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Abstract3

Terrestrial evaporation (E) is a key climatic variable that depends on a plethora4

of environmental factors. The constraints that modulate the evaporation5

from plant leaves (or transpiration, Et) are particularly complex, yet often6

assumed to interact linearly in global models due to our limited knowledge7

based on local experimental studies. Here, we combine in situ and satel-8

lite observations with deep learning to model transpiration stress (St), i.e.9

the reduction of Et from its theoretical maximum. Then, we embed the new10

St formulation within a process-based model of E to yield a global hybrid11

E model. In this hybrid, the St formulation is bidirectionally coupled to the12

the host model at daily timescales. Comparisons against in situ data and13

satellite-based proxies demonstrate an enhanced ability to estimate St and14

E globally. Therefore, the proposed approach provides a framework to im-15

prove the estimation of E in Earth System Models and our understanding of16

this crucial climatic variable.17
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Main18

E is a key element of the global water cycle: approximately two-thirds of the pre-19

cipitation over land is evaporated back to the atmosphere1. Due to its influence20

on water vapor and cloud feedbacks, E plays a crucial role in global warming,21

and its projected increase is expected to intensify the global hydrological cycle22

2. Changes in E will not only have far-reaching consequences on water avail-23

ability and climate3,4, but can also severely affect the occurrence of hydroclimatic24

extremes5 and the ability of ecosystems and river basins to recover from them6–8.25

Moreover, E is an important indicator of vegetation stress, thus it is widely used26

for estimating drought conditions9 and their implications for water management,27

ecosystem health, and agricultural production10. Its reliable representation in hy-28

drological and climate models is therefore crucial, and so is its accurate global29

monitoring from space. However, E cannot be derived directly from satellite im-30

agery, and current retrieval algorithms also rely on process-based formulations.31

Several approaches exist to estimate E at large scales based on process-32

based models. Some simulate E as a residual of the energy balance or derive33

it empirically using vegetation, temperature and radiation information. This ap-34

proach is primarily employed by high-resolution satellite retrieval algorithms, es-35

pecially in agricultural areas, owing to minimal input data requirements11. Other36

models employ a flux-based approach to derive E using process-based methods37

such as the Monin-Obukhov similarity theory to calculate the gradients of specific38

humidity between the atmosphere and land (vegetated or non-vegetated) surface,39
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and explicitly model the surface resistance to the diffusion of water vapor. Such40

an approach is prevalent in climate models 12. Finally, a third and a common41

approach in hydrological models13, as well as satellite retrieval algorithms 14–16,42

is the calculation of the theoretical maximum, or potential evaporation (Ep), for43

given land cover and meteorological conditions. Subsequently, actual E is calcu-44

lated by reducing Ep by a certain factor (S), which is designed to account for the45

’evaporative stress’ experienced by the vegetated (or non-vegetated) surface. De-46

spite this wide range of approaches, significant uncertainties exists in the current47

global estimates of E, and that applies to both climate models17 and satellite-48

based algorithms18.49

In this study, we focus on stress-based models of E, the most common50

means to derive global evaporation from satellite data19. In such models, un-51

certainty arises from the formulations of Ep and S (and particularly St). While52

several process-based formulations of Ep exist20,21, they differ in their estimates53

substantially, and even the mere definition of Ep as a concept remains elusive22.54

Nevertheless, the chosen Ep function forms the least empirical part of the stress-55

based E models, and while parameters within Ep formulations can be better con-56

strained with more data23, the opportunities to improve stress-based models via57

modifications to Ep remain limited24. Therefore, we focus on the other source of58

uncertainty: the S formulation. Here, the major uncertainty arises from the lack of59

understanding of the response of vegetation to environmental stressors, particu-60

larly at the spatial resolution at which global models operate. The Et stress factor61
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(i.e. St) should encapsulate multiple interacting hydroclimatic variables that affect62

different aspects of plant physiology and structure in a highly non-linear manner.63

However, stress formulations used in existing global models are simple, not cap-64

turing all the influences and interactions between stressors. This occurs because65

they are based on a limited number of experimental studies whose extrapolation66

to global scale is hindered by their local nature25–27. The complexity of the interac-67

tions among these stressors, and the fact that they involve physiological processes68

that are unobserved, calls for machine learning techniques as a suitable solution69

to this long-standing challenge.70

Machine learning methods have become popular in Earth sciences in recent71

years, enabling the discrete classification of important geo-spatial variables which72

are hard to map, such as clouds28, soils29, and forest cover30; but also estimation73

of dynamic variables, such as carbon fluxes31, precipitation32, or river discharge33.74

