[
]
Project info 1
Experiment Date2017-09-14
Experiment ID
Notebook ID
Project
Experimenter
Protocol
[
]
dose vs. response
How to fit and plot dose-response curves.
**
How the data are organized
**

The X values are molar concentration. The first concentration was really 0.0. But the X values will be transformed to logarithms, and the log(0) is not defined. So a low concentration (in this case 0.1 nM) is entered instead of zero.

The Y values are responses (in triplicate) in two experimental conditions. Note that treatment groups are not defined by a separate grouping variable column, but rather by separate Y columns. Blank cells represent missing data.
**
**

The goal

To fit a dose-response curve to determine the EC50 of the drug, and its Hill Slope.
**
**

How to transform the X values to logs, and then fit a log(dose) vs. response curve

1. Click Analyze, choose Transform, and choose X=log(X), and check the option to create a new graph of the results.

2. From the Transform results, click Analyze, choose nonlinear regression, and choose the dose-response (stimulation) set of equations, and choose log(dose) vs. response -- variable slope.

3. On the linked graph, double-click on the X axis and consider adding nine minor ticks with logarithmic spacing, and to use the powers-of-ten numbering format.
Cynaropicrin
1.00
3.12
6.25
12.50
25.00
50.00
24 h
1.39
1.39
1.25
1.17
1.12
0.85
1.38
1.34
1.20
1.22
1.08
0.83
1.28
1.36
1.28
1.16
1.13
0.95
48 h
1.38
1.35
1.32
1.26
1.09
0.85
1.39
1.41
1.35
1.30
1.16
0.83
1.45
1.46
1.36
1.21
1.26
0.78
72 h
1.60
1.58
1.38
1.20
1.02
0.80
1.60
1.54
1.32
1.18
1.17
0.84
1.60
1.47
1.26
1.24
1.10
0.90
eNrsPQuYFMWZ1T3v9wC7y4IoHcQAwg6zT3ZR3OEhsMIBAlEgPnZgBxgdZnBmQCBenBiiXGIU
jc8kmr3TGL2YO81FTUxy7F28XPQznjH6JZfzkr2Yh/HISaKXUzHuVVVXddf0dM/07PQuu0v9
