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Abstract

Background: Machine learning, especially deep learning, is becoming more and

more relevant in research and development in the medical domain. For all of the

supervised deep learning applications, data is the most critical factor in securing

successful implementation and sustaining the progress of the machine learning

model. Especially gastroenterological data, which often involves endoscopic

videos, are cumbersome to annotate. Domain experts are needed to interpret and

annotate the videos. To support those domain experts, we generated a

framework. With this framework, instead of annotating every frame in the video

sequence, experts are just performing key annotations at the beginning and the

end of sequences with pathologies, e.g. visible polyps. Subsequently, non-expert

annotators supported by machine learning add the missing annotations for the

frames in-between.

Results: Using this framework we were able to reduce work load of domain

experts on average by a factor of 20. This is primarily due to the structure of the

framework, which is designed to minimize the workload of the domain expert.

Pairing this framework with a state-of-the-art semi-automated pre-annotation

model enhances the annotation speed further. Through a study with 10

participants we show that semi-automated annotation using our tool doubles the

annotation speed of non-expert annotators compared to a well-known

state-of-the-art annotation tool.

Conclusion: In summary, we introduce a framework for fast expert annotation

for gastroenterologists, which reduces the workload of the domain expert

considerably while maintaining a very high annotation quality. The framework

incorporates a semi-automated annotation system utilizing trained object

detection models. The software and framework are open-source.

Keywords: Machine learning; Deep learning; Annotation; Endoscopy;

Gastroenterology; Automation; Object detection

Background
Machine learning especially deep learning is becoming more and more relevant in

research and development in the medical domain [1, 2]. For all of the supervised

deep learning applications, data is the most critical factor in securing successful

implementation and sustaining progress. Numerous studies have shown that access

to data and data quality are crucial to enable successful machine learning of med-

ical diagnosis, providing real assistance to physicians [3, 4, 5, 6, 7]. Exceptionally
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high-quality annotated data can improve deep learning detection results to great

extent [8, 9, 10]. E.g., Webb et al. show that higher data quality improves detection

results more than using larger amounts of lower quality data [11]. This is especially

important to keep in mind while operating in the medical domain, as mistakes may

have fatal consequences. Nevertheless, acquiring such data is very costly particu-

larly if domain experts are involved. On the one hand domain, experts have minimal

time resources for data annotation, while on the other hand, data annotation is a

highly time-consuming process. The best way to tackle this problem is by reducing

the annotation time spend by the actual domain expert as much as possible while

using non-experts to finish the process. Therefore, in this paper, we designed a

framework that utilizes a two-step process involving a small expert annotation part

and a large non-expert annotation part. This shifts most of the workload from the

expert to a non-expert while still maintaining proficient high-quality data. Both of

the tasks are combined with AI to enhance the annotation process efficiency further.

To handle the entirety of this annotation process, we introduce the software Fast

Colonoscopy Annotation Tool (FastCat). This tool assists in the annotation process

in endoscopic videos but can easily be extended to any other medical domain. The

main contributions of our paper are:

1) We introduce a framework for fast expert annotation, which reduces the workload

of the domain expert by a factor of 20 while maintaining very high annotation

quality.

2) We publish an open-source software for annotation in the gastroenterological

domain and beyond, including two views, one for expert annotation and one

for non-expert annotation.[1]

3) We incorporate a semi-automated annotation process in the software, which

reduces the annotation time of the annotators and further enhances the an-

notation process’s quality.

To overview existing work and properly allocate our paper in the literature we

describe a brief history reaching from general annotation tools for images and videos

to annotation specialized for medical use.

A brief history of annotation tools

As early as the 1990s, the first methods were conceived to collect large datasets

of labeled images [12]. E.g., ”The Open Mind Initiative”, a web-based framework,

was developed in 1999. Its goal was to collect annotated data by web users to

be utilized by intelligent algorithms [13]. Over the years, various ways to obtain

annotated data have been developed. E.g., an online game called ESP was developed

to generate labeled images. Here, two random online players are given the same

image and, without communication, must guess the thoughts of the other player

about the image and provide a common term for the target image as quickly as

possible [14, 12]. As a result, several million images have been collected. The first

and foremost classic annotation tool called labelme was developed in 2007 and is

still one of the most popular open-source online annotation tools to create datasets

[1]https://github.com/fastcatai/fastcat
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Table 1 Comparison between video and image annotation tools.

Tool CVAT LabelImg labelme VoTT VIA

Image • • • • •
Video • - - • •
Usability Easy Easy Medium Medium Hard

F
o
rm

a
ts

VOC • • • • -

COCO • - • - •
YOLO • • - - -

TFRecord • - - • -

Others - - • • •

for computer vision. Labelme provides the ability to label objects in an image

by specific shapes, as well as other features [15]. From 2012 to today, with the

rise of deep learning in computer vision, the number of annotation tools expanded

rapidly. One of the most known and contributing annotation tools is LabelImg,

published in 2015. LabelImg is an image annotation tool based on Python which

utilizes bounding boxes to annotate images. The annotations are stored in XML

files that are saved in either PASCAL VOC or YOLO format. Additionally, in 2015

Playment was introduced. Playment is an annotation platform to create training

datasets for computer vision. It offers labeling for images and videos using different

2D or 3D boxes, polygons, points, or semantic segmentation. Besides, automatic

labeling is provided for support. In 2017 Rectlabel entered the field. RectLabel is a

paid labeling tool that is only available on macOS. It allows the usual annotation

options like bounding boxes as well as automatic labeling of images. It also supports

the PASCAL VOC XML format and exports the annotations to different formats

(e.g., YOLO or COCO JSON). Next, Labelbox, a commercial training data platform

for machine learning, was introduced. Among other things, it offers an annotation

tool for images, videos, texts, or audios and data management of the labeled data.

