., indigo dye, quinaldines and quinolines) and fragrances
(e.g., musk ketone and galaxolide) could provide information on social factors  and behaviors.
Compounds such as dimethyl indole which was detected could be related to exposure to fecal matter
(major odor of fecal matter).

Indeed, certain compounds which may have speci�c emission sources were found to correlate with
poverty in either the wet or dry season. For example, lilial, a compound used in perfumes and laundry
detergent, was detected at higher levels in participants during classi�ed as less poor during the dry
season. During the wet season lilial abundances approached signi�cance for those less poor versus
remaining children (Figure S1). Camphor exposure was also higher in the dry season for participants
classi�ed as above the poverty threshold (Figure S1). Chloroxylenol, an antiseptic used in soaps and
other consumer products to kill bacteria, was higher in participants in the wet season classi�ed as below
the poverty threshold (Figure S1). Several combustion products (e.g., dimethyl-naphthalene,
acenaphthylene, 2-ethenyl-napthalene, benzo(k)�uoranthene, and pyrroles) were higher in participants
classi�ed as below the poverty threshold in one or both seasons (Figure S1). This is likely due to the
higher use of solid fuel for cooking used by this group and lower level of ventilation. 

Conclusion
We show that the FreshAir wristbands, a low-cost technology, can be used to passively capture airborne
contaminants (Lin et al. 2020), enabling measurement of a portion of the chemical exposome of
vulnerable populations in LMICs. More research is needed to assess exposure pro�les of children in
developing countries. This work highlights the range of chemicals of concern to which children in rural
regions of South Africa are exposed. Bridging this technology together with state-of-the-art gas
chromatography high-resolution mass spectrometry enables the screening of hundreds of thousands of
chemicals to determine both expected and unexpected exposures in different populations. Personal
exposures to 637 chemicals assigned with relatively high con�dence were measured in the VHEMBE birth
cohort, many of which have not previously been measured as airborne exposures in Africa at large. Fifty
were deemed of potential health concern based on priority lists developed by governments based on
human health hazards, predicted toxicity values, and experimentally derived toxicity values. These
chemicals of concern include components of insecticides used for malaria control (e.g., p,p'-DDT, p,p'-
DDD, p,p'-DDE and piperonyl butoxide), PAHs from combustion (with over 150 individual PAHs detected),
plasticizers including phthalates, organophosphate compounds, fragrances, dyes, and biocides (e.g.,
triclosan). Because the wristband is designed to primarily detect airborne chemicals (gases and
particles), it is of additional concern that several chemical exposures measured are classi�ed as having
very high acute inhalation toxicity. These chemicals included pyrene, p-toly(4-methylbenzyl) sul�de, p-
cresol, triclosan, and propoxur. Furthermore, many chemicals do not have data pertaining to inhalation
toxicity, or the data is inconclusive, showing the need for efforts to assign inhalation toxicity values for
these airborne chemicals. 
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Individual exposure pro�les for chemicals of concern ranged across orders of magnitude from individual
to individual and were signi�cantly dependent on season. Twenty-seven percent of the con�dently
annotated chemicals signi�cantly differed across season, with most chemicals decreasing in abundance
during the wet-hot season. Certain chemicals, such as p,p'-DDT, DEET, and propoxur used for mosquito
control increased in the wet-hot season, which is aligned with the increased use of insecticides and
mosquito repellant during the wetter warmer season to deal with malaria. Furthermore, certain chemical
exposures were signi�cantly different depending on degree of poverty and cooking methods, showing the
ability to assess the effect of socio-economic status and behaviors on exposure pro�les using this
technology. 

This study assessed the wide breadth of chemical exposures of children in rural regions of South African
including numerous chemicals which have not previously been measured as airborne exposures in this
region; however, this likely represents only the tip of the iceberg. Other complimentary analysis such as
liquid chromatography high-resolution mass spectrometry could further extend coverage of assessed
exposures. Follow up quantitative analysis and analysis of chemicals in the urine and blood are planned
to assess whether the levels of these chemicals are of substantial concern. Furthermore, linking exposure
data to speci�c participant activities, consumer product use, housing characteristics, and environmental
factors will be helpful to determine potential interventions for reducing exposure. 
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Figures

Figure 1

Images from the across the Limpopo region: an example of a cookstove that is typical of the region
where biomass, plastic, and other refuse are burned for fuel (A), soot building up indoors on the roof and
smoke stains from indoor cooking (B), vehicle tailpipe exhaust without emissions controls (C), smog from
combustion of biomass (cooking) and plastics (refuse disposal) (D), residual spraying of pesticides
which occurs indoors and outdoors (E), as well as the FreshAir wristband (F). The wristband consists of a
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PTFE chamber that contains custom fabricated PDMS sorbent bars, which passively absorb airborne
contaminants.

Figure 2

Forty-six chemical exposures detected in South African children which are listed in the following priority
lists: NORMAN Potential Persistent, Mobile and Toxic (PMT) substances (269 chemicals), the NORMAN
European Food Safety Authority (EFSA) Priority Substances (178 chemicals), the 20 high priority
chemicals selected from the Toxic Substances Control Act Chemical (TSCA) Substance Inventory, EPA
Toxics Release Inventory (TRI), which lists 677 chemicals which either have acute or chronic human
health effects, The Agency for Toxic Substances and Disease Registry (ATSDR) which lists 200
chemicals deemed toxic to human health, and the Minnesota Department of Health Chemicals of High
Concern and Priority Chemicals list which was established under the Toxic Free Kids (TFK) act (1643
chemicals of health concern, especially to vulnerable populations). Other acronyms: p,p’-
dichlorodiphenyltrichloroethane (p,p'-DDT), p,p’-dichlorodiphenyldichloroethylene (p,p'-DDE), tris(2-
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carboxyethyl)phosphine (TCEP), and tris(2-chloroisopropyl)phosphate (TCPP). *Note that common
sources/uses of chemicals are provided, but these are not the only source of these chemicals and may
not be the main sources of these chemicals in this population

Figure 3

Thirty-�ve chemicals of potential concern. These chemical exposures of concern were highlighted based
on occurrence in two or more priority lists (see methods) and/or the top 10 compounds with the highest
predicted acute toxicity (inhalation, dermal)), ocular irritation, and carcinogenicity (predicted AMES
mutagenicity) . Acronyms: Dichlorodiphenyltrichloroethane (p,p'-DDT), dichlorodiphenyldichloroethane
(p,p'-DDD), dichlorodiphenyldichloroethylene (p,p'-DDE), tris(2-carboxyethyl)phosphine (TCEP), Tris(2-
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chloroisopropyl)phosphate (TCPP), and limit of detection (LOD). *Note that common sources/uses of
chemicals are provided, but these are not the only source of these chemicals and may not be the main
sources of these chemicals in this population

Figure 4

Comparison of chemical exposures in the wet, hot and dry, cold season. A) The volcano plot shows most
exposures were increased during the dry season, and that a signi�cant portion of chemical exposures
were dramatically different depending on season. B) Principle components analysis (PCA) of exposures
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indicating distinct chemical pro�les by season . C) Speci�c chemicals of interest are shown which were
signi�cant across season, speci�cally insecticide and insect repellant related chemicals, and wood
emission related chemicals. Acronyms: Dichlorodiphenyltrichloroethane (p,p'-DDT), N, N-Diethyl-meta-
toluamide (DEET), and false-discovery rate (FDR).
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