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Abstract

We study a non-Hermitian electronic dimers system based on an imaginary resistor 

(Z) in a (N+2) level atomic multi-pod configuration. Non-Hermitian systems 

depend on a gain/loss parameter and are specifically marked by a degeneracy 

exhibited at an exceptional point (EP) separating different phases of complex modes 

dynamics. Interestingly, the structural characterization and the dispersive properties 

reveal a broad range of strong coupling where the interplay between the control and 

the probe field induce a simultaneous EIT, EIA and ATS. Here, by identifying the 

underlying physical mechanisms, we show that multiple windows of transparency 

can be strongly enhanced by the incorporation of several dimers in the multipod 

network. On the other hand, if the pumping field is resonant in the weak regime, 

multiple EIT and EIA windows result in the number of dimers. Remarkably, the 

proposed system embedded a multiple coupling mechanism whose modulation 

induces a couplingless point whereby the energy cross. At this point EIT and related 

phenomena vanish. 

Keywords: non-Hermitian · couplingless· multiple EIT · multiple EIA· ATS.  

1 Introduction 

Electromagnetically-induced-transparency (EIT) and related phenomena are 

prominent examples of coherent interactions between optical fields and multilevel 

atoms which have spurred the development of new materials with optimized optical 

properties [1-5]. The coherent preparation produces remarkable changes in the 

dispersive properties of a medium which leads to quantum interference, namely the 

fano interferences, between the excitation pathways that control the optical 

response. The EIT have also been demonstrated to occur via the splitting of energy 

levels into dressed states by strong coupling fields. In general the transparency of 

the absorbing medium is increased at large control intensity of the pumping field, 

leading to the appearance of two dressed states which corresponds to the Autler–

Townes splitting (ATS) phenomenon [6, 7]. Such phenomena have given rise to a 
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range of properties including lasing without inversion [8], ultra-slow light [9], 

stopping of light pulses [10, 11] quantum memory [12], enhanced nonlinear optical 

processes [13], plasmonic sensing with narrow linewidths [14], optical switches 

[15], just to name but a few. These possibilities opened new avenues for optical 

information storage and quantum information processing. While EIT renders a 

narrow spectrum of perfect transmission, its complementary effect known as 

electromagnetically induced absorption (EIA) defines a band of frequency in which 

enhanced absorption due to the wave coherence is observed. Traditionally, EIA 

occurs in a degenerate two-level system [16]. The EIA effect supports some 

exciting wave propagation concept like the anomalous dispersion, detection of 

foliage moisture and other types of sensing [17-19]. 

 The realization of EIT in atomic systems has been a difficult task imposed by some 

restrictions [20]. Interestingly, The EIT effect was demonstrated in classical optical 

coupled resonators due to its flexible design and easy implementation [21]. 

However, most of these can be tuned by mechanical alignment making it difficult 

to realize the dynamic control of the transparency window, which limits the 

practical application of EIT-like effect. In addition to a three-level type 

configuration [22], EIT has also been realize in  various multilevel configurations 

[23-26], and quite recently, it was extended to the N and (N+1)-level systems [27, 

28]. These systems exhibited multiple EIT with interest in the bifurcation of 

quantum information in multiple channels

Garido Alzar et al. [27] reproduced the EIT behavior experimentally using two 

linearly coupled LRC circuits. By changing the strength of the coupling parameter, 

the authors have successfully controlled the response of the system going from the 

analog of EIT to that of the ATS effect. Joshua Harden [29], Zhengyang Bai and 

co-authors [30], reproduced double EIT (DEIT) through coupled LRC circuits, in a 

four-level atomic system, in the Y-inverted and tripod configurations, respectively.  

            In practice, manipulate LRC circuits in higher frequency regimes may in 

general lead to miniaturization of devices, higher storage capacities, and larger data 

transfer rates, but introduces a frequency dependent phase shift and delay effects in 

two different points of the circuit [31, 32] which can hinder the judicious control of 

