Facklamia Hominis Pyelonephritis in a Pediatric Patient: First Case Report and Review of the Literature

Samantha Perez Cavazos
Hospital Universitario Dr José Eleuterio González: Hospital Universitario Dr Jose Eleuterio Gonzalez

Daniela Cisneros Saldaña
Hospital Universitario Dr José Eleuterio González: Hospital Universitario Dr Jose Eleuterio Gonzalez

Fernando Espinosa Villaseñor
Hospital Universitario Dr José Eleuterio González: Hospital Universitario Dr Jose Eleuterio Gonzalez

José Iván Castillo Bejarano
Hospital Universitario Dr Jose Eleuterio Gonzalez

Denisse Natalie Vaquera Aparicio
Hospital Universitario Dr Jose Eleuterio Gonzalez

Hugo Sánchez Alanís
Hospital Universitario Dr Jose Eleuterio Gonzalez

Abiel Homero Mascareñas de los Santos (a_mascarenas@hotmail.com)
Hospital Universitario Dr Jose Eleuterio Gonzalez

Case report

Keywords: Facklamia hominis, urinary tract infection, emerging pathogen, child, children, pediatric

Posted Date: August 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-776631/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract

Background

Pyelonephritis is one of the most serious bacterial illnesses during childhood. Gram-negative organisms account for up to 90% of the cases. Gram-positive bacteria are uncommon causes of urinary tract infections, and only a few cases caused by *Facklamia hominis* have been reported in the literature.

Case presentation:

A five-year-old girl with tracheostomy and gastrostomy and past medical history of congenital lymphangioma presented with a two-week history of with intermittent fever, frequent urination, and vesical tenesmus. Diagnosis of pyelonephritis was made. Urine culture reported colonies with alpha-hemolysis in blood agar at 48-hours of incubation and *Facklamia hominis* was identified by MALDI-TOF. The patient was successfully treated with gentamicin.

Conclusions

This is the first reported case of pyelonephritis by *Facklamia hominis* in a child, and the second involving infection in a pediatric patient. Although this pathogen is uncommon, current treatment of *F. hominis* is a challenge for physicians. This case illustrates the requirement to standardize identification and treatment of care to avoid treatment failure and antimicrobial resistance.

Background

Acute pyelonephritis is an infection that affects renal parenchyma and in children, it represents one of the most common causes of serious bacterial illnesses. 80–90% of cases are caused by *Escherichia coli*, and the remaining 10–20% by other Gram-negative bacilli, such as Klebsiella, Enterobacter, Proteus, and Pseudomonas species, and certain Gram-positive organisms such as Enterococcus faecalis, Staphylococcus saprophyticus, and Streptococcus agalactiae (1, 2).

Facklamia species are rarely involved in human infections. These Gram-negative cocci are alfa-hemolytic, catalase negative, and facultatively anaerobic. (3–7) From six members of this genus, only four (*F. hominis*, *F. sourekii*, *F. ignava*, and *F. languida*) have been identified in human clinical specimens, causing a range of illnesses such as sepsis, bacteremia, abscesses, peritonitis, meningitis, endocarditis, genitourinary infection, chorioamnionitis, and prosthetic joint infection. (3–6) *Facklamia hominis* is the most common member of this genus involved in human infection. (3) We present the first reported case of pyelonephritis caused by *Facklamia hominis* in a child.

Case Presentation

We present the case of a 5-year-old girl from Mexico, with medical history of a congenital cervical lymphangioma, with a partial surgical resection during the neonatal period, requiring a gastrostomy and tracheostomy, and currently being treated with sirolimus. She presented to the emergency department with a two-week history of intermittent fever, increased urination frequency, and vesical tenesmus, for which she was treated in an out-patient clinic with levofloxacin for seven days with no clinical response. Upon physical examination she had mild abdominal tenderness and left costovertebral angle tenderness. Complete blood count was normal (leukocytes 6.25 k/µL, neutrophils 3.1 k/µL, lymphocytes 2.3 k/µL, hemoglobin 12.6 g/dL, and platelets 249,000/mm3). Acute phase reactants were slightly elevated (C-reactive protein 1.1 mg/dL, erythrocyte sedimentation rate 30 mm/h). Urinalysis was normal (negative nitrites, leukocyte esterase, and no leukocytes). Renal ultrasound showed a normal right kidney, and echogenic bands in the superior pole of the left kidney, in addition to renal sinus compression, and areas of cortical hypoperfusion in color-Doppler examination, suggestive of focal left pyelonephritis (Fig. 1). Blood cultures were negative, and urine culture reported growth after a 48-hour incubation period of colonies with alpha-hemolysis on blood agar (Fig. 2). Colonies were identified as *Facklamia hominis* by a MALDI-TOF Biotyper® using a matrix-assisted laser desorption/ionization and time-of-flight (MALDI-TOF) mass spectrometry system. Isolate was susceptible to vancomycin, gentamicin, tetracycline, and linezolid. She was discharged with clinical resolution of symptoms after a 14-day course of intravenous gentamicin (6 mg/kg/day).