In fact, machine learning models trained on in situ measurements of E and other75

hydro-meteorological covariates, have already been used to estimate global E in76

recent years31. However, pure machine learning–based approaches have several77

disadvantages in realistically modeling earth system processes. Machine learning78

models do not implicitly obey the physical limits which constrain earth system79

processes at different scales such as the closure of water and energy balances,80

unless they are externally imposed. Further, the black–box nature of machine81

learning hinders the interpretability of such models, an important requirement if the82

importance of individual covariates need to be realistically represented, and if such83
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models are to be used improving process understanding. However, advances84

in the growing field of explainable artificial intelligence have shown promise in85

mitigating this issue34.86

An emerging research direction, and the approach adopted in this study, is87

to combine process-based and machine learning models in a symbiotic manner.88

Here machine learning, and specifically deep learning, is used to directly model89

the earth system process of concern, with the hypothesis being that deep learning90

methods can learn the functional relationship between covariates (stress drivers in91

this study) and the target process or phenomenon (evaporative stress). For exam-92

ple, deep learning methods have proven to be very effective in learning sub-grid93

processes such as convection in coarse resolution climate models by emulating94

computationally expensive high resolution models35,36. Further, such formulations95

can be embedded within process-based models to create ’hybrid’ models which96

retain the advantages of process-based models, i.e. physical consistency and in-97

terpretability, and machine learning models, i.e. more realistic data-driven formu-98

lation of processes that are insufficiently understood37. Several proof-of-concept99

implementations have demonstrated the advantages of hybrid modeling in climate100

sciences with machine learning sub-models employed for representing different101

processes35,38 or for improved model parameter discovery39. For modeling E in102

particular, attempts have been made to physically constrain pure machine learning103

models to improve the accuracy of E estimates23. However, an important research104

question is whether hybrid models capable of operating at a global scale with ma-105
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chine learning used for completely replacing a specific process formulation, as106

opposed to more accurate parameter discovery or emulating high resolution mod-107

els, can be developed.108

Here, we exploit recent progresses in satellite-based remote sensing, deep109

learning, and an unprecedented number of in situ observation stations spread110

across the globe to develop a novel formulation of St from the ground-up without111

any prior assumptions. Further, we implement the new formulation of St, and ex-112

ecute it online, in a process-based model of global evaporation which provides113

physical constraints to the deep learning-based stress formulation. In doing so,114

we develop a hybrid model capable of simulating E daily at the global scale. We115

develop the hybrid model in such a way that the new deep learning-based for-116

mulations of St is tightly coupled to the process-based model. A comprehensive117

validation of the model is carried out with in situ observations. Further, the im-118

provements, or lack thereof, compared to the process-based model is evaluated.119

Results120

Hybrid Model Architecture. A hybrid model at the highest level of abstrac-121

tion is made up of two components: a process-based host model and machine122

learning-based sub-models/formulations/parameterizations embedded in the host123

for representing certain processes37. For the process-based model, we choose124

the Global Land Evaporation Amsterdam model (GLEAM)14,40. GLEAM simulates125

E as a summation of its constituents: Et, bare-soil evaporation (Eb), and inter-126
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ception loss (Ei). Et and Eb are estimated for every grid cell of the global model127

using a Priestley Taylor-based approach and their respective stress factors (St and128

Sb). Interception is based on the Gash analytical model41 (Figure 1). The model129

contains a multi-layer soil water balance model in which satellite-based surface130

soil moisture data is assimilated. Sb is a function of soil moisture availability (see131