EIT. In other hand, from a theoretical point of view, due to the inductor, the 

dynamics of an LRC oscillator is usually governed by a second order differential 

equation according to the charge through the capacitor. Hence, solving such 

equation becomes increasingly complicated when several systems are coupled, so 

that the slowly varying envelop approximation (SVEA) [33] is often convenient to 

reduce higher-order equations to the first-order ones, given that EIT is a resonant 

phenomenon.  
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               In this paper, we present an alternative approach of designing an electrical 

analog of multiple Electromagnetically Induced Transparency (EIT) or Absorption 

(EIA) and related phenomena, based on (N+1) coupled ZRC circuits in which the 

inductor L of the conventional LRC circuit is merely replaced by the imaginary 

resistor of impedance Z, whose the main characteristic is the ability to generate 

frequency independent phase shift, unlike inductor/capacitor reactive elements, 

which can only do this task when they are associated with a non-zero frequency 

[31,32]. The ways of realizing the imaginary resistor have been suggested in the 

literature using a gyrator [34-37]. The imaginary resistor impedance’s is frequency 

independent ( Z jr= , with 2 1j   ), allowing to properly manipulate the lower and 

higher frequencies as desired, therefore leading to a system of first order ordinary 

differential equations, which facilitates the analysis of N coupled circuits. Besides, 

the ZRC oscillator has a natural frequency 0 1/ rC  , which can be positive or 

negative according to the real value of the resistance r associated to the imaginary 

resistor and the capacitance C of the circuit. This allows to reproduce with a so 

called ZRC multi dimer, for the first time to our knowledge, the analog of quantum 

interference phenomena with negative frequencies of the circuit. By manipulating 

couplings in presence, tuning the gain/loss parameter linking parts of our circuit, 

offered us the possibility to merge from single to multiple EIT, EIA and ATS 

windows. 

            Our paper is organized as follow: in section 2, we present the model 

equations and the eigenmodes analysis. Here, a structural characterization allows 

us on the one hand to identify for the system a weak and a strong coupling regimes, 

and on the other hand, to emphasise the couplingless point (CPLP).  In section 3, 

the steady state dynamic and dispersive properties of the systems are investigated. 

After that we arrive at the section 4 which summarizes the paper results.   

2 Equations of model and eigenmodes analysis 

We consider a ZRC multi dimer obtained by coupling (N+1) oscillators ZRC as 

shown in Fig.1 (a). Each 
i i i

Z R C circuit consists of a linear capacitor
i

C , a real resistor 

i
R  and an imaginary resistor of impedance

i
Z where 

i i
Z jr ( 2 1j   ), all arranged in 

series. The sub-index  0...i N  indicates the oscillator’s number, and , ( 1)N N ³  is 

the total number of cells coupled to the main loop oscillator 0 0 0Z R C for which a 

harmonic voltage source  u t  has been added in series with the resistor 0R . The 

coupling between loops is realized thanks to the capacitor 
C

C and another imaginary 

resistor
C

Z  (
C C

Z jr ), also arranged in series and belonging to the set of circuit 

meshes.  
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(a)                  (b)

Fig. 1: (a) ZRC Multi dimer circuit used to mimic a single and multiple EIT, ATS and EIA 

windows. The circuit is based on the imaginary resistor. (b) Energy diagram of a (N+2) level 

atomic system in a multi-pod type configuration consisting of (N+1) lower levels i ( 0..i N ) 

of which N pumping lasers couple near resonantly each state to the upper state e , while a probe 

laser couples level 0  to e . 

The model in addition to group a considerable number of cells and couplings, 

presents some particularities compared to the analogous models based on LRC 

circuits that were proposed in the literature [28-30]. Indeed, the inductor has been 

replaced by an imaginary resistor, the main characteristic of which is to generate an 

impedance and a phase shift independently of the frequency, which is not the case 

for the usual reactive elements. In particular, the so called ZRC multi dimer leads 

to a system of coupled first order ordinary differential equations, which are easily 

manipulated. Moreover, the system can support negative frequencies, without 

alterating it operating mode, therefore it opens avenue to investigate various 

quantum phenomena through positive and negative frequencies. The imaginary 

resistor can be realized directly using an ideal transformer [34].  

Fig. 1(b) illustrates a (N+2) level atomic system in a multi-pod type configuration, 

where the (N+1) lower states i  which could be degenerated or not, are coupled to 

a single excited upper level state e . Imagine that the atomic system is initially 

prepared to be in the particular lower level 0  where it interacts with a probe laser 

which serves to couple this level to the upper level e . Adding N sources light of 

frequency
i
  driving each atomic transition from i  to e , the absorption spectrum 

of the probe laser is modified once the N control fields are simultaneously 

interacting with the medium. It results interferences between different transitions 

pathways of the atom. When N=1, this interference phenomenon is known as 

electromagnetically induced transparency (EIT), and it occurs one dip in the 

absorption spectrum. It corresponds to double EIT (DEIT) when N=2, accordingly, 

two dips are simultaneously observed. Hence, if N is greater, the phenomenon is 

called multiple EIT and consequently N dips appear in the absorption spectrum of 

the probe laser.  
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A correspondence can be made between the ZRC multi dimer and the 

atomic system so described. In this analogy, the loop 0 0 0Z R C of frequency 0 models 

the atom and the harmonic voltage  u t which drives it directly, replaces the probe 

laser field. Once the switch SW i is closed, each loop  0
i i i

Z R C i  of frequency
i


acting on the main loop simultaneously as the voltage, then models a pumping 

(control) laser field.