UDvVXY//r7+q/v/v6vqrNyxfuXLVxqVtQsEPADgqHBVE+LcPbBH/GsyGd94WQBFsEeVfFwyh
aQCgS7GwYQ4AdhhDmXfB4GBKiiQMQQAkj40Ees2BAwcOHDhwmBggEL3PgQMHDhw4cOD6nAMH
Dhw4cODAgQMHDhw4cODAgQMHDhw4cDidwQaWwb/HpwDwg2kAbLQBsNZeTXm03+4HQAAOeYed
HdwxRhvqLKDXCg7gwg2WYWk2GU+VaTDamhhkro/KuwhtojCL1CPfuCSR7Yun44a458AQLluP
vH1x08E92zMpULaeKbr1TCb12HA9lybTu/pgyJVp1wzdekRSj8ySzck9iZy0LnGttDGzJ54u
qedsGAIG9Dhjf4lrQds3P67E7gBuZuDIV0LRlVh0ZSu6spOrz+BYPwx3gpddapnhU8uBAwcO
HDhwONWAFPMXADXLvg/2i6ojBwcOowdirKsgb0fygJnIIs7G07mdmeweKbNT6svkEtL+XETK
JnJ7M+lcAnjBDKH4KQr7I8Ea5rOFF29Zsjaza+6WeVuXbG1as0BasyQaaW0Dp4M5uhg/CNnA
EJ7mxzCHAPgmaAT6+77QtD9PeUxAcD5YAP96mQeHSrAEfBjXxOYXmbiNifeD3YQSmwbDBzo1
01poD2rTac3s0zILbyhtoWKPYrYD2b/NCWQvODceggB04wc3keTGPCmEldIIYmASO9YSfVJf
PB9nCirgVhso4oK4Cv2MotmMNrMZ7WYzOsxmdJrN6DKb0W02o6c040qwAlL+cxh/57tckHLg
MGGMAgNpPlxwkhqRpkK6wm1QM8wy0Prum6vgb++t//xKN0MSvT8mwKkRkLIOVjWhu0rebSvI
+u6j4HaoKnfr+3JjDoiGKTbDFFU78xSewlN4Ck/hKTyFp/AUnmIm5dcgGwLgHsB5wVN4Ck/h
KTyFp/AUnsJTeApP4Sk8hadYn/II3j1B9xFoc9CIk7k5GiW2xe7C76vmg7vBbUDe+bOTpN0H
K/qOAMC9zD0E6I3WdFB5h5AlPLynMBk3BxE5C4jKm7EF8IolIUBpCBQREWjCpIrkNZxINqL4
AH3pd0/sWwX0+63Y74CfNO4StIkDYrordq+yr0+ftWo9KmtAVSXEqkvYqi7BqeJUcao4VZwq
ThWnilPFqeJUnS5UdRGfCAF4QDv8XRbPJVLJdKJpRyabTezIJ/qQc8SwPSVYMli0o/JsNIZS
ZE8JJxiCjBbASVDJUwI9g6qeEiionhKst4MZTwlUVwMJLvKL0t1MvNhTgi2hVzOthfagNl2t
WR0NlntKECd8yr0YqId/VyT3J/sS0nYyirm3xCn0lngBiZdvAA4cOEwQGLIYbFAWCuSfDXv1
odNnbEDHWwLCCeIl4Y6NVf5QHSZoAv16Hb0mK6gV+VlpgVULlc1HLYhVl7BVXYJTxaniVHGq
OFWcKk4Vp4pTxak6XaiiC6wi8IDl8HddJp1KpqWdyTxaSx2l5dbTDRaTxUEH3tGCFl3LL7eC
ouVWES+3zgXq2paN6XQ9+HtlQZPN7ShTgi7OorX5ehL85BelB5h48eIsW0KvZlqL0SN7oEK6
JYuzbmZc4nVBlO/Ca/bF88lMmilACwF7nbIgKxfA597Et6cSaA7Aob8vlc9pMOHB3wgksagg
om75vuz+hB5djcBtq5j79FuqBR8aAF/9N768xYHDRIXXbYzUdMm/VzJp5aD4ABgRIB1HD01j
F2k9NFPs1uIl2oHt6Lr/3nsfYQ+6kU5GTupd0wNwjA7CqZSuAye6zSxti4wG1zsaTm9Zmrb5