Methods), while St accounts for the stress experienced by vegetation due to the132

shortage of plant available water (PAW ) and the phenological state (represented133

by vegetation optical depth, V OD). However, in reality, several additional stres-134

sors are responsible for limiting Et, with the exact responses to these stressors135

being species-dependent and difficult to model. The hypothesis here is that, by136

combining sufficient reliable data of the stressors using deep learning, functional137

relationships among the different stressors and St can be uncovered.138

Deep learning models are developed for tall and short vegetation separately139

(see Methods for the details of the target variable and covariates used in the deep140

learning model). We consider four other stress drivers in addition to PAW and141

V OD that are known to regulate stomatal conductance and hence St: (a) vapor142

pressure deficit (V PD), an indicator of atmospheric dryness42, (b) air tempera-143

ture (Ta), to include the effects of sub-optimal temperature and heat stress43, (c)144

incoming shortwave radiation (SWi), to incorporate the influence of light limitation145

44, and (d) atmospheric carbon dioxide (CO2) concentration, which exhibits a first146

order control on stomatal opening 45. We note that the potential effect of phospho-147

rous and nitrogen limitations on St
46 is not considered in this study due to the lack148
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of dynamic global data.149

Finally, the hybrid model of global E is created by coupling the deep learning-150

based model of St to the GLEAM process-based model. At every (daily) time step,151

and at every (0.25 degree) grid cell of the global model, the soil water balance152

module of GLEAM translates precipitation (P ) into PAW . Then, PAW , V OD, Ta,153

V PD, SWi ,CO2 are input to the (trained) deep learning model (see Methods).154

The deep learning model is run in predictive mode to generate St. St is then used155

to constrain Ep and thus compute E by the process-based host model. Finally, E156

is used to update the soil moisture (and PAW ) before the next time step (Figure157

1).158
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Figure 1: Schematic of the hybrid terrestrial evaporation model. Ei is interception, Ep is

potential evaporation, S is the evaporative stress factor, and E is actual evaporation. The

red arrows indicate modeling steps which are exclusive to the processed-based model,

the green arrows are steps which have been added in the hybrid, and the black arrows

are steps common to both the models.
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Validation with in situ measurements. St and E estimates from the hy-159

brid model are validated at 368 in situ monitoring stations (see Figure 10 in Sup-160

plementary Information) sourced from several flux tower databases (refer to the161

Methods section for the calculation of St from flux tower data). The hybrid model162

performance is compared to that of the fully process-based model using violin163

plots and spatial maps illustrating the Kling-Gupta Efficiency (KGE), a metric which164

combines correlation, variability bias, and mean bias (see Methods). KGE values165

theoretically range from −∞ to 1.0, with values greater -0.41 implying that the166

model is a better predictor than the mean seasonal cycle47.167

The violin plots (Figure 2a) show the distribution of KGE values calculated168

for the 231 stations in short-vegetation ecosystems, and the 137 stations in tall-169

vegetation ecosystems. We see that both the process-based model and the hy-170

brid model perform well in estimating St for short vegetation ecosystems (including171

Croplands, Shrub and Grasslands, and Wetlands; see Table 3 in Supplementary172

Information for station-wise land cover classification). For most stations (> 75%),173

KGE values from the process-based model exceed -0.41. However, the deep174

learning-based model of St improves these results considerably (the median KGE175

value is positive, unlike that of the process-based model). This improvement is176

even more pronounced for tall vegetation (consisting of Broadleaf, Needleleaf,177

and Mixed forests; see Table 3 in Supplementary Information) – see Figure 2a.178

The observed improvement in KGE is attributable to improvements in the bias and179

variability components of KGE rather than correlation – refer to Figure 1 in Sup-180
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plementary Information for violin plots of correlation and root mean square error181

(RMSE). In fact, the average correlations of the process-based model estimates182

of St are similar or even marginally better than for the hybrid model. However, the183

RMSE of the hybrid model estimates of St are substantially lower, particularly for184

the tall vegetation class.185

Next, we check whether the improvement in the estimation of St in the hy-186

brid model is propagated to the simulation of E. From Figure 2b, it is evident that187

the improvements in St are not linearly translated to E estimates. This can be188

attributed to the fact that the vast majority of the flux towers are in energy-limited189

regions, where E dynamics are influenced more by Ep than by St. Overall, both190

models exhibit high, and similar, KGE values (median value of approximately 0.5)191

for short vegetation. For tall vegetation, the hybrid model outperforms the process-192

based model. In terms of correlation and RMSE, we see that both models are193

performing similarly: the process-based model exhibits marginally higher corre-194

lations, while the RMSE of the hybrid model is lower for both vegetation classes195

(see Figure 1 in Supplementary Information).196
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a b

Figure 2: a and b Violin plots showing the distribution of the Kling-Gupta Efficiency (KGE)

metric for transpiration stress factor (St) and evaporation (E), respectively, calculated for

all flux tower sites. The KGE distribution for the hybrid and process-based models are

classified according to short and tall vegetation types. The dashed lines represent the

median (large dashes) and the interquartile range (small dashes). The red line represents

a KGE value of -0.41, above which a model prediction or simulation is considered better

than the mean seasonal cycle.