The switches SW i ,  0...i N  being closed, applying the Kirchhoff’s laws to 

the circuit allows to obtain the following coupled equations:   

 

 

0

0 0 0 0 0

1 1

0

0

1, 1,

/ ,                    0

0,    0

N N
n

c n eo

n n

N N
i n

i ci i i i n

n n
n i n i

dQ dQ
j j Q Q u r for i

dt dt

dQ dQ dQ
j j Q Q Q for i

dt dt dt

  

  

 

 
 

      


   
                      

 

 
 ,    (1) 

where 1j   , 0..i N , /
i i ei

R r  , /
ic c eir r  , 1/

i ei ei
r C  , 1/

i ei c
r C  ,

ei i c
r r r  and

 /
ei i c i c

C C C C C  . 

i
Q  and /

i
dQ dt  represent the charges and the current through each loop, respectively. 

The equivalent loops resistance 
ei

r  and capacitance
ei

C  are the series combination of 

the real values of resistances associated to the imaginary resistors (
iZ and

CZ ) and 

the capacitors (
i

C and
c

C ), respectively. /
i i ei

R r  is the non-Hermitian parameter 

(again called gain/loss parameter) responsible to the amplification or the damping 

into the loops of natural frequencies 1/
i ei ei

r C  . Remarkably, when
ei

r and
iR  have 

the same signs (i.e. 0
i
  ), the loop is said ‘‘loss’’ loop, otherwise, it is called the 

‘‘gain’’ loop. The way to realize the negative resistor can be found in ref. [38].                    

Table 1 gives us the possible signs of the circuitry elements of a 
i i i

Z R C  loop.  In the 

following, we consider that the gain/loss values into the coupled loops (
i
 , 0i  ) are 

linking to the gain/loss of the main loop ( 0 ) as: 

0

i


                            (2) 

C
r

C
C

ei
C

i
R

0
C

r  0
C

r  0
C

C  0
C

C  0
ei

C  0
ei

C  0
i

R > 0
i

R <

0
ei

r 
ci
   0

ci
  0

i
  0

i
  0

i
  0

i
  0

i
> 0

i
<

0
ei

r  0
ci
  0

ci
  0

i
  0

i
  0

i
  0

i
  0

i
< 0

i
>

Table 1. Possible signs of the circuitry elements of a 
i i i

Z R C  loop. 

In this section, the circuit is investigated in absence of the voltage source  

2.1  ZRC dimer  
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The ZRC dimer is obtained by coupling only two oscillators  0,1
i i i

Z R C i  as 

schematically described by the Fig. 1(a) when N=1. We assume that both loops 

have the same natural frequency
0 1/ rC  , where

ei
r r and

ei
C C ,

0 being positive 

or negative (see Table 1 for the conditions). As in ref. [39], the active coupling can 

be used to refer to the ZRC dimer. For convenience, for the dimer Z, only the 

imaginary resistive coupling (
C

Z ) is active while in the case of dimer ZC, the series 

combination 
C

Z -
C

C is active. Rewriting Eq. (1) for 0,1i   and assuming the 

harmonic solutions ( ) c.cj t

i i
Q t A e   for the charges leads to the following matrix 

representation:

0 0

1 1

0

0

c

c

j A

j A

  
  
     

         
,        (3) 

where /
C C

r r  ,
01 /

C
rC    ,

0,1 c
r r r  ,

0 1/ rC  and
0    is the frequency 

detuning. 

We are interested of the behavior of the system near the resonance. For that, we use 

the approximation 
0

   = ,
0  [40].  Therefore, Eq. (3) can be rewritten 

as: 

0 0

0

1 1

1 1 0 0

1 0 1 0

j c A

c j A


 


        

                
,     (4) 

where 
c

c    is the effective coupling of the system. Eq. (4) has non-trivial 

solutions if the determinant of the left-most term vanishes. Then, we need to solve 

the characteristic equation 0H I  , where I is the identity matrix and H is a non-

Hermitian Hamiltonian [40] written as: 

0

0

1

1

1

j c
H

c j





 

   
.                                 (4) 

Through diagonalization, the eigenfrequencies   of the system dimer can be 

obtained as: 

 2 2

0 1 j c       ,                              (5)

with    1 0 0
/ 2 1 / 2        ,    1 0 0

/ 2 1 / 2        , 
c

c    and 
0

/   .  