Discussion And Conclusions

The genus *Facklamia* was first described in 1997 by Collins et al, using comparative 16S recombinant ribonucleic acid (rRNA) gene sequencing studies, and it currently comprises six species: *F. ignava*, *F. sourekii*, *F. tabaciasalis*, *F. languida*, *F. miroungii* and *F. hominis*. (4, 6, ...
The natural habitat of *Facklamia* species remains unknown, however strains associated to human infection seem to be rare members of commensal microbiota of skin, and the female genitourinary tract. *Facklamia* species are uncommon human pathogens, and since the description of the genus, very few cases of *Facklamia* spp human infections have been reported in medical literature. The pathogenic potential and virulence of this genus is yet to be elucidated.

F. hominis has been isolated from several clinical specimens such as urine, vagina, blood, abscesses, synovial fluid, mitral valves, placenta, gastric aspirates, cerebrospinal fluid, and preputial swabs.

We performed a literature search in four languages (spanish, english, german and korean) of core databases including MEDLINE (National Library of Medicine, Bethesda, MD), SciELO (Scientific Electronic Library Online), Google Scholar (Palo Alto, California) and Web of Science (Clarivate Analytics, Philadelphia, Pennsylvania), between 1990 and 2021 using the keywords: "Facklamia spp", "Facklamia species" "F. hominis", "F. languida", "F. ignava", "F. sourekii", "F. miroungii" and "F. tabaciasalis" to identify case reports and case series. References of the selected publications were reviewed to recognize duplicate reports on case series. Twelve cases of infections due to *F. hominis* were identified. A summary of demographic and clinical data, including risk factors and treatment is available in Table 1.

Facklamia species are Gram-positive, catalase-negative, facultative anaerobic cocci, and its identification with traditional microbiologic tests can represent a challenge. Depending on species and growth conditions, they can be found in pairs, clusters, or chains, and on sheep blood agar colonies are non-pigmented and weakly alpha-hemolytic or non-hemolytic. Due to its resemblance in Gram-stain characteristics, colony morphology, hemolysis on 5% sheep blood agar, and catalase reaction, they may be misidentified as viridans-group Streptococci or discarded as contaminants. *Facklamia* species can be recognized by their production of leucine aminopeptidase (LAP), L-pyrrolidonyl-beta-naphthylamide (PYR), and their ability to grow in 6.5% sodium chloride containing media.

Species of *Facklamia* have been identified using the API Rapid ID32 STREP system, API ZYM method, Vitek® 2 system (bioMerieux France), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), and DNA sequence coding for 16S RNA. In the present case, *Facklamia hominis* was successfully identified by MALDI-TOF.

The distinction of *Facklamia* spp from viridans-group Streptococci and other Streptococcus-like organisms is clinically relevant because of its unusual susceptibility pattern. Susceptibility testing has been defined using the Clinical and Laboratory Standards Institute guidelines for *Streptococcus* species other than *Streptococcus pneumoniae*. Physicians must be aware of the several limitations concerning *Facklamia* infections, as to date there is no standardized method of identification, or treatment guidelines available, and taking into account the inconsistency of susceptibility profiles reported, clinical decisions should be taken considering the susceptibility pattern of the isolate in question.

Outcomes of *F. hominis* infections are mostly encouraging when appropriate antibiotic therapy is warranted, such as the case we present.

Conclusion

This case is the second reported in a pediatric patient, the first reported in Latin America, and the first case of *Facklamia hominis* pyelonephritis in a child. Although this pathogen is an uncommon cause of infection, its identification and treatment remain a challenge for physicians. A variety of antibiotics have been used, including penicillin and third generation cephalosporins. In our case, the patient was successfully treated with gentamicin. Overall, our attestations point up that *F. hominis* is responsible of a variety of human infections and should be considered as an emerging pathogen, however there is scarce information of its virulence and pathogenic potential. This case illustrates the importance of appropriately identifying the bacteria and its susceptibility patterns, to prevent treatment failure and to avoid selective pressure on microbiota, thus preventing antimicrobial resistance.

Abbreviations

- API: Analytical Profile Index
- DNA: Deoxyribonucleic acid
- MALDI-TOF: Matrix-assisted laser desorption/ionization time-of-flight
PYR: L-pyrrolidonyl-beta-naphthylamide

LAP: Leucine aminopeptidase

RNA: Ribonucleic acid

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Written informed consent for publication of clinical details and clinical images was obtained from the parents of the patient. A copy of the consent form is available for review by the editor of the journal.

Availability of data and materials: Not applicable

Competing interests: The authors declare that they have no competing interests

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors contributions: JCB & DNVA coordination; SPC & DCS analysis and writing; AMDS conception and coordination; FEV design of the work; HSA identification in laboratory.

Authors information: Not applicable

Acknowledgements: Thanks to the Radiology Department, Microbiology Department and Bacteriology Laboratory of Hospital Universitario “José Eleuterio González” for their special contribution.