To understand the difference between the hybrid and process-based models197

better, we compare the spatial distribution of difference in KGE values for St and198

E estimates from the two models for different geographical zones (Figure 3, also199

see Figure 2 and Figure 3 in Supplementary Information for absolute values of200

KGE for St and E). In North America (NA), which has the largest number of201

flux towers, the hybrid model outperforms the process-based model, especially202

in the humid eastern and north-eastern parts. In comparison, both models tend203

to inaccurately simulate St in the arid south-west region. In Europe (EU), the204
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hybrid model performs better than the process-based model across the majority205

of the flux tower stations, including the stations which are in the relatively arid206

south. However, in Asia (AS) and rest of the world (RW), the performance of207

the hybrid model is very similar to the process-based model. One reason could208

be that the AS and RW regions have a very sparse distribution, and thus flux209

towers in those ecosystems may have distinct biophysical characteristics from the210

majority of sites in the training database. Further, we compare the spatial maps211

of correlation and RMSE (see Figure 4–Figure 7 in Supplementary Information)212

to understand the source of the disparity in KGE values. In terms of correlation,213

the two models perform very similar to each other across the different regions.214

Therefore, the major source of improvement in the hybrid model can be traced215

to the better estimation of the variability, and to a smaller extent, the bias, seen216

in the observation, a fact supported by the violin plots (Figure 2a). Further, we217

notice that the discrepancy in the St estimates between the two models, does not218

translate to E estimation in energy limited regions (Figure 3), which are poorly219

represented in the training data.220
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St E ESt

St E St

E

Figure 3: Maps showing the difference in Kling-Gupta Efficiency (KGE) metric between

the hybrid model and process-based model for transpiration stress factor (St) and evapo-

ration (E) calculated using observations at flux tower sites in different geographical zones:

North America (NA), Asia (AS), Europe (EU), Rest of the World (RW). Blue (red) tones

indicate improvement (degradation) in the hybrid model compared to the process-based

counterpart.

Comparison with global datasets. In contrast to point-scale measure-221

ments in flux towers, which have a small footprint, the GLEAM model generates222

spatially and temporally continuous estimates of St and E over the entire con-223

tinental surface. Therefore, it is important to validate the hybrid model against224

independent global estimates of both St and E. We validate St and Et by compar-225
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ing their seasonal aggregates with other global datasets in Figure 4 and Figure 5226

respectively. To further investigate the realism of the global St and E estimates,227

the temporal dynamics are investigated in Figure 6 by displaying correlation maps228

based on monthly time series.229

Due to the absence of direct observations of St at those scales, we choose a230

satellite-retrieved proxy that has been shown to represent the evaporative stress231

experienced by vegetation reasonably well: the ratio of solar-induced chlorophyll232

fluorescence to photosynthetically-active radiation (SIF/PAR)48 (see Methods).233

We note here that the scale and range of SIF/PAR values is different from that234

of St, but that the spatial gradients and temporal dynamics are expected to be235

comparable. In June-July-August (JJA), summer season in the Northern Hemi-236

sphere, we see that the spatial patterns of St in the hybrid model are similar to237

those in the process-based model (Figure 4a and c).However, the hybrid model238

captures better the higher vegetation stress that is suggested by the low values239

of SIF/PAR (Figure 4e). For December-January-February (DJF), the picture is240

similar (Figure 4b,d,f).On the other hand, we see a possible underestimation of241

St (too much stress) by the hybrid model in the rainforests of Congo, Amazonia242

and Eastern Asia, both in JJA (Figure 4a) as well as DJF (Figure 4a). This points243

again to the importance of sufficient data availability for deep-learning methods.244