The eigenfrequencies obtained in Eq. (5) are analyzed considering two cases: the 

case
0 0  and the case

0 0  .  Since one innovation of this paper is the use of the 

negative frequencies, in the following analysis, the natural frequency is set negative 

(
0 0  ), unless otherwise specified.  

In fig. 2, the real (first column) and the imaginary (second column) parts of the 

normalized eigenfrequencies
0

/  of the ZRC dimer are represented in 3D top 

view as a function of the active coupling parameter and the gain/loss ratio , in the 

case of dimer Z where c
c   (plots (a), (b)) and in the case of dimer ZC with

0 .7 5  (plots (d), (e)). In the third column, the cross section of both the real (solid) 

and imaginary (dashed) parts are also made for different values of   (plot (c) for 

the dimer Z and plot (f) for the dimer ZC). The values of  and the corresponding 
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colors are indicated on the plots.  In addition, for all plots we have set
0 0.5  and

0 is negative. As we can see on figures, the eigenfrequencies are mostly 

complex and display a transition at two particular points known as the exceptional 

points (EPs), where the effective coupling strength th
c c  obeys to

th
c  . This 

effective coupling threshold is shown in the 3D plots ((a), (b) (c) and (d)) with the 

dashed purple color and it can be remarked that th
c cancels when 1  in the case 

of dimer Z (only the imaginary coupling is active). Remarkably, in the case of dimer 

ZC, the coupling threshold does not vanishes, but reaches the critical value when

1  . This allows us to distinguish two coupling regimes for the system: the regime 

between the EPs ( c  ) called weak-driving regime, characterized by the 

coalescence of the real parts of the eigenfrequencies and the splitting of their 

imaginary parts, and the regime of coupling located outside the EPs, namely the 

strong coupling regime in which c  . Here, the imaginary parts of the 

eigenfrequencies do cross while their real parts are split. Also, remark from plots 

that the EPs are symmetric from zero for the dimer Z, which is not the case for the 

dimer ZC, where the symmetry axis is shifted according to the critical value C
 

which behaves as an equilibrium point. For the parity time symmetric (PTS) case (

1   ) where the gain compensates the losses, we notice a totally conservation of 

the energy in the strong regime where the eigenfrequencies are real.

Fig.2 : 3D top view of the real (first column) and imaginary (second column) parts of the normalized 

eigenfrequencies
0

/  of the ZRC dimer as function of the active coupling parameter and the gain/loss 

ratio  , in the case of dimer Z of which 
c

c   (plots (a), (b)) and the case of dimer ZC with 0.75 

(plots (d), (e)). The coupling threshold 
th

c  is shown here with the dashed purple color. Third column: 

cross section of the real (solid) and imaginary (dashed) parts of made for different values of  : (c): 

dimer Z and (f): dimer ZC with 0.75  . The values of  and the corresponding colors are indicated 

on the plots. For all plots we set
0 0.5  .
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-The Couplingless point (CPLP) 

The couplingless point (CPLP) is a particular point where a combination of 

coupling parameters of the dimer ZC allows a cancellation of the effective coupling

c . It is easily to find the CPLP when the gain/loss ratio is equal to one ( 1  ). The 

couplingless condition is given in Eq. (6). 

0
c

c              (6) 

To well characterize the CPLP and the coupling regimes evoked, let us assume that 

the coupled loops oscillate with different natural frequencies. For convenience, we 

consider that the frequencies are 0  and  0 1   where  is a small variation. In 

this case, the eigenfrequencies found in Eq. (5) can be rewritten as: 

2 2 2

0

1
1 4 4 4

2 2
j c j   

            
       (7) 

Fig. 3 shows the real parts of the eigenfrequencies   (green color for  and red 

color for ) obtained in this context (see Eq. (7)) as function of the variation   in 

the case of dimer Z and dimer ZC. Considering the values of 0  and 0.75 
constants, we can vary the parameter

C
 such as to switch from the weak to the 

strong coupling. The quantity  Re    representing the frequency splitting is 

indicated by a dashed black color.  

