Comparison of estimated late toxicities between IMPT and IMRT based on multivariable NTCP models for high-risk prostate cancers treated with pelvic nodal radiation

Srinivas Chilukuri (✉ csrinivas1@gmail.com)
Apollo Proton Cancer Centre https://orcid.org/0000-0003-0491-7935

Sham Sundar
Apollo Proton Cancer Centre

Kartikeswar Patro
Apollo Proton Cancer Centre

Mayur Sawant
Apollo Proton Cancer Centre

Rangasamy Sivaraman
Apollo Proton Cancer Centre

Manikandan Arjunan
Apollo Proton Cancer Centre

Pankaj Kumar Panda
Apollo Proton Cancer Centre

Dayananda S Sharma
Apollo Proton Cancer Centre

Rakesh Jalali
Apollo Proton Cancer Centre

Research Article

Keywords: toxicities, side effects, proton beam therapy, helical tomotherapy

Posted Date: March 31st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-776343/v2

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose

To compare the late gastrointestinal (GI) and genitourinary toxicities (GU) estimated using multivariable NTCP models, between pencil beam scanning proton beam therapy (PBT) and helical tomotherapy (HT) in patients of high-risk prostate cancers requiring pelvic nodal irradiation (PNI) using moderately hypofractionated regimen.

Materials and Methods

Twelve consecutive patients treated with PBT at our centre were replanned with HT using the same planning goals. Six late GI and GU toxicity domains (stool frequency, rectal bleeding, fecal incontinence, dysuria, urinary incontinence and hematuria) were estimated based on the published multivariable NTCP models. \(\Delta \text{NTCP} \) (difference in absolute NTCP between HT and PBT plans) for each of the toxicity domains was calculated. One-Sample Kolmogorov-Smirnov test was used to analyze distribution of data and either a Paired T-test or a Wilcoxon matched-pair signed rank test was used to test statistical significance.

Results

PBT and HT plans achieved adequate target coverage. PBT plans led to significantly better sparing of bladder, rectum and bowel bag especially in the intermediate range of 15-40Gy; whereas doses to penile bulb and femoral heads were higher with PBT plans. The average \(\Delta \text{NTCP} \) for grade(G)2-rectal bleeding, fecal incontinence, stool frequency, dysuria, urinary incontinence and G1-hematuria were 12.17%, 1.67%, 2%, 5.83%, 2.42% and 3.91% respectively favoring PBT plans. The average cumulative \(\Delta \text{NTCP} \) for GI and GU toxicities (\(\Sigma \Delta \text{NTCP} \)) was 16.58% and 11.41% respectively favoring PBT. Using a model-based selection threshold of any G2 \(\Delta \text{NTCP} >10\% \), 67% (8 patients) would be eligible for PBT.

Conclusion

PBT plans led to superior OAR sparing compared to HT which translated to lower NTCP for late moderate GI and GU toxicities in patients of prostate cancer treated with PNI. For two-thirds of our patients, the difference in estimated absolute NTCP values between PBT and HT, crossed the accepted threshold for minimal clinically important difference.

Introduction

Elective pelvic nodal irradiation (PNI) in high risk prostate cancers has been a long-standing controversy(1). Most international guidelines (2,3)support this on the basis of the previously reported prospective and retrospective studies, including a recently published randomized controlled trial (RCT)(4). However, PNI has been associated with a mild to moderate increase in late gastrointestinal (GI) and genitourinary (GU) toxicities as demonstrated by results from the two randomized trials incorporating
modern hypofractionation regimens(5,6). Traditionally, the major focus during prostate radiotherapy planning has been to reduce the higher doses (>65Gy EQD2) received by normal bladder and rectal mucosa. However, there is now a growing recognition regarding intermediate doses (30-50Gy) received by bladder, rectum, pelvic musculature and other sub-structures impacting the severity of physician reported late GI and GU toxicities(7–9).