References

Tables
<table>
<thead>
<tr>
<th>Pub year/Place</th>
<th>Gender/Age</th>
<th>Underlying condition</th>
<th>Infection</th>
<th>Sample</th>
<th>Identification Method</th>
<th>Provided antibiotic treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004, UK (10)</td>
<td>F/ 34 Y</td>
<td>Pregnancy</td>
<td>Chorioamnionitis and puerperal bacteremia</td>
<td>Placental tissue swabs and placental tissue</td>
<td>ND</td>
<td>Amoxicillin and clavulanic acid Metronidazole</td>
</tr>
<tr>
<td>2010, UK (11)</td>
<td>ND/ ND</td>
<td>Ischemic stroke</td>
<td>Endocarditis</td>
<td>Blood culture</td>
<td>PCR</td>
<td>Gentamicin and Vancomycin</td>
</tr>
<tr>
<td>2012, India (12)</td>
<td>M/ 35 Y</td>
<td>Rheumatic heart disease</td>
<td>Endocarditis</td>
<td>Blood culture</td>
<td>Vitek®2 system</td>
<td>Ceftriaxone Gentamicin</td>
</tr>
<tr>
<td>2014, Spain (5)</td>
<td>F/ 81 Y</td>
<td>Obesity</td>
<td>Prosthetic joint infection</td>
<td>Periprosthetic femoral Prosthetic tissue, femoral interface membrane, acetabular interface membrane</td>
<td>Vitek®2 system</td>
<td>Amoxicillin Ceftriaxone</td>
</tr>
<tr>
<td>2015, France (15)</td>
<td>F/40 Y</td>
<td>None</td>
<td>Scapular abscess</td>
<td>Abscess culture</td>
<td>MALDI-TOF</td>
<td>Pristinamycine</td>
</tr>
<tr>
<td>2015, USA (13)</td>
<td>F/41 Y</td>
<td>Recurrent sinusitis</td>
<td>Meningitis</td>
<td>CSF culture</td>
<td>Vitek®2 system</td>
<td>Ceftriaxone</td>
</tr>
<tr>
<td>2017, Germany (16)</td>
<td>M/63 Y</td>
<td>Melanoma</td>
<td>Thoracic abscess</td>
<td>Abscess culture</td>
<td>PCR</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>2019, USA (14)</td>
<td>M/75 Y</td>
<td>Benign prostatic hyperplasia + transurethral prostate resection</td>
<td>Urosepsis</td>
<td>Urine culture</td>
<td>RAST (vClassic RAST)</td>
<td>Ampicillin-Sulbactam Vancomycin</td>
</tr>
<tr>
<td>2019, Spain (17)</td>
<td>M/9 Y</td>
<td>Phimosis + balanopreputial adhesions</td>
<td>Balanoposthitis</td>
<td>Urethral exudate culture</td>
<td>MALDI-TOF</td>
<td>Amoxicillin and clavulanic acid</td>
</tr>
<tr>
<td>2019, Korea (18)</td>
<td>M/67 Y</td>
<td>Hepatitis B virus-cirrhosis</td>
<td>Epidermal cyst</td>
<td>Wound secretion culture</td>
<td>Vitek®2 system</td>
<td>Amoxicillin and clavulanic acid</td>
</tr>
<tr>
<td>2020, France (6)</td>
<td>F/ 57 Y</td>
<td>Uterine myomatosis and obesity</td>
<td>Peritonitis</td>
<td>Peritoneal culture</td>
<td>Vitek® MS V3.0</td>
<td>Cefotaxime Metronidazole Amoxicillin</td>
</tr>
<tr>
<td>2021, USA (19)</td>
<td>F/64 Y</td>
<td>Type 2 diabetes mellitus and coronary artery disease</td>
<td>Hidradenitis suppurativa</td>
<td>Axillary abscess culture</td>
<td>MALDI-TOF</td>
<td>Moxifloxacin Vancomycin Trimethoprim/Sulfamethoxazole</td>
</tr>
<tr>
<td>Pub year/Place</td>
<td>Gender/Age</td>
<td>Underlying condition</td>
<td>Infection</td>
<td>Sample</td>
<td>Identification Method</td>
<td>Provided antibiotic treatment</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>2021, Mexico</td>
<td>F / 7 Y</td>
<td>Congenital lymphangioma</td>
<td>Pyelonephritis</td>
<td>Urine culture</td>
<td>MALDI-TOF</td>
<td>Gentamicin</td>
</tr>
</tbody>
</table>

Abbreviations:
M: male; F: female; CFS: cerebrospinal fluid; PCR: polymerase chain reaction; MALDI-TOF: matrix-assisted laser desorption/ionization time-of-flight; ND: no data.

Figures

Figure 1

Renal ultrasonography images: showing evidence of focal left pyelonephritis. A. Echogenic bands in superior pole of left kidney with compression of the renal sinus. B. Diminished perfusion in the superior pole of left kidney in color-Doppler ultrasound.
Figure 2

Urine culture: Alpha-hemolytic, non-pigmented colonies in 5% blood sheep agar, after a 48-hour incubation period.