In absence of any coupling i.e.  0 0
C

c    , Fig.3 (a) shows that, as 

the value of  is increasing, the frequency of the main loop remains constant equal 

to 0 , while the frequency
1 decreases. Both curves intersect at 0   where the 

frequency splitting is zero. However, when the weak coupling is established 

between both oscillators of the dimer Z (Fig. 3(b)) or the dimer ZC (Fig. 3(d)), one 

of the frequencies decreases while another remains constant as   increases. We 

remark that both frequencies intersect at 0  where the splitting is equal to zero; 

but after that, the frequencies interchange their role. In fact, the frequency which 

was constant before the value 0   now decreases as   is increasing, whereas the 

other remains constant equal to
0 . On the contrary, when a strong coupling is made 

between oscillators, whatever the dimer Z (Fig.3(c)) or the dimer ZC (Fig.3(e)), we 

remark that both eigenfrequencies decrease as the parameter   is increasing. 

However, they show the anticrossing which is the main characteristic of the strong 

coupling at 0   where the frequencies are split.  As defined above, the CPLP is 

a point belonging to the weak coupling domain where the effective coupling 

vanishes i.e.  0
C

c   . However, there, it is remarked (see Fig. 3(f)), that one 

eigenfrequency remains equal to 0  while the other one decreases as  increases 

from -2 to zero, where they intersect exactly at 0  , as in the case illustrated in 

Fig. 3(a). The inset plot shows the imaginary parts of the eigenfrequencies in that 

point, which allows to distinguish it to the case obtained in (a) in absence of any 

coupling. Remarkably, it is important to recall that the CPLP only exits in the dimer 

ZC including two types of couplings. 
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Fig.3: Eigenfrequencies of dimer as function of the variation  . (a) Uncoupled loops (  0 0
C

c   

). Dimer Z in the regime of weak (b) and strong (c) coupling.  Dimer ZC in weak (d) and strong (e) coupling 

regime. (f) Dimer ZC at the couplingless point (  0.75 0
C

c    ). In all plots,
0 0.1  , 

0 0  and 

0  .

2.2 ZRC multi dimer 

Let us now focus on the ZRC multi dimer scheme, as depicted in Fig. 1(a) 

when 1N  . We consider now that each loop oscillates with its own natural 

frequency  0..
i

i N  , which differs from one loop to another. As described above 

for the ZRC dimer, in the following, the active coupling in place and the number N 

of loops coupled to the main loop, are used to refer to the ZRC multi dimer. In this 

way for example, the bi dimer C is the circuit of which the active coupling is 

capacitive (
C

C ) and where N=2, the tri dimer Z is the one of imaginary resistive 

coupling (
C
 ) with N=3, whereas the tetra dimer ZC is the circuit of which four 

loops are coupled to the main loop via both the capacitor and the imaginary resistor. 

Looking for the harmonic solutions ( )
i

Q t ,  Eq. (1) describing the motion of the 

ZRC multi dimer can be rewritten in the following matrix representation, in 

absence of the harmonic voltage:  

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

0

0

0

0N N N N N

c c c A

c c c A

c c c A

c c c A








    
         
      
    
    

        

L

L

L

M M M M M M

L

,         (8)
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where( )0..i N= ,
ii c ic    , /

iC C ei
r rb = ,

0/
i i
   ,

0/
i i i

j     ,
i i
    , /

i i ei
R r  ,

1 /
i ei ei

r C  ,
ei i c

r r r= + and  /
ei i C i C

C C C C C  .

We want to find the eigenfrequencies of the multi dimer. To simplify the study, we 

assume that the imaginary resistances are constant i.e.  0..i i N
r r  , only capacitances 

are distinct. Based on this,
iC C

  , 
i
   and it results that 

i C
c c     . Under 

the approximation    = , 
0i i i

       where 
0  is the mean frequency, 

and using a few steps of algebra, the determinant of the left most term of Eq. (8) 

can be obtained as:

   
1 2

1 1

1 0 10

N p N p N p qN N
N N p

i i k s

p i k i s i qi

D Nc N p c    
     

  

     

       L L    ,   (9) 