Currently, there are no published RCTs comparing protons and IMRT for prostate cancers. Retrospective studies comparing these techniques in prostate only radiation have not shown clinically significant differences either in biochemical control or toxicities(10,11). However, most PBT data comes from studies using passive scattering technique with or without image guidance compared to photon data which mostly incorporates modern image guided IMRT. Although, dosimetric studies comparing these techniques, have demonstrated superiority of PBT plans especially with regards to intermediate doses received by bladder, rectum and small bowel, most of them have evaluated patients not receiving PNI (12–14). High risk prostate cancers are also excluded from the two ongoing RCTs comparing PBT with IMRT (15,16). In the absence of RCTs, model-based approach has been proposed as a modality for patient selection for PBT(17). However, this approach has not been attempted for selection of prostate cancers, especially for high-risk prostate cancers.

Our study compares the dosimetry between pencil beam scanning PBT with that of helical tomotherapy (HT) in patients of high-risk prostate cancers requiring PNI using a moderately hypo-fractionated regimen. Dose volume parameters achieved in these comparative plans were used to estimate late toxicities based on multivariable normal tissue complication probability (NTCP) models previously published in the literature(8,9). Using the same, we have also attempted to estimate the percentage of our patients suitable for PBT based on acceptable NTCP thresholds(18).

Methods And Materials

Clinical and dosimetric data of 12 consecutive patients diagnosed and treated with PBT for high-risk prostate cancers and requiring PNI were included in this study. The patient images were used to make rival HT plans. A saline filled endorectal balloon (ERB) was used to immobilize the rectum during the treatment. The entire prostate gland with or without bilateral seminal vesicles were outlined as high-risk clinical target volume (CTV-HR). Pelvic lymph nodes including bilateral obturator, internal iliac, external iliac, pre-sacral up to S3 level and common iliac lymph nodes were defined as low-risk CTV(CTV-LR). Organs at risk (OAR) defined for dose optimization included rectum, bladder, femoral heads, penile bulb, anal canal and bowel bag. The rectal and bladder wall were defined as the outermost 3mm of rectum and bladder respectively (19,20). Trigone of urinary bladder, anorectum, external sphincter, ilio-coccygeus and levator ani were contoured(19) (Table 1, Figure 1) to obtain dosimetric parameters for NTCP estimation.

All patients were planned to a dose of 50Gy in 25 fractions to CTV-LR with a simultaneous integrated boost of 68Gy to CTV-HR. The planning target volumes (PTV-HR and PTV-LR) for each of the CTV's were
generated using a uniform geometric expansion of 5mm except posteriorly for CTV-HR which was expanded to 3mm towards the rectum. The dose-volume goals to the targets and constraints to OAR for treatment planning (Table 2) were as per our institutional protocol and were same for HT and PBT plans.

Proton beam therapy plan

The target and OAR delineation and generation of proton therapy plan were performed on Raystation TPS (V 9A, Raysearch labs, Stockholm, Sweden). Two lateral fields (90° and 270°) were used to generate multi-field optimized plans wherein both fields treated the prostate/semenal vesicles and the relatively central portion of CTVLR (common iliac/pre-sacral nodes) while each individual fields treated lateralized portion of ipsilateral CTVLR. In obese patients with skin folds in the beam path due to abdominal sag, a 5°/10° posterior gantry angle tilt (95° and 265° degree) was used to avoid skin folds. All doses for PBT plans were expressed as Cobalt Gray equivalent (CGE) assuming a uniform radiobiological equivalence (RBE) of 1.1. The spot spacing was set to 1.06 times the average projected sigma multiplied by scaling doctor of 1. Plans were optimised to cover 100% of CTV with the prescribed dose, except at the CTV-rectum interface (at least 95% of prescribed dose). All CTV's were robustly optimised for 5mm translational errors and 3.5% range uncertainty using minimax robust optimization. Dose calculation was performed for grid size of 3mm x 3mm x 3mm. Monte Carlo Algorithm (Version 4.4) was used for dose optimization and calculation. For proton planning, PTV's were used solely for dose comparison and reporting.

Helical Tomotherapy plan

The planning CT and the structure set containing the targets and OAR were exported to Precision TPS (V 2.0.1.1, Accuray, Inc., Sunnyvale, USA) from Raystation TPS for generating HT plan. HT plans were optimised to PTV with the same target coverage goals and dose constraints as shown in Table 2, using a field width of 2.5cm, pitch of 0.41 & modulation factor of 2.0 to minimize the thread effect. These were generated using a least squares minimization function for optimization and a convolution-superposition algorithm for dose calculation. All plans were optimized to achieve similar target coverage as achieved by IMPT plans.