Nowadays, a variety of image and video annotation tools can be found. Some have

basic functionalities, and others are designed for particular tasks. We picked five

freely available state-of-the-art annotation tools and compared them more in-depth.

In table 1, we shortly describe these tools and compare them.

Computer Vision Annotation Tool (CVAT) CVAT [16] was developed by Intel and

is a free and open-source annotation tool for images and videos. It is based on a

client-server model, where images and videos are organized as tasks and can be split

up between users to enable a collaborative working process. Files can be inserted

onto the server through a remote source, mounted file system, or uploading from

the local computer. Before a video can be annotated, it must be partitioned into

its frames, which then can be annotated. Several annotation formats are supported,

including the most common formats such as VOC, COCO, YOLO and TFRecord.

Available annotation shapes and types are labeling, bounding boxes, polygons, poly-

lines, dots, and cuboids. CVAT also includes features for a faster annotation pro-

cess in videos. The disadvantages of this tool are that it currently only supports

the Google Chrome browser, and due to the Chrome Sandbox, performance issues

could appear.

LabelImg LabelImg [17] is an image annotation tool that is written in Python and

uses the Qt library as a graphical user interface. It can load a bulk of images but only
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supports bounding box annotations and saves it as a XML file in VOC or YOLO

format. The functionalities are minimal but sufficient for manual annotation of

images. Furthermore, it does not contain any automatic or semi-automatic features

which could speed up the process.

labelme The annotation tool labelme [18] is written in Python, uses Qt as its

graphical interface and only supports image annotation. It is advertised that videos

could be annotated with this tool, but no video annotation function was found

and the user must manually extract all frames from the video beforehand. Also,

there are no automatic or semi-automatic features available and uses basic shapes

like polygons, rectangles, circles, points, lines and polylines to annotate images. It

uses its annotation data format, but it can be converted into the VOC format for

semantic and instance segmentation and the COCO format is only available for

instance segmentation.

Visual Object Tagging Tool (VoTT) Microsoft’s tool VoTT [19] is open-source and

can be used for images and videos. Since it is written in TypeScript and uses the

React library as a user interface, it is possible to use it as a web application that can

run in any web browser. Alternatively, it can also run locally as a native application

with access to the local file system. Images and videos are introduced to the program

via a connected entity. This can be a path on the local file system, a Bing image

search query via an API key, or secure access to an Azure Blob Storage resource.

Available annotation shapes are rectangles and polygons that can be tagged. These

can then be exported for the Azure Custom Vision Service and Microsoft Cognitive

Toolkit (CNTK). Also, the following formats are available: VOC, TFRecord, CSV

and a VoTT-specific JSON. Videos are also extracted into their frames, but one

can set a frame extraction rate (FER) to control the frequency in which the frames

are extracted, i.e., a FER of 1 only extracts one frame every second and a FER

of 10 is saving a frame every tenth of a second. Because a timestamp of the video

is stored along with the extracted frame, it should be noted that between frames

and the corresponding timestamp can be inaccurate due to rounding errors or a

discrepancy between the FER and actual video frame rate. The FER value should

be set to the actual frame rate of the video, to get the best possible accuracy, It is

also important to mention that VoTT relies on the HTML5 Video element, which

has limited video formats and can vary between browsers.

VGG Image Annotator (VIA) VIA [20, 21] is a tool that runs in a web browser

without further installation and is only build from HTML, JavaScript, and CSS. It

can import and export annotations from COCO and a VIA-specific CSV and JSON.

The available annotation shapes are polygons, rectangles, ellipses, lines, polylines,

and points. Video annotation features the annotation of temporal segments to mark

e.g., a particular activity within the video. Defined segments of the track can also

annotate an audio file. VIA does not contain any automatic functionalities within

the tool itself; these are relatively independent steps. These steps can be broken

down to: Model predicts on frames, save predictions so that they can be imported

into VIA, and lastly, check and update annotations if necessary.
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Medical annotation tools

With the considerable increase in interest and progress in machine learning in our

society the need for machine learning models shifts in different domains including

medicine. Thus, artificial intelligence can be used to assist medical professionals in

their daily routines [22, 23, 24]. As a result, the need for labeled medical images

and videos is also a major issue for medical professionals. While it is possible to use

common annotation tools such as those already described above, some annotation

tools have already been adapted to medical conditions. A well-known example from

2004 is ”ITK-Snap”, a software for navigating and segmenting three-dimensional

medical image data [25]. Another example is ”ePAD”, an open-source platform for

segmentation of 2D and 3D radiological images [26]. The range of medical seg-

mentation tools has become very broad nowadays, as they are usually specialized

for many different areas of medicine. Another annotation tool published in 2015 is

TrainingData [27, 28]. TrainingData is a typical annotation tool for labeling ma-

chine learning (computer vision) training images and videos. This product offers

good features, including labeling support through built-in machine learning mod-

els. TrainingData also supports DICOM (Digital Imaging and Communications in

Medicine), a widespread format in the medical domain. In 2016 Radiology Infor-

matics Laboratory Contour (RIL-Contour) was published [29]. RIL-Contour is an

annotation tool for medical image datasets. Deep Learning algorithms support it

to label images for Deep Learning research. The tool most similar to ours is En-

dometriosis Annotation Tool [30]. The software, developed by a group of developers

and gynecologists, is a web-based annotation tool for endoscopy videos. In addition

to the classic functions such as video controls, screenshots, or manual labeling of

the images, the option of selecting between different endometriosis types is also

offered here. Nevertheless, most of these medical annotation tools are not suitable

for our comparison as they only work with images or are too specialized. The most

suitable would be Endometriosis Annotation Tool, but the application is focused on

specific annotations for surgery and those not allow the creation of bounding box

annotations which are crucial for our gastroenterological annotations. Therefore, we

choose a common, well-known state-of-the-art tool CVAT, for our comparison.