e+A9Jzph3A+5XOe4ATwvRLBSUI3O+5+9/nr5isZEJWZTYnYl5lBiTiXmUmJuJeZRYl4l5tNg
K6aAx3iMx3hsNGMFJfYJndTRlYl+JRZQYkElFlJiYSU2SYlNVmJTlFidEqtXYg1KbKoSa1Ri
05TYdCV2hhKbocTOVGJnKbGZSkxSYnOV2CwldrYSm63EzlFiH1Zic3RqmafEzlVi85XYAiXW
pMRWFRYwyyv0d34YeAUgf6uBPr1S7bm68DNqjwDAHLghMDpbMNTXW2Ni5XzYQmiobAPgfDMr
5BN041tjGqtEiR/ED2F21ELEpKHSvznYg+yTcqGbWhXsdQ84D+FZsiyTz2f2SPOluZsze5vk
q3kL5zbPb45eMXfu2syunuXt0aYt885dnUylNqUyexPz5gW8AS/YABCNqcyuucn07uT2ZD6T
nVe0pCQ1NUmXxLNJ/LydQyWluTsz+7LS3ng2vieRT2Rz88DXwfOwli2LJViRsjCVyUo7Mukd
iXQ+i5/tA96ti6WNpNoFUl9iRzYRzyXTu6R4TtoiJdP4OpELeGEbpHi6T5LbsVjakIrnE/F9
OZhHykGk0r50Mp9DxbZGJEkKeFNyAxfLqYgIJceWgFdp82IJ/0g74ztgOxGBKElu1QJcJJXI
wbZDvvwDbBMcwj07EWU5KZ3JS/EUpK/voJTfnWDbuUDalZG2x3dcjUnOK+tzBxGT0CazSMCL
6oHX0u74fsjEfdthLrKgtxOWOiihXWnxlMLzBYhxuWRfAnMwB3Mn04hPpJfzGSkuJ8TTeWl/
PLUPr4REI9EI+AaeNGgE/Vn5BAuCi8E37LLYKh7Is2P88YcDBw5jFTbKCnUTtHIAkCUggAoC
EKUGFOkOwGZFZ5aDx4u+0UXhGRDBGllAqlW2XEQ12qBGZ6rRm8Fxj6zvMSVL3wOvJpxgl/0n
195zx8vXQrUMte/a9atQ4vwtTVtOu66DzSea+TQdu6Tz+STmwIEDBw5jD5D9smlvPI0WFors
F5Swef2G0hLL1m/evP4vzNZfbjtMFXBKqtHuCLkOW5hHwW0w9IAC/Hc76IWxz4EN0KpcDR+z
V4NOg61ANBcFF1Pv2CyxOnZJQd7tYcercwBcasrC3mIq11a8j0YoWTfbGsOx/pee+N9uZb3v
2MO4TrHCODa3CYtdGOH1ynAJ6WsBlvKPdl+De875P97Xo97XIiwVGO2+HrzvJyd4X49iX69i
zuJ6CNQxPdIB5G+Eo9SvgH0MfvTro9peXnMpqdkS8BWhFjSo0TrPCKCW38v4IDoVtahBvZZZ
uLAE9fRfnnn0ZOf73TJqkUFt06BmVrSsQX1d8qJv3frNPx6TUdsY1HYNatxkK1HnB760aaX7
LwjD7QxqhwY1NkGtRF3c1w4GNd234yOB9rVlqG8/+ynbwV8/Svoa+IxRW97XPTMOP/C9Kd8n
qAUGtZNhuDASrd781P8t/PBT79JWCypqlwa15a3+8D1TvuTZ/h4Z4QKD2q1BbfkI//NnBuZK
S1aQYSYyqD0ManEkGD7oX3Hixac/oAwXVdReDWrLGf7APvEr88/6DWU4g9qn+bWc4XXPHL/y
ey9tpgwX9SdXEIYViV3ZRCKHXo6uhJE+qkpqhDBBDYLGqDdKuWv2xbMJYBXqN156oS/6h/+h
87oM6qXbc5nUvnxC2rQPe4lswoTkahAp8TV3Pp66iDK8DOpNByMHgJWo25++9f5FdQGC2sag