NTCP estimation

Bladder and rectal toxicities were estimated based on NTCP models published from University of Groningen(8,9), using the equation

\[NTCP = \frac{1}{1 + e^{-S}} \]
where S is a value defined based on the parameters and their respective regression coefficient mentioned in Table 3 for a specific toxicity. Since the NTCP models were based on conventional dose fractionation, all dose parameters obtained were converted to 2Gy dose equivalents using the BED formula (21). Absolute difference in NTCP values between HT and PBT was represented as $\Delta NTCP$ for each of the toxicity domains.

Statistical Analysis

Dosimetric parameters used for comparison were D_{95}, D_{98}, D_2 for PTV-HR; D_{99}, D_{100} for CTV-HR; D_{95} for PTV-LR and D_{99} for CTV-LR. For urinary bladder and rectum, incremental doses received by specified volume of each of the structure; and for other OAR, mean dose of penile bulb, V_{30} of femoral heads and V_{45} of bowel bag were used for dosimetric comparison. One-Sample Kolmogorov-Smirnov test was used to analyze distribution of data and based on that either a Paired T-test or a Wilcoxon matched-pair signed rank test was used. Statistical analysis was done using IBM SPSS Statistics Version 26.

Results

Target volume dosimetry

Table 4 shows the median dose and standard deviation among the twelve patients for various dosimetric parameters for CTVHR/PTVHR and CTVLR/PTVLR. All PBT and HT plans achieved adequate target coverage satisfying all the pre-treatment coverage goals. The difference in dose coverage parameters between the two modalities was not statistically significant except for $CTVD_{99}$ (p=0.00) in the low-risk region and $PTVD_{95}$ in the high (p=0.016) and low-risk regions (p=0.00).

OAR dosimetry

Figure 2a and 2b show rectal and bladder dosimetry from V_{15} to V_{65} with 5Gy increments.

The difference in average doses between PBT and HT plans for each of the dose volume parameters for both bladder and rectum were statistically significant for all dose volume parameters in favor of PBT. The mean doses received by penile bulb and bilateral femoral heads V_{30} were significantly higher in PBT plans whereas V_{45} for the bowel bag was significantly higher in HT plans as shown in Table 4.

NTCP comparison

Among the 12 patients included in this study, 5 patients had cardiovascular ailments, 4 were on anti-coagulants and 5 had undergone channel transurethral resection of prostate before the treatment. The
average risk for rectal bleeding (grade II), fecal incontinence (grade II) and stool frequency (grade II) for
PBT and HT plans were 13.75% vs. 3.25%(p=0.002), 2.58% vs. 0.17% (p=0.016) and 2.25% vs. 0.25%
(p=0.007) respectively. Similarly, the average risk for dysuria (grade II), urinary incontinence (grade II) and
hematuria (grade I) for PBT and HT plans were 15.08% vs. 9.25%(p=0.011), 12% vs.10.33%(p=0.023) and
8.41% vs. 4.5%(p=0.024) respectively. Figure 3a shows ΔNTCP of each toxicity with mean and
distribution with 95% confidence interval. The average cumulative ΔNTCP for GI and GU toxicities
(ΣΔNTCP) were 16.58% and 11.41% respectively favoring PBT (Figure 3b). Based on an eligibility
threshold for model-based selection, of any G2 ΔNTCP >10% or a ΣΔNTCP >15% with each G2
ΔNTCP>5%, 8 of 12 (67%) patients were found to be eligible (Figure 4). With a more stringent criteria of
cumulative ΔNTCP>20% and with any G2 ΔNTCP>10%, 7 of the 12 (58%) patients were found to be
eligible for PBT.

Discussion

We compared PBT and HT plans of the initial 12 consecutive patients of high-risk prostate cancers
requiring PNI treated at our centre. We found that PBT plans led to better sparing of OAR’s such as
bladder, rectum and bowel bag. There were large differences in rectal and bladder doses between PBT
and HT plans in the intermediate dose range between 15-40Gy. To quantify the impact of dosimetric
difference on physician reported toxicity outcomes, we have estimated the NTCP using previously
published models(8,9) based on IMRT treatments. Based on the NTCP models that were used, PBT plans
led to a significant reduction in the average risk of G1 hematuria, G2 dysuria and urinary incontinence; G2
rectal bleeding, stool incontinence and frequency. We also found that based on the estimated NTCP
values, two thirds of our patients would qualify for PBT if the patients were selected using the Dutch
consensus PBT eligibility criteria of any G2 ΔNTCP ≥10% or ΣΔNTCP≥15% with each G2 ΔNTCP ≥5%(18).