Results

This section presents the results of our introduced tool FastCAT and compares it to

the well-known state-of-the-art annotation tool CVAT. We start by introducing our

data acquisition and experimental setup. We show our results of the non-expert an-

notators, which suggests that our tool outperforms the state-of-the-art tool CVAT.

We further show how the semi-automated AI annotation affects the annotation

speed. Finally, we show our results of the expert annotator, which underline the

time advantage using our tool.

Data acquisition and experimental set up

For our evaluation, we used two data sets: The GIANA data set and our data set

created at a German clinic called ”University Hospital Würzburg”[2]. The GIANA

[2]https://www.ukw.de/en
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dataset is openly accessible[3] [31]. It is the first polyp dataset published, which

includes videos. Former open-source datasets like CVC clinic database [32] or ETIS-

LaribPolypDB [33] only provide single images. The GIANA dataset consists of 18

annotated polyp sequences. It is a standard dataset that has been used before for

model benchmarking in different publications [34, 35, 36]. Therefore, we can reliably

use it for evaluating the quality of our results. On average, the data set has 714

frames per video. According to their references, all annotations are done by expert

gastroenterologists. We randomly selected two videos from the 18 available ones in

GIANA for our evaluation, which turned out to be videos number 8 and 16.

Our data set is composed of an additional 8 videos. These videos include full

colonoscopies and therefore have to be filtered first. For the filtering process, we

used the method introduced in this paper. Furthermore, we contacted an expert

gastroenterologist from the University Hospital Würzburg for the expert annotation.

Since the expert annotation time of gastroenterologists is very costly and difficult to

obtain, we could only manage to receive the work of one expert. In a second process,

the expert annotator selects the part of the video, including polyps, as explained

in section Methods. However, since this annotation process is not yet completed,

we can only evaluate the improvement in annotation speed and not the annotation

quality with our dataset.

For the study, all participants receive ten videos for polyp annotation. The videos

are randomly selected and then given to the participants. For our preliminary eval-

uation, ten test subjects are instructed to use our annotation tool and the state-

of-the-art annotation tool CVAT. Finally, all non-expert annotators receive our

software FastCAT and a java tool for measuring the time. The expert annotator

starts with annotation, as explained in Methods. He annotates Paris classification

[37], the size of the polyp, and its location. Additionally, the expert annotates the

start and end frame of the polyp and one box for the non-expert annotators. After-

wards, the AI calculates predictions on these images. The results of the AI are given

to the non-expert annotators, who then only correct the predicted boxes. The test

subjects in this experiment are students from computer science, medical assistance,

and medical secretary. All non-expert annotators are instructed to annotate the

polyp frames as fast and as accurately as they can.

Results of the non-expert annotators

We evaluated the tool with 10 different gastroenterological videos containing full

colonoscopies. The results are shown in table 2 and in table 3. As mentioned previ-

ously, we only evaluate the quality of the annotation in two videos from the openly

accessible GIANA dataset. The quality evaluation is done via the F1-score. The

F1-score describes the harmonic mean of precision and recall as show in following

equations:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN

[3]https://endovissub2017-giana.grand-challenge.org
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Table 2 Comparison of FastCAT and CVAT by video. This table shows our comparison of the
well-known CVAT annotation tool to our new annotation tool FastCAT in terms of annotation
speed. Videos 1 and 2 are open source and annotated. Video 3 - 10 are from the University
Hospital Würzburg.

Speed (SPF) Total time (min) Video information

CVAT Ours CVAT Ours Frames Polyps Framesize

Video 1 3.79 1.75 23.43 10.82 371 1 384x288

Video 2 4.39 2.49 32.85 18.63 449 1 384x288

Video 3 2.82 1.42 60.11 30.27 1279 1 898x720

Video 4 4.09 2.00 56.85 27.80 834 1 898x720

Video 5 4.57 2.39 53.24 27.84 699 2 898x720

Video 6 1.66 0.61 18.01 6.62 651 1 898x720

Video 7 1.70 0.64 11.22 4.22 396 1 898x720

Video 8 1.55 0.76 34.13 16.73 1321 2 898x720

Video 9 1.87 0.88 34.91 16.43 1120 1 898x720

Video 10 2.74 0.92 77.68 26.08 1701 4 898x720

Mean 2.92 1.39 40.24 18.54 882 1.5 795x633

Table 3 Comparison of FastCAT and CVAT by user. This table shows our comparison of the
well-known CVAT annotation tool to our new annotation tool FastCAT in terms of quality of
annotation and annotation speed. The quality metric is the F1-score. We count a TP if the drawn
box matches the ground truth box more than 70 %.