9jO/jJViHWoW/EVWSkCDmlgpVqOWNZe/yEoJalBTkWIZ6tDgvy/9+EPvdcuoWSslpEGtihSL
UF9oP/bwE2tlGe4vslLCGtSqSLEI9fzOlx5YP2cVYThrpUzSoFatlBHpaz0rxV9ipViE+uOd
qacevftLpK/1rBR/iZViEeqmX/3ohhNrniOoWStlMsNwYSRa/cS1wqV/s+pd2mpGX0/RoLa8
1Wt+sfXGI08KA6TVDOo6DWrLR/gFbeddv1ZcToYZa6XUawSq5QxPrv76gm2O9ynDGX3doEFt
OcPf7nluxbYFfyAihbVSpmpQW87we6+++oGHW9dShov6k8vASrFCpIQJaj0rxW9spdSG+o2v
X/HR2GVv0nldBrXlVkry3tdO3HvsQsrwMqgtt1JmPRK5qRD3EtSsldLImAwjbqUEiqyUaRrU
I2qlBIqslOka1JZbKflPLJuRi7/TLaNmrZQzNKgtFyl/OvgL4c3v/v6YjJq1UmZoUFsuUo69
+tXrHvyHGGE4a6WcqUE9olZKQNdKCYyUlZL63Y9u3PDZr5K+1rNSAiNlpXQ98+1v537+jwQ1
a6WcxTB8RKyUZ5992XHoz/9LW83o65ka1Ja3euPLSXH54rfJCGetFEmD2vIRft+drZ+a8XeL
yDBjrZQPaZ69LGf4zK7HWlL/8h5lOKOvZ2lQW87w1Wv++4NLXa9RhjOoz9agtpzhc3Zdk77w
1lWU4aL+5BpxKyWga6UERspKOaPtx+une96k87oMasutlJ/VvfvPZ9y3kTK8DGrLrZST/9nw
1d8unURQ24L675IU1Jq3d8Dw7ZO2hFh1CVvVJThVnCpOFaeKU8Wp4lRxqjhVnKrThaqumLsg
1+DBb0vMnAJI0Vp+CqD2oQKMB2iO+kCUdIKXhCWEI/tIeIsJr/Aw5gLat+gicS2gbSZzydSU
/tqlHK+PFgmX2nzgiM2ve4+dGXRWoxkTyy7D927BWNGd2UA9uH8JIwdQ+ACftNjI0HMxCbiu
69E7gkYGg36qaJAaAFEGH8IfywJlX65RXC7FntiIUpV6y5YSmbZqc7I10HiocL6mP6jUSZA4
PWvMC/RP5/DgRZDlB9PxbGZvckc2mQZh5tu7b+ENAahgGKiHhNyK2cYe4UirRh17lDA0FJPJ
EyqQ52ZEglbIe/DexZY2aXdNZNkVsgSFLLFmsto6R4AsW81kLWqxlKy/IpxSdza7iVZEXytD
S+SmDspFh9vpHnBnol0TXcByFXk6qkiUf5XNBW6xuXXvaVUkNVxjOZFRkWjGz9FRkfR4p9FS
kU6qtnKMMjeIqyrSVXUputHYbClZqjo0fYJw72TeBKAbfobPxSoS86YaieoA6geIKFC1eLuS
/0klRoU/9RGYqiGTHQJeQzKHoclfwduhwtqCfkEwbkxYR8c7DQin5Vjpbi/RWnas43ebotdH
Rg3KbytHpktHuboMyHSYJrOtszoyUf6qyXQbkOk0TeailurIRPmrINPYJhBr/4KpoaVgovWn
n6XQoLEU/oYJt/Aw5gK1FG4xYSmwS0hrYPgi/oRC6T12sUsA6gnzxZaCl1gK1DJosNBS6MW2
wGySQv1RWD3cW6TJZ5N6/KZysvsyjHLKktOrkRViGT3vqV3Pe0k11ep5irpBQ6ZXR897RkvP
axujp+d9BoS7GNlMtxqXEm6JnteS6dIh029Apts0mTXreTNkBgzI9Jgms2Y9X55MYz1vg6XQ
5K/9QzqLi74vUoUNYMSZia5Bim0APwmIWZ8U5PAxGM8D+XcVD2MuUBtglWatS9CxAeg6ANry