Most published photon studies reporting toxicity for patients treated with PNI have shown increased
acute GI, late GI and GU toxicities(22,23) with a few studies showing no significant differences(24,25).
The recent randomized studies (PIVOTAL and POP-RT) incorporating contemporary image-guided IMRT
schedules and PNI, have also shown either increased late GI or late GU toxicities(5,6). The authors of the
POP-RT study that compared prostate only vs. prostate and pelvic RT, have hypothesized that increased
late GU toxicities noted in the pelvic RT arm, could possibly be related to increase in the intermediate
doses (volumes receiving 30-50Gy) received by urinary bladder. A similar finding of correlation of G3 GU
toxicity with volume of urinary bladder receiving 30-40Gy was observed in a large retrospective study
evaluating long term outcomes of dose escalated image guided PBT(26). Intermediate doses of 30-50Gy
to rectum have also been associated with increased bowel frequency, rectal pain, tenesmus, and fecal
incontinence(7). PBT by reducing the intermediate doses to the OAR, can potentially reduce the above-
mentioned late GI and GU toxicities in the setting of PNI.
PBT’s potential of reducing the doses to rectum and bladder were evaluated in previously reported PBT vs. IMRT dosimetric comparative studies in patients receiving PNI (27–30). All these studies noted a significant reduction in the rectal and bladder doses especially at the low to intermediate dose ranges. Similar reductions have been demonstrated in comparative dosimetric studies incorporating prostate only radiotherapy (12–14,31). Unlike other studies, we have used ERB which improves the setup reproducibility as it ensures stabilization of prostate during the treatment. Also, in the presence of a rectal balloon, the actual delivered doses are likely to be close to the planned doses to target and OAR (32). Although the doses to rectum and bladder were significantly lower in the PBT plans, the doses to femoral heads were recorded to be higher across all the studies due to the use of lateral or lateral oblique fields. A similar trend was observed for penile bulb doses in our study, probably due to a larger lateral penumbra. However, the dose to penile bulb could potentially be reduced if a different beam arrangement such as posterior or posterior obliques were used. Despite relatively small increase in doses to the femoral heads and penile bulb in PBT plans, they were well within the planned dose constraints.

Our study also recorded doses to pelvic musculature, external anal sphincter, anorectum and trigone of bladder and they were used to estimate NTCP for late rectal and urinary complications. Most published NTCP models have used older dose regimens, older techniques, conventional dose fractionation and have estimated higher grade toxicities based on high doses received by OAR(33). These models are almost exclusively based on prostate only radiotherapy including the recently published “proton only” NTCP model (34).

Similar to our study, Widesott et al (29) reported NTCP comparison between helical tomotherapy and proton therapy in high-risk prostate cancer patients for rectal toxicities using LKB based models. Although they found significant OAR sparing in low and intermediate doses, the NTCP gain was small and insignificant. Their study used LKB based NTCP models that are based on whole organ dose rather than doses to specific anatomic substructures (35–38). Primarily G3 rectal toxicities were estimate by their study which due to the advent of modern image guidance is an uncommon phenomenon.

In our study, we have used NTCP models from the University of Groningen (8,9) which were based on patients treated uniformly with contemporary doses (78Gy), modern technique (IMRT) and were multivariable. Although these models were based on prostate only radiation, they estimated multiple moderate (grade 1-2) toxicity endpoints (G1 hematuria, G2 dysuria, G2 urinary incontinence; and G2 rectal bleeding, G2 stool frequency, G2 fecal incontinence) and have demonstrated the impact of doses to several sub-structures. These models have also incorporated the impact of anticoagulant use and cardiovascular disease which has been shown to impact rectal bleeding and hematuria across several studies(39,40).
The NTCP estimates of the photon plans reported in our study were similar to the toxicities reported in literature(22–25). However, the incidence of G2 urinary incontinence noted in our study, although was similar to the reported incidence in Schaake, et al (12%), it is higher than that reported in the literature (<5%). It is possible that the model over-estimated the incidence of this toxicity. Although the average risk of all the estimated toxicity domains was significantly lower in PBT plans, the average absolute ΔNTCP for only G2 rectal bleeding and G2 dysuria were more than 5%. However, it needs to be noted that the average ΔNTCP values can potentially under-estimate the benefit of PBT in certain patients. For example, average ΔNTCP of G2 dysuria and G1 hematuria with PBT were 5.83% and 3.91% respectively, but 42% of patients had a ΔNTCP ≥9% for both domains.