Quality (%) Speed (SPF) Total time (min) Medical experience

CVAT Ours CVAT Ours CVAT Ours

User 1 99.30 99.50 7.33 3.71 48.78 25.30 low

User 2 98.85 98.90 3.47 1.88 23.38 13.70 low

User 3 97.97 98.51 4.59 1.53 31.28 11.17 low

User 4 98.93 99.75 5.12 2.57 33.96 16.53 middle

User 5 98.53 98.83 5.41 2.49 37.00 18.10 middle

User 6 98.52 99.23 4.04 3.24 27.90 24.95 low

User 7 99.45 99.30 5.20 2.70 35.01 21.28 middle

User 8 99.35 99.08 5.25 2.86 33.90 19.57 low

User 9 99.12 98.54 4.12 2.25 27.12 14.99 low

User 10 98.93 99.48 5.63 2.76 37.53 19.89 low

Mean 98.98 99.03 5.79 2.93 33.59 18.55 low

We count an annotation as true positive (TP) if the boxes of our annotators and the

boxes from the GIANA dataset have an overlap of at least 70%. Our experiments

showed high variability between individual experts. We, therefore, concluded that a

higher overlap is not attainable. Hence, to ensure reasonable accuracy, we choose an

overlap of 70% which has been used in previous studies [38, 39, 40]. To determine

annotation speed, we first measure the speed of the non-expert annotators in seconds

per frame (SPF). On average, our annotators take 2.93 seconds for annotating one

image while maintaining a slight advantage in annotation quality. Overall, our semi-

automated tool’s annotation speed is almost 2x faster than the CVAT annotation

tool, with 5.79 seconds per image. In addition, we evaluate the average time non-

expert annotators spend annotating an entire video. The average video takes 18.55

minutes to annotate. In comparison, using the CVAT tool takes 40.24 minutes on

average per video. Due to some faulty prediction results of the neural network, the

annotators sometimes delete boxes and draw new boxes as some polyps may be hard

to find for the CNN. This leads to higher annotation time in the case where polyps

are mispredicted. Nevertheless, our tool is self-learning, and increasing amounts of

high-quality annotations improve the prediction quality of the CNN. This, in turn,

speeds up the annotation process further. We elaborate on this in detail in the
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following subsection. To include more information concerning the video data, we

include the number of frames per video, the number of polyps per video, and each

video’s frame size. The videos provided by our clinic (Videos 3-10) have a higher

resolution and a higher frame rate than videos gathered from different institutes.

Overall the quality evaluation results show that almost similar annotation results

to those of gastroenterology experts are achieved. For speed, our tool outperforms

the CVAT tool in any video. In two videos, our tool is more than twice as fast as

the CVAT tool.

Learning process of the non-expert annotators

1 2 3 4 5 6 7 8 9 10
Annotation experience (Number of annotated Videos)

0

1

2

3

4
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6

7
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A
nn
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r f
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e 
(S

P
F)

Ours
CVAT

Figure 1 Learning process of the non-expert annotators. The figure shows the speed of the
annotator in seconds per frame (SPF) over the annotation experience measured by the total
number of annotated videos by that point for both our tool and CVAT.

Figure 1 shows the learning process of the non-expert annotators, in blue using

our tool and in orange using CVAT. The figure shows that the annotation of the

first videos takes longer than annotating the subsequent ones since the subject has

to get to know the software and needs to adjust the software to his preferences.

Therefore, annotation speed using both tools improves by further usage, and both

tools feature a similar learning curve. However, this learning process slows down

after the annotation of about 4 to 5 videos. After this amount of videos, annota-

tors are well accustomed to the software and can competently use most features.

In addition, figure 1 shows that this learning process is faster using our tool in

comparison to the CVAT tool. This may be due to the information provided before

use, the calculation we built directly into the software, and our user-friendly envi-

ronment. Besides all, the CVAT software also shows excellent progress in learning

worth mentioning. We can even see annotators who use any of the two tools more

frequently further improve their annotation speed up to 9 videos. However, after

8 to 9 videos, the annotation speed decreases. This may be due to two repetitions

of the same process that may bore the subject and, therefore, decrease annotation

speed. Our data show that this effect is more prominent for CVAT than for our

tool.
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Figure 2 Effect of model performance on annotation speed. Plotted are the speed of the
annotators in seconds per frame over the model performance given by its F1-score on a video by
video basis, where the model used for prediction is the same for each video. Every point is
computed as the average over all annotators.

Impact of polyp pre-annotations

To further analyze the improvements in our framework, we investigate the im-

pact of polyp detection on the annotation speed. We compare the final annotated

videos with the predictions done during the investigated videos. For ten videos, we

calculated the F1-score based on the analysis above. A higher F1-score implicates

more detected polyps with less false positive detection. Then, we rank the videos

according to their F1-score and display the annotation speed in seconds per frame

(SPF), shown in Figure 2. Overall, a high F1-score leads to a faster annotation

speed. Nevertheless, as seen in figure 2 if the F1-score is low, the annotation speed

at times is faster without any predictions, e.g., from 0.2 to 0.4. Furthermore, low

F1-scores show a higher standard deviation in the labeling speed. This means that

with a higher F1-score, the variance of the participants’ labeling speed decreases

and therefore the overall performance is increased. Furthermore, we emphasize that

continuing the annotation process and retraining the system detection results will

increase, and therefore, the annotation speed will increase.
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Table 4 Comparison of CVAT and FastCAT. The tables show the reduction of annotation time of the
domain expert. Tgac stands for the time gained compared to annotation with CVAT and is the
reduction of workload in %.

Total time (min) Tgac (%) Video information

Ours CVAT Length (min) Freezes Polyps

Video 3 0.51 60.11 99.15 15.76 2 1

Video 4 0.67 56.85 98.82 17.70 6 1

Video 5 0.88 53.24 98.35 23.12 4 2

Video 6 0.54 18.01 97.00 6.30 2 1

Video 7 0.91 11.22 95.36 13.05 5 1

Video 8 1.94 34.13 94.31 27.67 13 2

Video 9 2.05 34.91 94.13 20.53 4 1

Video 10 2.19 77.68 97.18 24.36 15 4

Mean 1.21 43.26 96.79 18.56 6.38 1.62

Results of the expert annotator

This subsection demonstrates the value of the tool for domain expert annotation. As

domain experts are very costly, we only had a single expert available for our study.