/LY4A5xnO1P3HtAsjYeYGaHaAOjulYKMxc0ISvM2QEBJpZImdj2rr6mFMMkwlboeaVNlmRgq
fouGad/JzHZWg9O800lQNPgFAr2NIt/FV9ddhH6Qb+gJ294egTRr0B7FcYT6qAPgODo9MuyM
9dDHrhedvTiOPhz2mCusxGNuOX4RyuOWlLJ7PWrZqFcu+ygMRxwDSp6jfjXPhoBafzQo14no
HAjKdH4Zhp+6vonj6Fsh0qQNOP4DGN5xD6q0TQkr7YrVRZX4iTq1jf31oEcrTJGoCPsKav1T
N/S8BQ5oFMn0UXxrOAmLMfS5jBqPy16WyOWbkHLCRzfnJATkaGcE6PRrBGSLM44re47xlXIb
7fPflO+LSBdms5mscamu9nOk5Zn0zmRfIr0jIfWkIR0Qec4EnlWZTF86kZM3/kKaEZTuBca3
6T5dfGGwc1Ym+2DkwHJ6sHVejwHr9u3ZnsiicnszSpal6Xjq4KFE3yu8I8ZGR6gWW4h5GUQ+
KMM8c6SUmdoN/4XAOmgubIWiPg6F5h4QhCaBBxyG4bPQeLgb3nsA3nsc1v0sjL8C46/BtOOw
3EkwFUwWAmCmANWL4AErBB9YD8M2QVY+24UwyML0J0FUkB2gKHQTudENVEfmdeTRAdG/lage
JFPiRAU5iMQLkkWujxGzDinJwySOynyWsVjvJmXR9QOkLMLxOJB9wVDas+Q3QJZPgiS8RupA
9B0nv0jOnSSLbkh5TRbkckhVzRRkZYvcVs8T5LLogWqFoH4JcD2JI0W1jajYRswpuW7Eoyyp
kz4AhJkHAFbZ+ZiFbmNlpz5OqfqOwh06RvMcHOtfjeJoja4fDK6m9wuCfB+dzCyJA8r9QVHN
X7ANrtbWie732geVsjHHwGq9hXZgk3Uc6tkTwhFF952w95boI9T6QqSwitY54FPpKfj7lbgU
6C/BhXTrINHdSPf1u6I9RlpGwbWssOpU67tPw783ooVN9G2BJVJzFP40RxZ1tDU1R5oXRds7
I9EOchv+b+9oa4vC+y3tzZGO6CL0mYLmSFdLM8zc0daFLpuikY6u5haYq60TXXe2Rlq64FVX
R0dXe0uks7010tHaTgQQRopEMMHQ8Qq4jcy2sUFPySIAKwRv1Dy2qkJQnQQO+M+Fnf4nQQEz
Ff7OIMcvng1/zyVP0FEoHC6AOdYDeXPV5XBAXAHT+mD+JHmHlIa1HFLWQQD4FMzzJHgVqO70
gAg0uozuIgOKCjoHETBOEqYy+WaQXw+QPZJcRMCdS/L6MZWyEEOC5AJSF7peT37DmHLVCr+C
lMUb2AguJMiSJF6PWyXXjQTRITItpuHWEeFDBNYkA4EVNi2w5IWVUoH1uTEqsPJYYBUUgTVo
ILAAI7D6GYHVywgsYCCwXmQE1lETAguMAYH1V2R0FAuIjo4OPOfb2joirc2qgGiNdrZHIy3R
9rbmSHtnVBYQi9qbm1oiLc1tWEA0R6KLWluhXGlBl+0dkbYokg+d0Whba6Q9iuRFp7G8OgpJ
uXmskFOyGMiKq08ZiqvPDUtchaF1JYury+BwuBym7YD5dxNxtQfWcpARV4dPubgKk+t1jLi6
jBFXlzPiagcjrnYz4moPI64OMuLqsEZcTTYQV1NMiyt5gbVUXN05THHVjsWVeh/YmPwG4qrA
iKteA3EVZuyrdxj7CjgMxNVCVVwNMuKqnxFXMQNxdYIRV4+ZEVfLT724+gz8e1OJfGhvaYOG
SRe0RFpb4QRnDJrWzmZo0LREO5ojrYvaZAHRsagVioWWjjZi0LR3tXW0QLsFGzRtiyLYvOnq