The model-based selection for PBT has been proposed as an alternative to the standard RCTs. It has been shown that, validated NTCP models for predicting G2 and G3 toxicities in head neck cancers can be used to select patients for PBT(41) using accepted NTCP thresholds. These thresholds have been based on a consensus of Dutch society of radiation oncologists(18). The same is being contemplated for other sites such as lung cancers, left sided breast cancers and prostate cancers using similar NTCP thresholds(42). We have attempted to use the same for our cohort of high-risk prostate cancers. Based on these observed NTCP values, we found that 67% of the patients in our study would be eligible for PBT using a threshold of any G2 ΔNTCP ≥10% or cumulative ΔNTCP >15% with each G2 ΔNTCP >5%. Using a more stringent criteria of cumulative ΔNTCP >20% and with any G2 ΔNTCP >10%, 58% of patients would still be eligible for PBT.

However, this approach has several limitations. Most NTCP models are based on physician reported toxicities which are known to be under-reported and are based on single institutional experience. Also, most models are based on patients treated with IMRT with conventional dose per fraction. Extrapolation of these models to hypofractionation and for proton therapy may introduce inaccuracies (43) It has also been seen that with use of variable RBE values, there could be a significant under or over estimation of toxicities(44). Since the models used in our study are based on prostate only RT, they may not have truly captured the impact of reduction in intermediate doses to OAR by PBT. This emphasizes the need for more reliable and long-term prospective or retrospective data of representative cohorts to build robust multivariable NTCP models. These models will also need to be externally validated before they can be used for making clinical decisions on a day to day basis(45).

Conclusion

On dosimetric comparison between HT and pencil beam scanning PBT for high-risk prostate cancer patients requiring PNI, PBT plans were dosimetrically superior with respect to bladder and rectal doses especially in the range of 15-40Gy. Based on the dose volume parameters achieved in this study, PBT plans predicted lower mild to moderate GU and GI toxicities compared to HT plans. For two-thirds of our
patients, the difference in estimated absolute NTCP values between PBT and HT, crossed the accepted threshold for minimal clinically important difference.

References

42. Rapporten [Internet]. Dutch Association for Radiotherapy and Oncology. [cited 2021 Jul 9]. Available from: https://nvro.nl/publicaties/rapporten

Declarations

Ethics approval and consent to participate: We confirm that this study is approved by the institutional ethics committee.

Consent for publication: Yes

Availability of data and material: Yes

Competing interests: None

Funding: None

Authors’ contributions: Conceptualized by SC and SS, data collection by SC, SS, KP, MS, RS, MA, DS, RJ, Manuscript preparation by SC, SS, PP.

Acknowledgements: All the radiation therapists for their contribution

Tables

Table 1

<table>
<thead>
<tr>
<th>Organs at risk</th>
<th>Cranial</th>
<th>Caudal</th>
<th>Lateral</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigone</td>
<td>Vesico-ureteric junction (VUJ)</td>
<td>Urethra</td>
<td>Area between right and left VUJ</td>
<td>Triangular area</td>
</tr>
<tr>
<td>External sphincter</td>
<td>2-3cm above the anal marker</td>
<td>Anal marker</td>
<td>Wraps around the rectum</td>
<td>Cylindrical structure</td>
</tr>
<tr>
<td>Iliococcygeus</td>
<td>Posterior edge of ischial spine</td>
<td>Merges with levator ani complex</td>
<td>Between ischial spine and wraps around rectum</td>
<td>V shaped sling structure</td>
</tr>
<tr>
<td>Levator ani</td>
<td>Inner surface of ischial spine</td>
<td>Upto external sphincter</td>
<td>Inner surface of ischial spine</td>
<td>U shaped sling structure</td>
</tr>
</tbody>
</table>
Table 2
Parameters for NTCP estimation and respective regression coefficients