Therefore, our evaluation between domain experts could not be done quantitatively.

Nevertheless, we can qualitatively compare the amount of time a domain expert

annotates our collected colonoscopies. This is shown in table 4. On average, our

gastroenterologist spends 1.34 minutes on a colonoscopy. Our final results show

that we achieve qualitatively similar results to the GIANA dataset annotation.

The expert annotator only takes 0.5 to 1 minute per video using our method, while

taking at least 10-80 minutes per video using the CVAT software. Therefore, we can

reduce the amount of time a domain expert has to spend on annotation by 96.79

% or by a factor of 20. This reduction is primarily due to expert and non-expert

annotation structure, which reduces the expert’s effort tremendously.

Discussion
By implementing a novel workflow consisting of both algorithmic and manual anno-

tation steps, we developed a tool that significantly reduces the workload of expert

annotators and improves overall annotation speed compared to existing tools. In

this section, we highlight and discuss the impacts of our study, show the limitation

of our presented work and propose new approaches to advance our study further.

Key features and findings

Our results show that by pre-selecting relevant frames using a combination of our

freeze-frame detection algorithm and further, low-demand expert annotations and

by using AI-predictions for bounding box suggestions, we significantly increase the

annotation speed while maintaining and even increasing annotation accuracy (see

table 2 and 3). It is important to note that this improvement is not due to more

annotation experience with one tool over the other since the test annotators used the

tools in an alternating fashion with random video order. Figure 1 further stresses

this fact by showing a similar learning curve for both tools, with our tool being

shifted down to shorter annotation times. In both cases, the annotation experience

(i.e., adjustment to the tool) increases up to around seven videos or 10000 annotated

frames. The annotation speed first saturates and then increases again, possibly due

to a human exhaustion effect of doing the same task for an extended duration [41].
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Additionally, we inspected the effect of the prediction performance on the anno-

tation speed. As shown in figure 2, there is a clear trend towards faster annotation

time with better model performance. The annotator works faster if the suggested

bounding boxes are already in the correct location or only need to be adjusted

slightly by drag and drop. If the predictions are wrong, the annotator needs to

move the boxes further, perhaps readjust the size more, or even delete boxes or cre-

ate new ones. However, the model improvement saturates at an F1-score of around

0.8, where better model performance does not equate to faster annotation speed.

Additionally, the range of error is much more significant for the worse performing

videos, so this point warrants further inspection in future studies. Nevertheless, it

is apparent here that a model only needs to be good enough instead of perfect to

improve annotation speed significantly.

Finally, the results in table 3 suggest that medical experience does not affect

either the annotation speed or performance. The frame detection algorithm com-

bined with the expert frame annotations and our model’s pre-detection provides

enough feasibility for the non-experts to adjust the suggested annotations fast and

accurately regardless of experience. However, it should be noted that the range of

speeds across our subjects is more stable for middle experience annotators than low

experience ones.

All in all, our tool significantly improves the annotation workflow, specifically in

the domain of gastroenterology, where specialized tools are scarce. The annotation

speed is more than doubled while keeping the same accuracy as other state-of-the-

art tools and keeping the cost for expert annotators low.

Limitations of the study

In this subsection, we will shortly discuss the limitations of our analysis and provide

an outlook for future studies.

First of all, we did not consider the difficulty of the video when analyzing annota-

tion time. Some videos contain more and harder to detect polyps and thus provide a

bigger challenge for both the pre-detection algorithm and the annotator. The effect

of video difficulty directly correlates to the model performance in figure 2, where

the standard error for low-F1 videos is much higher compared to the better ones.

Some annotators can efficiently deal with false predictions, while others have more

difficulties with those. Additionally, the total annotation time was measured from

beginning to end for a video. While the applet we provided for the annotators in-

cludes a pause button, minor deviations, like checking their phone, are not removed

from our total time measured. These statistical deviations could be removed by di-

viding the videos into difficulty categories and analyzing each category separately.

We need more data or more test annotators, where small statistical outliers should

be averaged out.

Additionally, with only three medical assistants and seven non-experts, we need

further tests to see if medical experience significantly affects annotation time and

quality. As discussed above, table 3 suggests that medium experience annotators

work more consistently, whereas low experience ones can be both faster and slower

than the medical assistants. These findings can be examined further in future studies

with more annotators from various backgrounds, especially those with high medical

experience.
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Finally, we only indirectly measured the effect of bounding box pre-detection,

where our subjects had no pre-detection for CVAT and suggestions with our tool.

Thus, the improvement in annotation speed could also be due to our tool simply

being easier to use and having a better UI than CVAT. For future analysis, we

intend to have the test subjects annotate videos twice, once with bounding box

suggestions and once without. However, both times they will use our tool. This

way, we will be able to analyze the effect of the pre-detection directly.

Limitations of the tool and future improvements

While our freeze frame detection algorithm is specific to the domain of gastroen-

terology, the specific method for detecting relevant frames can be exchanged for a

function more suited to the annotators’ domain. Additionally, while we only uti-

lized the tool for polyp detection, it can be easily extended to feature more than one

pathology, like diverticulum or inflammation. Since frame-wide annotations are sep-

arate from bounding boxes, this can also be used for standard image classification

tasks and pathologies that are hard to confine to a bounding box area.

Additionally, within the medical domain, we plan to implement a feature for

automatically detecting gastroenterological tools. When the acting doctor detects

a suspicious polyp or other, they often remove them during the examination. The

tools will then be visible on screen and are an indicator of pathology. Hence, the

tool detection can be used as an algorithm to detect relevant frames within the

videos.