6Opa1BZpa2+DEqfNWGDdTlZzxwhBJS8GWJF1k6HIulNXZLlgLQ5wJhFZs+HvfCKymuGU74Y5
NhCRdQUcElfCtATMfxURWRlYy8cYkXXjsEWWi4iSRibfmYzIms2IrPmMyGpmRFY3Y2FtYETW
FYzIupIRWQlGZF3FiKwMI7I+xoisGxWRZfyyxQ6p7bHmZYv8lfXKL1nGOztrlWjFL1l85Bcx
6/skXMwE/lJj7L9k0W60+K1NfcmihYt19spfrDlnWyCjFwnJgf2ixmuBLemt4SXLFPqiJKf3
kqXOMJUeN6ZNle0i6jtEc9qJteAncTtQT3ENmtl/cFbR/pMSJ4Pf/XzxWwrRYWajI6hifwIi
P1hhf8IUjcFHG0aPUZnLbKwIjsz+BC2Zei/+6wzInGSazJr3J5ghs96AzDrTZNa8P6E8mXoq
858K8pHXo64yK3Fkogvc0r2JXs3eRK4yJ47KZJXcbNy/gu49rcps0N2byH5wGUEtKnNqWZXZ
WFZlTjNUmQ0aWeggsjCos2WvwZote2GikdmCxZKxoYLr3VQDokM64qqhJnVIHTlgfmMSbTok
NhqQONk0iWZVISUR5q+OxGkGJNabJtGsGqQkwvxmSSxVgf9EnhqdEDk6y21DNnMV1HVSMr0z
IzVLqWQO60L6VeucgWp7sIxqazitVRu75S5NQg8PYzpQ1dZT5bb72bh/Bd17WtWmrGheL+Jr
fdXm12AvVW09hqrtDGbb3EV0TzmWUdNBsR+9E6huwyKzniPorLx68OrNciIPqnYdpqiXEVbq
bYBfS5Z0KISYRXe6s38Gs0lkDrOqF2GWohYTHFQ0n1Gh2e6yzUa5L0H7kYbdZi+hS6/NYc3T
sNfwkWVy1YeM0PbhwWWirVr+TbTpPQW/Zso6b/YeCpwfopPuAGgBBxgOoHHWp+64le4HbYzv
wuWQMfvcoGhPrmjwpFenuBLIhoGcr1/x3ENwm9LD9UpsKji/pDb5qF/9a7dLxicQvGLVNTxm
l9shH2Fhh6NgeDXYcA1OgHYkf7niB9QA3rZqXa6vFfzAzPE/5eBhU5jM1eutql6U+2ux4jaY
/8ScUBUu8/X6qqrXp9MG0TQusSpc5uv1V1WvX9MGYQKMJWECjCVhAowlcQKMJXECjCVx3I6l
cwqHdNK2xmb86zXwv/yFQ7dLbbVANgGllLyzY6UUiyV9pT5k9BTFr1WslE8pLyi0lNxI6ruJ
/B4hv+cQ6oWydoXbte0UUo9eDpenXhzX1NtKynwEwxPdqhVnnnrV5rSC+o98pBL19rK8f8y+
7RRSX5n3jnFNvdPSkWPtuK88clyW8n60Z617nFLfWPAzy2cIZinuONS2OBuvZ3hLbI4PKY4v
rLunVDgLp7c63vf8IgjClzok77eDr4bQU/31gaUw5wnwH8qJEXRvmlxXGJCFEKyR6+BTf2MZ
fXuYtEJfl1OMeiWlmEylG+x3NIb2Qyo/7zg/tBFTeX7oEKYyqkOlzAlPkTWErs4llMwC2mXB
WluAqCnfAsTnLzh7Q4jP18L8qNXoVxxGC2wWt4BSU74FlwTQSOmFLUUjBbUY9RtugbvaFjgt
b4FMTbkWiOAh9/melb5O73PuXs8sX533l+4DHq/vfUhWVChtQSmFzOhXMNeBZmVmL8TljwxF
8Z0jMNc1eL62kfT5hcmKxoE6bIDWsQBrtM3JfCrRRLZ7UMESVJaTIsyimhNcDf/Oj5lhmV3S