Figures 6a,c show the temporal correspondence between St and SIF/PAR for245

the hybrid and process-based models, respectively, while Figure 6e shows the dif-246

ference between the two previous maps. We see that the hybrid model exhibits247
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positive correlation with SIF/PAR over a majority of the grid cells with parts of248

Amazonia, Congo, and South East Asia (Figure 6a) being the exception. It shows249

better correlation with SIF/PAR compared to the process-based model’s St for-250

mulation (Figure 6b) in eastern China and in the norther latitudes (Figure 6c). In251

contrast, the process-based model shows higher correlation in large parts of east-252

ern North America, Europe, and Australia. In addition, the hybrid model shows a253

marked improvement in the spatial correlation with SIF/PAR (0.66 compared to254

0.59 for the JJA season and 0.42 compared to 0.34 for the DJF season).255

We also compare the E estimates from the hybrid and process-based mod-256

els with a pure machine learning-based E dataset (FLUXCOM) which is trained257

on a subset of the global flux towers used in this study31. We see that in both258

seasons, JJA and DJF, the spatial patterns of E from our hybrid and process-259

based models are similar to that of FLUXCOM (Figure 5). Regions of divergence260

are seen in the north eastern parts of South America, and southern and eastern261

Africa where the FLUXCOM E estimates are higher than that of the hybrid and262

process-based models, especially in the JJA season. As far as the correlation263

maps (Figure 6b, d) are concerned, the hybrid model estimates of E are highly264

correlated with FLUXCOM. A major region of divergence that stands out in both265

the hybrid and process-based models is Amazonia. This maybe due to the fact266

that very few stations are available in the region for model training, and therefore267

FLUXCOM estimates may also be more uncertain in Amazonia. The difference268

between the hybrid and process-based model correlation is nominal (Figure 6f).269
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The hybrid model also shows mild improvements in the spatial correlation metric270

(0.84 compared to 0.81 for JJA and 0.95 compared to 0.94 for DJF ).271
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Figure 4: Comparison of the seasonal aggregates of the transpiration stress factor

from the processed-based and hybrid models compared with the ratio of solar-induced

chlorophyll fluorescence and photosynthetically-active radiation (SIF/PAR) for June-

July-August (JJA) (a, c, and e) and December-January-February (DJF) (b, d, and f) sea-

sons. Note: The units of SIF is mWm2/sr/nm and PAR is represented in W/m2.
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Figure 5: Comparison of the seasonal aggregates of evaporation (E) from the processed-

based and hybrid models compared with a purely machine learning-based model trained

directly on evaporation from FLUXNET sites as the target variable (FLUXCOM31) for JJA

(a, c, and e) and DJF (b, d, and f) seasons. Note: The units of E is mm/month.
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Figure 6: a and c, Comparison of correlation maps for transpiration stress factor (St)

between processed-based and hybrid models with observational SIF/PAR. b and d,

Comparison of correlation maps for evaporation (E) between processed-based and hybrid

models with machine learning-based estimates (FLUXCOM). e, Difference between a and

c. f, Difference between b and d.
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Discussion272

The growing complexity of large-scale earth system and climate models requires273

increasingly high computational resources. More importantly, new processes are274

frequently represented based on limited experimental understanding and are thus275

uncertain in their application at larger scales. Hybrid modelling approaches have276

the potential to reduce the ill-effects of over-parameterization, reduce computing277

time, and even improve accuracy in process representation49. Here, we focus on278

one of the main unknowns in the global water cycle and a key variable in climate279

models: terrestrial evaporation (E). We develop and apply a global-scale hybrid280

model of E, in which a deep learning-based formulation of vegetation stress is281

embedded within a process-based model at daily timescales. We show that the282

deep learning model, designed with a priori assumptions based on expert knowl-283

edge, is overall more accurate than the traditional process-based counterpart at284

capturing the non-linear interacting processes that yield transpirational stress (St).285

Specifically, the biggest improvements in St are seen in northern latitudes, likely286

due to the consideration of incoming radiation (a key driver of stomatal conduc-287

tance). On the contrary, the deep learning-based St tends to overestimate the288

stress in tropical rainforests, primarily in the DJF season. This highlights a limi-289

tation of any deep learning model, in which sufficient availability of training data290

is crucial: the majority of the flux towers used for training are located in NA and291