1 ,  2 ,  N 1,  2,  3p N n N q u      

The eigenfrequencies of the systems are the roots of  D  . As the number N of the 

coupled loops increases from N=2 to 2N  , generally it becomes more difficult to 

find analytically these roots, given that the expression of  D  combines complex 

terms. For this reason, we have numerically calculated the roots of which the real 

and the imaginary parts are illustrated in Fig. 4 as function of the imaginary resistive 

coupling parameter 
C
  in the case of the multi dimer ZC (with 0.75  ), assuming 

the main loop frequency 
0 negative and the gain/loss in the parts of the circuits 

such that   01..i i N
   (where 

0 0.5  (loss loop) and 0  ). In addition, we have 

considered the natural frequencies of the loops such as: for the bi dimer ZC (N=2): 

1 0 00.1    and
2 0 00.1    ; tri dimer ZC (N=3): 

1 0 00.1    , 
2 0 00.02   

and 
3 0 00.1    ; tetra dimer ZC (N=4):

1 0 00.1    , 
2 0 00.1   

3 0 00.2    and 
4 0 00.2    , where 0 is the natural frequency of the main loop.  

As one can rapidly perceive, the figure shows a close dependence between the 

number of coupled cells N and the roots of  D  . In the real parts of the roots 

demonstrated in Figs. 4(a), 4(b) and 4(c), for N=2, 3 and 4, respectively, it is seen 

that around the CPLP for which 0.75
C
   ,  the roots keep the same values as 

those of uncoupled oscillators and then display the avoided crossing. This is 

confirmed by the inset in Fig. 4(a) obtained with the bi dimer Z, where the same 

behavior occurs around a zero imaginary resistive coupling.  As the absolute value 

of the coupling
C
 , increases, one notice that one of the real part of the roots 

separates from the others, while they get closer; accordingly, a large splitting is 

observed between this mode and the others as the coupling is further increases. On 

the contrary, the imaginary parts of the roots depicted on Figs. 4(d), 4(e) and 4(f) 

for the cases N=2, 3 and 4, respectively, show a behavior little different to what is 

exhibited by the real parts. Indeed, around the CPLP, the imaginary parts of the 

roots are closed to zero, except one of which the value is high. Far of the CPLP, the 
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imaginary parts of the modes evolve asymptotically each towards a constant value, 

which can be zero.  

Fig.4: The normalized roots of  D  as function of the imaginary resistive coupling parameter
C
  for the 

multi dimer ZC (with 0.75  ). First column: bi dimer ZC (N=2). Second column: tri dimer ZC (N=3) and 

in last column:  tetra dimer ZC (N=4). The upper row shows the real parts of the roots (  0Re /  ) and the 

down row shows their imaginary parts (  0Im /  ). The other plots parameters are: 0  , 
0 0.5   and 

0 0  . The inset plot in (a) corresponds to the case of bi dimer Z ( 0  ). The inset shows that the 

frequencies of the bi dimer ZC at the CPLP (
C
  ) behaves as those of the dimer Z around the zero 

coupling. 

3 Steady state dynamic and dispersive properties

In this section, we are interested to the dynamic of the system in presence of the 

harmonic voltage source  u t .  

3.1 Single ZRC oscillator 

Let's get interest first to the main oscillator loop
0 0 0Z R C , in absence of any coupling 

(SW i  off). The first row of Eq. (1) is rewritten as: 

  0

0 0 0 0/ e

dQ
j Q u r

dt
     ,                              (10) 

where   0
c.cj tu t V e   with c.c the complex conjugate,  is the harmonic voltage 

frequency, 
0V  its amplitude and   11

0 0/
e

R r    is the quality factor. It has been shown 

in ref. [32] that the quality factor displays an important role to determine the nature 

of the oscillations of a ZRC oscillator. For example, when the frequency 
0  is 
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positive (
0 0  ), the oscillations are damped during the time for the loss loop of 

which 1

0
0   , but are amplified for the gain loop where 1

0
  is negative. On the 

contrary, when the frequency of the loop is negative (
0 0  ), the oscillations are 

amplified in the loss loop while they are damped into the gain loop. However, if the 

quality factor is large ( 1

0
    ), the amplitude of oscillations remains constant 

whatever the sign of the frequency, since the oscillator ZRC seems as the simple 

ZC oscillator. 