ZxmqEzW/PMs6PN8PPel9LLzN80bodu/N4axHDB/y5sPWsuxhILPsYRj0WCbgf04gMixDo3WL
Ls/8I8oz1P7yPLvbPtt/k+P+wLftq/07HIcCP7b3+tc4tges4NlhG+VZggyzawyGmUh4BjQ8
20p4Ji+q20p45sQ4RoJzcs3lOPfloN9/Z+g7gWeDUf81oXsC/xVc7d8aKkDOtdhq5dzNXsq5
p8loe9pgtNkw51xFnENmz9bmiqxDSEaGdTcbDLrGWAG/zzgifAJvaDt3WSq+42opnu6TLt2d
zCfAF3GFSPTeACSn+mZMrzoziyis6u/vfxAUCgXw8ssvg97eXnyNfl9//XUcH095JiLw/uHA
gUM1cLxAj/n8PYjZ1IdbpCOHOHs4cKgKfg/C9uIXoEMTUDvzPDwPz2M+j6pbRUa3ck7xPDzP
cGaRjc8inofnqXEW2flzHgcOw3zOo7PIwWcRBw41ziInn0UcONQ4i1x8FnHgMCw4HivEPqns
VFJdSB9QPPPlFf0HlQMtmI/j4D2XnqJUxl0Rp6LrycQdtaqv+xr6phqAdbtYx5tvqmDgm2ov
65uKnMSRb6pcVijhrXrN+qbKRzWMrG+qg+yj9ALfMD1LneRLcAEQHGYNLuJLHgaTuG8q900l
MoT7pp7qscR9U7lvqlVjifumnnrfVE+JZh5PvqnesnbFWPfu9I1r6v0lZcaTb2qgLO/Hundn
cFxTH7J05Iy2b2rYUt6P9qydNE6pb1Q0LvdNrdU31TPufVP94943NXSKfFMf9qz0dXifcz/v
meWb7P2l+1cer++9UfZNtY8d39RfmfBNvSf0pPeG8DbPd0K3e68IZz0vhw55V46yb6pjDPmm
ovaX59nY8E11ct/UIs6Z9011cd/UMsB9U8cP8P7hwIFDNcB9UzlwsA64byrPw/PwPNw3lefh
ebhvKs/D83DfVA4cJtpzHvdN5cDBqlnEfVM5cKh1FnHfVA4chgej6Zsqwrzt8HdZPJdIJdOJ
ph2ZbDaxI5/oQ06qVXus0uq5x6qex6pY4rHqxHt23MUeq6AWj1W6WYl+qrgBf97YifcW15Pg
Z+IBJj6F/KKP3dcx8Xom3g9+QGpHhhJb65AO+CukByqksxR9oJNeVyG9vkL6bfhbyc4yk7G+
KAddOLcR7jqAjrevdDJysltTDTPOZe8eD65rMuR5nVpD7y/fWoZySp7V24pnxsB25lreq+/F
NdTDHp5qxttXpwYfrqERTAPTubcv9/Yl8pd7+57qscS9fbm3r1VjiXv7nnpv38naxNgvvvP5
A5e0bTTh7TvYbdpCVqwloFg7lby/ECWVfNemlLUrLPOXHQb1Zjzv6sY19fVA34YbMOGz2RMr
na+C/mCtnnpMSSXqG8ry3jJ/2RHi/dRxTX2jpSNHNJJ1IzRyplnK+9GetdPHKfWyt6/IzFyr
vH33O9737A/aw593SN6NwcGQvCIyet6+FKNeSeoG5gHrnF7/F/xzgllnxH+t3xbc5mzw3+o/
Iyjo+srOLRwlKwD1ihOgqHRUl6C3ItB0xQr8fP/glC2xI0D2yTQGD14FOgD/9cF8J3D9S91q
qkenzDxlBHwRPE5W/CjFmLwB9RQGu+46WwWwg9IPReuZX69rfO7okouHaZxeA+bGZC+5dx0X
CtRfU7TV0vlsk8t1/v/4vuD/UyDrnAw7/6XANud7vlv9bwTKdb4dD8zSzr9Kr/Njb6dWoc7v
vfhttvOHCvrBg5edrO38IcaMHXbnO0eo81Gj1c7fr3T+WTV1/hAoPTNFr/Pfgp3/NOz8qbDz