<table>
<thead>
<tr>
<th>Constant</th>
<th>Variables</th>
<th>Regression co-efficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.09</td>
<td>Anorectum V70</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Anticoagulant use</td>
<td>1.19</td>
</tr>
<tr>
<td>-7</td>
<td>External sphincter V15</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>Iliococcygeus V55</td>
<td>0.015</td>
</tr>
<tr>
<td>-7.78</td>
<td>Iliococcygeus V45</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>Levatoranii V40</td>
<td>0.046</td>
</tr>
<tr>
<td>-9.67</td>
<td>Trigone Mean</td>
<td>0.1015</td>
</tr>
<tr>
<td>-3.45</td>
<td>Bladder wall V75</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>Anticoagulant use</td>
<td>1.15</td>
</tr>
<tr>
<td>-3.87</td>
<td>Trigone V75</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Transurethral resection of prostate (TURP)</td>
<td>1.06</td>
</tr>
</tbody>
</table>
Table 3
Dosimetric comparison between PBT and HT for targets and OARs

<table>
<thead>
<tr>
<th>Modality</th>
<th>Helical Tomotherapy</th>
<th>Proton therapy (PBS-IMPT)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk target volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median (Gy)</td>
<td>Std. dev. (cGy)</td>
<td>Median (Gy)</td>
</tr>
<tr>
<td>PTV D95</td>
<td>67.52</td>
<td>24.43</td>
<td>67.81</td>
</tr>
<tr>
<td>PTV D98</td>
<td>67.03</td>
<td>101.75</td>
<td>67.04</td>
</tr>
<tr>
<td>PTV D2</td>
<td>69.58</td>
<td>50.25</td>
<td>70.21</td>
</tr>
<tr>
<td>HI</td>
<td>0.05</td>
<td>0.012</td>
<td>0.044</td>
</tr>
<tr>
<td>CTV D99</td>
<td>67.94</td>
<td>14.25</td>
<td>67.84</td>
</tr>
<tr>
<td>CTV D100</td>
<td>67.37</td>
<td>19</td>
<td>67.54</td>
</tr>
<tr>
<td>Low risk target volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median (Gy)</td>
<td>Std. dev. (cGy)</td>
<td>Median (Gy)</td>
</tr>
<tr>
<td>PTV D95</td>
<td>49.49</td>
<td>6.3</td>
<td>4990</td>
</tr>
<tr>
<td>CTV D99</td>
<td>49.57</td>
<td>5.8</td>
<td>4994</td>
</tr>
<tr>
<td>Organs at risk (OAR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>Std. dev.</td>
<td>Median</td>
</tr>
<tr>
<td>Penile bulb Dmean (Gy)</td>
<td>28.46</td>
<td>9.51</td>
<td>40.56</td>
</tr>
<tr>
<td>Femoral head Left V30 (in %)</td>
<td>7.2</td>
<td>4.94</td>
<td>17.45</td>
</tr>
<tr>
<td>Femoral head Right V30 (in %)</td>
<td>7.2</td>
<td>5.3</td>
<td>16.9</td>
</tr>
<tr>
<td>Bowel bag V45 (in cc)</td>
<td>130.65</td>
<td>106.84</td>
<td>106.75</td>
</tr>
</tbody>
</table>

Figures
Figure 1

a: Coronal view of the levator ani complex and external anal sphincter b: Axial view showing Levator ani and ilio-coccygeus c: Sagittal view showing trigone of urinary bladder

Figure 2

a (left): Rectal dosimetry of 12 patients comparing HT and PBT plan (Boxplot shows median and Interquartile range) b (right): Bladder dosimetry of 12 patients comparing HT and PBT plan (Boxplot shows median and Interquartile range)
Figure 3

a (left): ΔNTCP of each toxicity with mean and error bars showing 95% confidence interval b (right): $\Sigma\Delta$NTCP of GI and GU toxicity with mean and error bars showing 95% confidence interval

Figure 4

Graph showing ΔNTCP distribution across each patient (Arrow separates patients eligible for proton therapy as per accepted criteria)