 The general solution of Eq. (10) can be written in the form: 

( )0 0/( )

0 ( ) c.c
t j j t

Q t e Ae
w b w

a
- +

= + + ,                    (11) 

where, ( )0 0 0
/

e
A V r jd b wé ù= +ë û

is a complex amplitude, c.c the complex conjugate, 

0    is the frequency detuning and  is a constant amplitude. In the steady 

state regime, the first term of 
0 ( )Q t can be neglected and we can only consider that

0
( ) c.cj tQ t Ae w» + . Hence, we can evaluate the dissipated power through the loop as

( ) ( )0 0 0c.c ( )j tP t V e Q tw= + & . Therefore, the average of dissipated power during one 

period 2 /T   of oscillation is calculated through the expression:                

( ) ( ) ( )
2 / 2 /

0 0 0 0
0 0

1 1
c.c ( )

2 / 2 /

j t
P P t dt V e Q t dt

p w p w
w

w
p w p w

= = +ò ò & (12)                                                                          

Since we are interested to the response of the system near (or at the resonance), we 

assume
0

   =  and
0  . Under this approximation and using a few step of 

algebra, the electric power in Eq. (12) can be rewritten as: 

 


 0

0

0

p
P j  ,          (13) 

where 1j   ,
2

0 0 0/
e

p V r , 
0 0 0 0/ j     ,

0 0    . 

In Figs. 5(a) and 5(b), the real and imaginary parts of the steady state electric power 

 0
P  dissipated by the circuit are shown as a function of the normalized voltage 

frequency 
0/  , this for different values of the non-Hermitian gain/loss parameter

0 . The different plot parameters are shown in the figure where the solid lines 

represent the real parts of the normalized power (  0 0
Re /P p ) and the dashes/dots 

lines are corresponding to imaginary parts (  0 0
Im /P p ). In all plots, the green and 

blue curves correspond to the loss loop of which
0 0.5 0    whereas purple and red 

colors refer to the gain loop with
0 0.5 0    , respectively. As we can notice on the 

plots, when the natural frequency is negative (
0 0  ), the absorption profile 

presents a lorentzian form with the maximum of the absorption centered at 
0

  

, while this lorentzian is rather centered at
0  if the natural frequency is positive 

(
0 0  ). Remarkably, in the case of loss loop, these lorentzians are positive, 

corresponding to a typical absorption, whereas they are negative for the gain loop. 

Otherwise, in the latter case, the negative power was interpreted as the power 

amplified instead of being absorbed [41]. The imaginary part of the power 

corresponds to the dispersion and presents a positive slope around the absorption 
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peaks in the case 
0 0  while the slope is negative when

0 0  . The results indicate 

that, to obtain the maximum of absorption (or amplification) at the resonance where 

it is expected, the voltage frequency should have the same sign and the same value 

as that of the natural loop frequency. Although negative frequencies have been 

suggested to many past researches [42-46], their using is often overlook in the 

context of analog model of EIT and related phenomena. 

Fig. 5: The steady state normalized power dissipated by the 
0 0 0Z R C  loop as function of the 

normalized frequency 
0/  for different values of the non-Hermitian parameter

0 . The different 

plot parameters are shown in the figure. The solid lines represent the real part of the normalized 

power (  0 0
Re /P p ) and the dashes/dots lines correspond to the imaginary parts (  0 0

Im /P p ). 

In all plots, green and blue colors curves correspond to the loss loop (
0 0.5  ) whereas purple 

and red colors refer to the gain loop (
0 0.5   ), respectively.

       3.2. Dynamic in a ZRC dimer 

From the eigenmodes of the ZRC dimer illustrated in Fig.2, we have 

identified two different coupling regimes: the weak and the strong coupling, border 

by the EPs, since the eigenvalues exhibit different behavior between and outside of 

the EPs. Another way to well distinguish the both regimes, is to investigate on the 

dynamic of the coupling oscillators. According to Eq. (3), the eigenvectors

 , 0,1
i i

A A i   describing the normal modes of the system satisfy to [47]: 

1 0A A   ,                     (14) 

where
 

 
0 0

0 1

1

1

    


    
 


 

  
 

  
c

c

j

j
, /

C C
r r  ,

01 /
C

rC    ,
0,1 c

r r r  and 

0 1/ rC  . The frequencies  are found in Eq. (5). 