74KdPwQ7/+/Kdr4N28alnf+QXucP7IuswTN/8bNs53/N9Zpu8GDJYvHMh7zw1dr5jhHqfNRo
tfO/rnT+tNpmPtPkcp1/HHb+fCj2w7DzXVDsvwM7f2ZZsS/ipXMBO+CKTOe363U+XdbFChjl
titySS94cEvYzmfVhPnOFzUdQzkjd75opsuFos63l+l4Wp1WOpgS+wPszF+qdL5UY+cbP8+z
nf8i7Hw77Py3fdf6B+HMfxV2/jtlZ758ymZp51+m1/n9T119Ier82OHfos4XSNuGDIIHS5ba
O18o2/lC9Z1vK5Orls4fKtL5u0e585+Bnf8aFPuvw84/Bjv/Rdj5Pynb+fTFibbz/1JX5//b
DauVFzoilJ52ptWlwYMx1t75oGznO6rvfCNh4ah15sNGq53/yCh2Pj3bx07O9hms6WyfyRaf
KzNo6myfI+Rsn0ctONun/hSc7SOCn9s2e+rCG7yi/YDnRGiBd7r9qOenoTqvFQdvIDB3Mo4b
S8S2ooM3UI7hbIqw/iAdUOZ8DsSt8hze4v5i6A7fz8LXuQdCe31Phu9w/zS0xXd/2FoO31Xh
IB0PPdrksMph9BC5dv2qjy7fcHkTZpO6RFZfC7sMhYLc9PLsGrTP9r/ouD9gd6z2P+o4FJjh
6PXfgc/QqZ1d6hk6Z5MBudBgQHpPyRk6YAKcoeMbT2foyKzzg4aQ5I1M8voWh1Z4vZN+420J
X+b9Y/gFWEqyD591C8l0kBmGxr06a2Vm+TGz7EWzEuVoaZN2a6ekH09J2biwQc4AsAesAWlU
l7nBFTOalnJrK3FoEHLoOcghu8876SFfS3iG74/hW3xWcEggHPLrcChgwKG2ztHlEGptJQ4d
8UUmZf2LQ49CDq3zt4SfgWU6/FZwSCQcCuhwKGjAoUUto8uhZypwKAiN/cbQXdBaymJL6fzQ
Nufs0Kedm6H+FMVSDkWVdt4HOnXexBuBW2OD1mrHggrLF7W2SyDtEiZYu0TSLnGMtUsEX7M/
4vt7xx+CP7L/0PcZxw+Dv7P/2pdzPIEPF7bCxJDnZQjPu3DRvETllidSKWl/Mr49mUrmD0rn
6Nmr1Ixwk3u1G1+oPtTK8pz5pOul0HzfC+GvuP4Ucvn+NnzMFQy/6b09bAVnVIkVxpwJFnEm
SG3Rg+nLpSd2LdyT0squ4IiYpHILy3Plm+6gd67P63vV3eK1+37jfdt9kfe49wWvtVyZhNvq
LuIK6n/IkbmrV6ycp88P60YIAHK79HnBnjaIcJ67PJPKZHPkkEE0gq0+ZHBIdl0ZkJem0bsJ
/AjRhz7kVABxcDHoRze2AfDHp67D6zdHj70LBgaGsMszqmGgF2A354EBeZ3jlNZ3mrbHkVxu
Kf4Rq2+i9Y/Z+ibcuOQwlqHiIYMTZV7x+nh9o1Cf0SGDnIu8Pl7f6SsV9A4ZHPM2OK+P1zeG
6tM/ZJDLKl4fr284usjOZxGvj9dX4yxy8FnE6+P11TiL+CGDHDgMD/ghgxw41PwmTDlk8Eww
cocMdhbkex7sFL4hm7kqsSMvJdM7M1KzzvGBdIvGENmHgcqY3boxIoCpP6DZGwevA4Q/QyNL
pLw1h1arbmWbH9uDN704AeOLPbB39/EFPxbSmP8XHtibyCb3JNJ5aUU8nwAZeQNw28Jo18KW
aPMikMY7eJhsPStgJtzSNN5CtC6TT2zPZK4uSnCrvajeDBRVlMiqKR45ez6zI5NS7+IfcvVp
MFt9eYQ8prp/+PzzF+jxQh2inTFbIQb0DwysBoTY/wMAAP//AwAa0Sre