The pre-detection algorithm itself is also not limited to our deep learning model

trained on polyps but can be exchanged easily for a model more suited to the user’s

task.

The algorithm used for tracking objects across several frames is currently limited

by the implemented standard object trackers above. These trackers are standard

tools that often lose the object and have much room for improvement. While we

provide an option for resetting the trackers, we intend to implement state-of-the-art

video detection algorithms in the future to fully utilize this feature [42, 43].

Conclusion
In this paper, we introduce a framework for fast expert annotation, which reduces

the working amount of the domain expert by a factor of 20 while retaining very

high annotation quality. We publish open-source software for annotation in the

gastroenterological domain and beyond. This includes two views, one for expert

annotation and one for non-expert annotation. We incorporate a semi-automated

annotation process in the software, which reduces time spend on annotation and

further enhances the annotation quality. Our results suggest that our tool enhances

the medical especially endoscopic image and video annotation, tremendously. We

not only reduce the time spend on annotation by the domain expert but also the

overall effort.
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Methods

In this section, we explain our framework and software for fast semi-automated ma-

chine learning video annotation. The whole framework is illustrated in figure 1. The

annotation process is split between at least two people. At first, an expert reviews

the video and annotates a few video frames to verify the object’s annotations. In

a second step, a non-expert has visual confirmation of the given object and can

annotate all following and preceding images with AI assistance. To annotate indi-

vidual frames, all frames of the video must be extracted. Relevant scenes can be

selected by saving individual frames. This prevents the expert from reviewing the

entire video every single time. After the expert has finished, relevant frames will

be selected and passed on to an AI model. This information allows the AI model

to detect and mark the desired object on all following and preceding frames with

an annotation. Therefore, the non-expert can adjust and modify the AI predictions

and export the results, which can then be used to train the AI model.

Fast expert video annotation

AI detection and correction

Frames 

extraction

Video

Annotation

Detect  relevant 

frames
Expert 

annotation
Extract relevant 

frames

AI detectionExport Correct AI 

detection

Figure 3 Annotation framework for fast domain expert labeling supported by an automated
machine learning pre-labeling.

Input

To annotate individual video frames, the program must have access to all frames

of the video. If annotated frames already exist, the program can recognize this;

otherwise, it will extract all frames from the video and save them into a separate

folder. Relevant frames can be marked manually or inferred automatically. To mark

the frames manually, enter frame numbers or timestamps in the program. In the

context of our polyp detection task, we created a script that detects when the

recording freezes and marks these frames as relevant. A video freeze is caused by

photos taken of suspicious polyps that are taken during the examination. Therefore,

these parts of the video are most relevant for the expert. This reduces the expert’s

workload since he does not have to review the entire video but can quickly jump

to the relevant parts of the video. The extraction is done by using the OpenCV

library.
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Detect relevant frames

We denote all frames that assist the expert in finding critical parts of the video as

superframes. Such frames can be detected automatically or entered manually by a

frame number or timestamp. During a colonoscopic or gastroscopic examination,

when the acting doctor detects a polyp (or similar), they freeze the video feed

for a second and capture a photo of the polyp. Hence, for our task (annotation

in gastroenterology), we automatically detect all positions in which a video shows

the same frames for a short time, i.e., where the video is frozen for a few frames.

Overall, within our implementation, we call such a position a superframe. The

detailed explanation for detecting those freeze frames is shown in algorithm 1.

In order to discover those freezes automatically, we extract all frames from the

video using OpenCV [44]. Afterwards, we compare each frame to its next frame.

This is done by computing the difference in pixel values of both frames, converting it

into the HSV color space, and calculating an average norm by using the saturation

and value dimension of the HSV color model. A low average norm means that

both frames are almost identical; hence a freeze could have happened. We save a

batch of ten comparisons for a higher certainty and take an average of the ten last

comparisons (similar to a moving average). If the average value falls below a certain

threshold, we define the current frame as the start of a freeze. The end of a freezing

phase is determined if the average value exceeds another defined threshold. This

algorithm has high robustness and consistency as it rarely misses a freeze or creates

a false detection.

Algorithm 1 Freeze Detection

1: function FreezeDetection(video, windowSize)
2: averages ← [ ], freezes ← [ ] ⊲ List of averages (window) and freezes
3: detected ← False ⊲ Flag if freeze detected
4: while not end of video do
5: frame, num ← nextFrame(video)
6: diffFrame ← frame - prevFrame ⊲ Calculate difference of each pixel
7: diffFrame ← convertToHSV(diffFrame) ⊲ Convert to HSV space
8: h, s, v ← sumElements(diffFrame) / pixelCount ⊲ Average of each channel

9: avg ←
√
s2 + v2 ⊲ Norm of s-/v-channel

10: averages.add(avg)
11: if len(averages) ≥ windowSize then
12: w ← sum(averages) / len(averages)
13: if w ≤ 50 and not detected then ⊲ Start of freeze phase
14: freezes.add(num)
15: detected ← True

16: if w > 75 and detected then ⊲ End of freeze phase
17: detected ← False

18: averages.removeAtIndex(0)

19: prevFrame ← frame
return freezes

Expert View

We refer to this part of the program Video Review, as the expert reviews the video

to find polyps. For the expert to perform their task, they require the examination

video, all individual video frames, and a set of relevant frame numbers, e.g. super-

frames. The video allows the expert to review the performed examination and get

an overview of the presented situation to diagnose polyps correctly. All extracted

video frames are necessary to be able to access and annotate individual frames.
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Lastly, a set of relevant frame numbers is given to the expert to jump to relevant

video parts quickly. This led to a solution that provides the expert with two differ-

ent viewpoints: (1) video player and (2) frame viewer. To enable fast and smooth

transition between both viewpoints, it is possible to switch at any point in time

from the current video time stamp t to the corresponding video frame f and vice

versa. This is done by a simple calculation based on the frames per second (FPS)

of the video and the current timestamp in milliseconds: f = t[ms]·FPS[1/s]
1000 .