EU. This is especially relevant for modeling Earth system processes such as St,292

which exhibit large regional (and local) variability and for which the ability of any293
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data-driven formulation to generalize over the entire globe will by default be im-294

perfect. Further, the estimates of E from the hybrid model accurately capture the295

temporal dynamics and the spatial patterns of E seen in both the in situ network296

of flux tower observations and a (purely) machine learning-based dataset (FLUX-297

COM). From a computational perspective, the model was developed in Tensorflow,298

a popular Python library for deep learning, which scales across a wide range of299

hardware, operating systems, and programming languages. Therefore, the tran-300

spiration stress model is agnostic of the host model, and hence can be embedded301

in different global scale earth system models.302

Methods303

Stress formulation in the process-based model. In GLEAM, the total304

evaporative stress (S) is composed of St and Sb. St is defined as305

St =

√

V OD

V ODmax

(

1−

(

wc − ww

wc − wwp

)

2
)

(1)

where V ODmax is the maximum (99th percentile) VOD, wc is critical soil moisture,306

ww is the soil moisture content of the wettest soil layer, wwp is wilting point. St is307

calculated separately for tall and short vegetation.308

Sb is defined as309

Sb = 1−

(

wc − w1

wc − wr

)

(2)
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where w1 is the surface soil moisture (first layer in the soil water balance module310

of GLEAM) and wr is the residual soil moisture content. The values of wwp, wc and311

wr are taken from... Full detail can be found in Martens et al...312

Development of the deep learning-based stress formulation. The first313

step consists of defining the target variable, and the appropriate predictors or314

covariates. Here, the target variable is the tower-scale St, calculated as315

St =
Et

Ept

(3)

where, Et is actual transpiration and Ept is potential transpiration.316

To estimate Et in Equation 3, we use daily in situ measurements of E,317

assembled from a total of 557 flux towers. These towers were compiled from318

FLUXNET50 (https://fluxnet.org/data/fluxnet2015-dataset/), FLUXNET-CH4 (https:319

//fluxnet.org/data/fluxnet-ch4-community-product/), AmeriFlux (https://ameriflux.lbl.320

gov/), European Eddy Fluxes Database Cluster (http://www.europe-fluxdata.eu/),321

and the Integrated Carbon Observation System (ICOS) (https://www.icos-cp.eu/).322

After the removal of inconsistent values, we end up with 368 stations, out of which323

231 stations (approximately 173,000 data points) are classified as having domi-324

nantly short vegetation and 137 stations (approximately 103,000 data points) are325

classified as tall vegetation (refer to Table 3 in Supplementary Information for site-326

specific details and for the mapping of flux tower land cover class to tall and short327
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vegetation). To separate Et from E at the flux stations, we use empirical functions328

relating the ratio of Et to E to the leaf area index (LAI) for different vegetation329

classes51 (see Section 2 in Supplementary Information). We remove rainy days330

from the flux tower datasets to minimize the impact of interception loss on the331

measurements of E and sensor errors during rain.332

Next, we obtain from GLEAM daily values of Ept for each station. GLEAM333

uses a Priestley-Taylor formulation to calculate Ept which has been shown to be334

generally accurate at ecosystem scales 22. To account for the scale mismatch335

between grid-scale estimates of GLEAM and point-scale measurements at the336

flux tower sites, we scale the Ept values with Et values using days following rain337

days as follows:338

Escaled
pt = (

Eraw
pt − Eraw

pt,mean

Eraw
pt,sd

) ∗ Eflux
t,sd + Eflux

t,mean (4)

where Eraw
pt is the raw GLEAM Ept for the specific flux tower site, Eraw

pt,mean is the339

mean of the raw GLEAM Ept estimates for the specific flux tower site, Eraw
pt,sd is the340

standard deviation of the raw GLEAM Ept for the specifc flux tower site, Eflux
t,mean is341

the mean of the observed Et at the specific flux tower, and Eflux
t,mean is the standard342

deviation of the observed Et at the flux tower.Inherent in this bias-correction ap-343

proach is the assumption that vegetation transpire at their potential on days after344

rainfall.345

The covariates used for modeling St are the absolute values and seasonal346
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anomalies of the following variables: a) PAW , b) V PD, c) Ta, d) SWi e) V OD, f)347

CO2. PAW is commonly defined52 as348

PAW =
ww − wwp

wc − wwp

(5)