It is possible to look at individual video frames within the frame viewer, assign

classes to these frames, and annotate polyps within those frames. The class assign-

ment is done through superframes, where each frame to which a class is assigned

will be associated with a previously selected superframe. The second task, frame

annotation, is independent of a class assignment and annotates the polyps within

a frame with a bounding box that encloses the polyp. This primarily serves as an

indication for non-experts to get visual information about the polyp that can be

seen in the following/subsequent frames.

We use classes to mark frames if there is a polyp in the picture; we use these classes

to mark relevant frames for the following annotation process by a non-expert. Two

different approaches can be used to assign classes to frames. A range of frames is

defined in the first approach by assigning start and end classes to two different

frames. Consequential, all frames in between belong to the same class. The tool

is also capable of assigning classes to each frame individually. The changes within

video frames are small; therefore, many consecutive frames must be annotated with

the same class. To make this process less time-consuming, the program allows the

expert to go through a sequence of frames quickly and smoothly while classifying

them by keeping a key pressed. However, mostly the assignment of start and end

classes is faster and prefered.

Because all frames are mostly stored on an HDD/SSD, the loading latency is a

performance bottleneck. We implemented a pre-loading queue that loads and stores

the upcoming frames into the RAM to achieve fast loading times. This allows to

display and assign frames with low latency. To prevent the queue from emptying

rapidly, which causes high loading latency, we need to control the queue access times

between two frames. Therefore, we use a capacity-dependent polynomial function

to calculate a pausing time between frames: ms = 50·(1−capacity)2.75. A full queue

shortens the waiting time to 0 ms, while an empty queue leads to a 50 ms waiting

time. This method combines fluent viewing and class assigning while providing

enough time in the background to load new frames continuously.

Since the basic information about the presence of a polyp on an image is not suf-

ficient for non-experts, and we want to ensure high-quality annotations, the expert

has to annotate samples of all discovered polyps. This will provide visual information

of the polyp to non-experts, allowing them to identify these polyps in all following

and preceding images correctly. Scenes in which polyps are difficult to identify due

to perspective changes and other impairments should also be exemplary annotated

by experts to provide as much information as possible to non-experts.

As we can see in figure 4 on the left side, the program lists all detected freeze

frames. The list below shows all frames that belong to the selected freeze-frame

and were annotated with specific classes, e.g., polyp type. Independent from the
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hierarchical structure above, we display all annotations that belong to the current

frame in a list and on top of the image. In the lower part of the view, navigation

controls skip a certain amount of frames or jump directly to a specific frame. The

annotator can also leave a note to each frame if necessary or delete certain classes

from the frame.

Figure 4 Video Review UI. The figure shows the list of freeze frames, the corresponding child
frames, and annotations within the image on the right side. In the bottom part of the view, the
user can insert comments, open reports, delete classes, and see all individual classes.

Semi-automated polyp prelabeling

The prediction of polyps is made by an object detection model that was trained

to detect polyps. The task of polyp detection is a combination of localizing and

classifying an identified polyp. With this method, we aim for a fast AI-assisted

annotation process for non-experts. Since every team has a different application, we

distinguish between offline and online polyp prediction.

With an offline polyp prediction approach, we eliminate the need for high-end

hardware for each user who uses AI assistance for fast annotation. The prediction

is made by an external machine that is capable of running an AI model. With this

approach, the extracted relevant frames are passed to this machine, generating a

tool-specific JSON file that is then passed to the non-expert for further inspection.

As online polyp prediction, we define the performance of polyp detection locally

on the machine of the annotator. Therefore, the machine on which our tool is exe-

cuted must have the necessary hardware and software installed to run the detection

model. As there are different frameworks and deep learning networks, we need a uni-

fied interface to address all these different requirements. We decided to use Docker[4]

for this task. Docker uses isolated environments called containers. These containers

[4]https://docker.com
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only carry the necessary libraries and frameworks to execute a program. By creat-

ing special containers for each model, we can run a prediction independent of our

tool and its environment. Containers are built from templates called images, which

can be published and shared between users. Therefore, it is possible to create a

repository of different models and prediction objectives. Because a container shuts

down after every prediction, it must reload the model for the next prediction. To

counteract this, we run a web server inside the container and communicate to the

model via HTTP. This ensures that a model does not have to reload after every

prediction and provides a universal and model-independent communication inter-

face. With this setup, the user can trigger a single prediction or run a series of

predictions in the background.

As we have already stated, we use HTTP for our communication. This gives room

for a hybrid solution, allowing predictions on an external server while retaining the

user’s control. This combines the advantages of the external and local approaches,

where the user is not required to have expensive hardware, nor is it necessary to

have a separate, time-consuming prediction step.

Non-Expert Annotation

With the help of AI, it is possible to annotate a large number of frames quickly

and easily. However, this method does not ensure the correctness of the predicted

annotations. For this reason, these annotations must be checked and modified if

necessary. Non-experts can check these predictions or create new annotations with

the help of verified example annotations from the expert and the indication in

which frame a polyp is visible. Besides, the AI-assisted support of our tool provides

annotation duplication across several frames and object tracking functionality which

speeds up the annotation process.

As mentioned in section Semi-automated polyp prelabeling our tool supports the

integration of AI detection. It can trigger a single prediction or make predictions

on the following frames in the background. This enables the user to immediately

annotate the remaining frames without waiting for the external prediction process

to finish.

Another helpful feature is the duplication of annotations. Sometimes, only subtle

movements occur in polyp examination videos, causing a series of frames to only

show minuscule changes. This feature allows the non-expert to use the bounding

boxes of the previous frame and only make minor adjustments while navigating

through the images. Re-positioning an existing bounding box requires less time

than creating an entirely new box with a click and drag motion.

Our last feature uses object tracking to track polyps throughout consecutive

frames. This avoids the manual creation of bounding boxes for each video frame,

especially in sequences where an object’s visual and spatial transition between two

frames is non-disruptive. For this task, we used trackers available in the OpenCV li-

brary. Within the intestine, special conditions are usually present. First, the nature

of colonoscopies leads to unsteady camera movement. Second, the color of polyps is

often similar to the surrounding intestinal wall, which can make them hard to rec-

ognize. This can compromise the performance of the tracker and deteriorate polyp

tracking. Given the fact that the annotation process requires a user to operate the
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tool and, therefore, the tracker does not need to track polyps fully automatically,

we added two options to reset the tracker. This is described in more detail in the

next section.

Figure 5 Image Annotation UI. The figure shows a list of all available images on the left with
labeling functionality for a specific annotation and the whole image. The image to be annotated is
displayed on the right.

Object Trackers

As described in section Non-Expert Annotation our tool has object tracking func-

tionality. It assists in tracking an object across multiple frames. For our tool, we

implement six of the available trackers in the OpenCV library [44]. In the following,

we give a short description of the available trackers:

• Boosting: It is using an online version of AdaBoost to train the classifier.

Therefore, the tracking is viewed as a binary classification problem, and nega-

tive samples of the same size are extracted from the surrounding background.

It can update features of the classifier during tracking to adjust to appearance

changes [45].

• MIL: Multiple Instance Learning uses a similar approach as Boosting and

extracts positive samples from the immediate neighborhood of the object.

The set of samples is put into a bag. A bag is positive when it contains at

least one positive example, and the learning algorithm has to the inference

which is the correct sample within a positive bag [46].

• KCF: Kernelized Correlation Filter uses the same basic idea as MIL, but

instead of sampling a handful of random samples, it trains a classifier with

all samples. It exploits the mathematical properties of circulant matrices to

make tracking faster and better [47].

• CSRT: CSRT uses discriminative correlation filters (CDF) with channel and

spatial reliability concepts. The correlation filter finds similarities between the
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two frames. The spatial reliability map restricts the filter to suitable parts of

the image. Scores estimate the channel reliability to weight features. [48] In

addition, it is worth mentioning that rapid movements are not handled well

by trackers that use CDF [49].

• Median Flow: Median Flow tracks points of the object forward and backward

in time. Thereby, two trajectories are measured, and an error between both

trajectories is estimated. By filtering out high error points, the algorithm

tracks the object with all remaining points. [50] It is best applicable for smooth

and predictable movements [51].

• MOSSE: Minimum Output Sum of Squared Error is an adaptive correlation

filter robust to light variation, scale, post, and deformations. It applies a cor-

relation filter to detect the object in new frames. It works only with grayscale

images, and colored images will be converted internally [52].

• TLD: TLD decomposes a long-term tracking task into tracking, learning, and

detection. The tracker is responsible for tracking the object across the frames.

The detector finds the object within a frame and corrects the tracker if neces-

sary, and the learning part of the algorithm estimates the error of the detector

and adjusts it accordingly [53].

An object tracker is designed to follow an object over a sequence of frames by locat-

ing its position in every frame. Each tracker uses different strategies and methods

to perform its task. It can collect information such as orientation, area, or the shape

of an object. However, also many potential distractions can occur during tracking

that can make it hard to track the object. Distraction causes are, e.g., noisy images,

unpredictable motion, changes in illumination, or complex shapes. As a result, the

performance of different trackers can vary between different domains and datasets.

For this reason, our tool allows the user to choose the best tracker for their task

and dataset. Because trackers are primarily designed to track objects across many

frames automatically, the tracker may generate less accurate bounding boxes over

time or entirely lose track of the object. Since the tracking conditions for polyp de-

tection are complex and our tool uses a semi-automated solution, we implemented

two additional options for the annotation task.

By default, the tracker is initialized by placing a bounding box around an object

that should be tracked. Consequently, the tracker will find the object on one con-

secutive frame and place a bounding box around it. We found that the tracker loses

track of the initialized polyp with a high number of consecutive frames. Therefore

we implemented options to reinitialize the tracker automatically. The first option

reinitializes the tracker after every frame, giving the tracker the latest visual in-

formation of the polyp. The second option only initializes the tracker if the user

changed the bounding box size. Both options ensure that the tracker has the latest

visual information of the polyp since the user corrects misaligned bounding boxes.

Output and Conversion

We use JSON as our standard data format. The JSON prepared by the expert stores

detected freeze frames with all corresponding frames that contain at least one class.

Additionally, annotated frames are stored in the same file but independently from

the class assignments. The resulting JSON from the expert annotation process serves

as an intermediate output for further annotations.
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The non-expert produces the final output with all video annotations. This file

contains a list of all images with at least one annotation. The tool produces a

JSON with a structure designated to fit our needs. However, since different models

require different data formats, we created a python script that converts our format

into a delimiter-separated values (DSV) file format. Via a configuration file, the

user can adjust the DSV file to its need, e.g., convert it into YOLO format. It is

also possible to convert the DSV file back to our format. This enables seamless

integration of different formats. In the future, further predefined formats can be

added.
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and the Forum Gesundheitsstandort Baden-Württemberg for supporting the research.
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