The absolute values and anomalies of PAW for the flux tower sites are derived349

from GLEAM40(see section 3 in Supplementary Information for input data used350

in GLEAM). V PD is derived from relative humidity and Ta data sourced from351

Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite mission53. SWi352

is derived from the Clouds and the Earth’s Radiant Energy System (CERES)353

satellite mission54. V OD is derived from the Vegetation Optical Depth Climate354

Archive (VODCA) dataset55. CO2 data is sourced from the Copernicus Atmopsh-355

eric Monitoring Service Global Inversion of Greenhouse Gas Fluxes and Concen-356

trations project (https://ads.atmosphere.copernicus.eu). Finally, within the GLEAM357

model’s soil water balance model, Equation 5 is solved for short and tall vegetation358

separately for every grid cell and aggregated based on the fraction of tall and short359

vegetation in every grid cell. For tall (or short) vegetation flux tower sites, PAW360

weighted by the corresponding tall (or short) vegetation fraction is extracted. In361

GLEAM, for tall vegetation, ww calculated based on three soil layers, and for short362

vegetation ww is based on two soil layers.363

Deep learning model architecture and training. Designing an optimal364

deep learning model involves optimizing a number of model-related variables (hyper-365
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parameters) such as the number of layers, number of neurons in each layer, the366

activation functions in each layer, the rate of dropout to prevent over-fitting, the367

optimal learning rate, and a loss or objective function along with an appropriate368

validation metric for evaluating the progress of model training. Here, we design369

the model architecture, optimize the hyper-parameters, and train the deep learn-370

ing model using TensorFlow version 2.456. To optimize the hyper-parameters, we371

employ an automated optimization library available in TensorFlow; specifically, a372

Bayesian optimization procedure with maximization of the Kling Gupta Efficiency373

(KGE)57 as both the training objective and validation metric. In training the objec-374

tive fucntion is implemented as minimization of 1 − KGE. KGE is selected as it375

combines correlation, variability bias, and mean bias into a single metric. KGE is376

defined as377

KGE = 1 =

√

(r − 1)2 + (
σsim

σobs

− 1)2 + (
µsim

µobs

− 1)2 (6)

where r is linear correlation between simulated and observed values, σsim and378

σobs are standard deviation of simulations and observations, and µsim and µobs are379

mean values of simulations and observations.380

First, the Bayesian hyper-parameter optimization was carried out for short381

vegetation data (231 sites). The most optimal deep learning architecture was382

found after approximately 1000 iterations of the Bayesian optimization procedure.383

The resulting deep learning architecture was manually tuned. The final model was384

then trained for short vegetation St with a training:validation data split of 85:15, a385
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batch size of 100, a learning rate of 0.000142, and a maximum epoch size of 1000.386

The training was automatically stopped when the validation objective function start387

degrading (while the training objective function keeps improving), a sign that the388

model is overfitting (Figure 9 in Supplementary Information shows the evolution389

of the objective during the training process). The same model architecture and390

training setup was used for training the model for tall vegetation St (137 sites). As391

the model performed satisfactorily with some minor changes, the time consuming392

hyper-parameter optimization procedure was not performed separately for the tall393

vegetation dataset (see Figure 8 in Supplementary Information for the final deep394

learning models).395

Calculation of SIF/PAR. SIF data is sourced from the contiguous Orbiting396

Carbon Observatory-2 (OCO-2) dataset, which is available at 0.05o resolution and397

16-day time step58. This dataset uses machine learning to gap-fill SIF data to398

produce a spatially continuous data from the OCO-2 satellite, which has a smaller399

footprint and infrequent overpass times. The data was spatially aggregated to400

0.25o and temporally aggregated to monthly timescales for calculating the corre-401

lation maps (Figure 6) and to seasonal time scales for Figure 4. PAR data is402

from the CERES mission54. PAR data is available at 1.0o resolution at hourly to403

monthly resolution. Here, the monthly PAR data was used to normalize SIF data.404
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Data availability405

The outputs of the hybrid model are available at https://doi.org/10.5281/zenodo.522406

0753.407

Code availability408

The deep learning-based stress formulations for tall and short vegetation and409

all the codes required for reproducing the results in this study are available at410

https://doi.org/10.5281/zenodo.5220753.411
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