If  0
1 / 2

th
c c     , the general solution  0 ,1

Q t  for the ZRC dimer can be written 

as: 

  j t j t

i i i
Q t A e A e

  
   ,   (15) 

where  0,1i  . The amplitudes
i

A are found from the initial conditions of the 

oscillators:       0 0 10 0 /A Q Q         and       0 1 10 0 /A Q Q        with 

 0
i

Q  being the initial charges of the capacitors. Then, we have calculated the 
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amplitude squared
2

i
Q associated to each oscillator loop and the response is 

significantly describing the transfer of energy from one to another. Let us analyze 

the dynamic of both dimers Z and ZC (where 0.75  ). In the case of dimer ZC, the 

double coupling, offers the possibility to obtain a CPLP which is situated at the 

center of the weak region. Using for example the values 0  and
0 0.1  , the EPs 

are found to be 
1 0.7

C th
  and

2 0.8
Cth
   and the CPLP occurs at 0.75

C
  . Hence the 

weak coupling is situated into the domain  0.7; 0.8
C
   and the strong coupling 

regime is everywhere else. The use of dimer Z in the same conditions allows to 

situate the weak regime between
1 0.05

C
   and

2 0.05
C
  , while the strong regime 

is everywhere else. A rapid analysis of these range of values demonstrates for 

example that the multi coupling allows to reveal informations carried in the 

negative coupling values since the dimer ZC has shifted the weak domain of the 

dimer Z.  In fig. 6, we have plotted the quantities 
2

0Q  and
2

1Q , as a function of the 

time t  for different values of the gain/loss ratio  , according to the driving regime. 

In addition, the initial conditions of the dimer are chosen such as  0
0 0Q  ,  1

0 1Q 

, meaning that the signal is introduced into the coupling loop (oscillator 1). 

Fig. 6: Time evolution of the energy in each cell of the dimer Z (first column) and the dimer ZC when

0.75  (second column). (a) and (f): dimer Z ( 0.5
C
  ) in strong regime. (b) and (g) correspond to 

dimer Z ( 0.02
C
  ) in the weak coupling regime.  (c) and (h): dimer ZC ( 0.75, 0.2

C
   ) in the 

strong regime. (d) and (i): dimer ZC ( 0.75, 0.71
C

   ) corresponding to the weak coupling 

regime. (e) and (j) represent the dimer ZC at the CPLP ( 0.75
C

   ). From (a) to (e) : 1

0
1 rad.s 

and from (f) to (j) : 1

0
1 rad.s   . For all plots 0   and

0 0.1  . The solid green and red dashes 

curves represent the energies 
2

0Q and 
2

1Q , respectively.  
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In the strong coupling regime, once a signal is put into oscillator 1, whatever for the 

dimer Z (Figs. 5(a) and 5(f)) or dimer ZC (Figs.5(c) and 5(h)), we note a rapid 

periodic exchange of energy between both oscillators loops which is made in an 

oscillatory process so that, when one is at its maximum, the other reaches its 

minimum. These oscillations are damped during the time in both oscillators when 

the frequency
0 is positive while they are amplified if frequency is negative. Also 

notice that these oscillations are very fast with the dimer ZC. In the weak coupling  

regime, it can be remarked that when the frequency 
0 is positive, the energy is 

irreversibly transferred from oscillator 1 to oscillator 0 of which energy remains 

almost closed to zero whether in the case of the dimer Z (Fig. 5(b) or of the dimer 

ZC ( Fig. 5(d)). However, if the frequency is negative, once the signal is introduced 

into oscillator 1 whether in the case of dimer Z (Fig. 5(g)) or dimer ZC (Fig. 5(i)), 

it takes a relatively long time to reach oscillator 0, which then sees its energy 

exponentially increases while the amplitude of the master oscillator 1 grows slowly.  

At the CPLP belonging to the weak coupling regime, a specific behavior is 

observed. In fact, whether for
0  positive (Fig. 5(e)) or negative (Fig. 5(j)), we 

remark that the signal introduced in oscillator 1 remains there and as consequence, 

no exchange of energy is made with the oscillator 0 whose amplitude remains zero.  

In presence of the voltage, the exact solutions  i
Q t  of Eq. (1) for the dimer 

can be written as a sum of two solutions: ( )0 0 0
( ) ( )C P

Q t Q t Q t= + , where the 

complementary solution
0

( )C
Q t  linearly combines the two normal modes 

frequencies that is 0 0 0
( )

j t j tCQ t A e A e
  

    where are the eigenfrequencies 

obtained in Eq. (5) and
o

A  the complex amplitudes. The particular solution can be 

taken in the form of the voltage as  0 0
c.cP j t

Q t e
  , with 

0  the amplitude. In the 

steady state regime in general, only the particular solution remains. Hence, 

replacing this solution into Eq. (12), the steady state power can be expressed as:

   
     

2

0 1

0 2

0 0 1e c

V j j
P

r j j

  


      




   
(16)

where
0    and 

0  .

Under the approximation
0

   = , 
0  and the expression of the steady 

state dissipated power can be rewritten as:  

  0 1

0 2

0 1

p
P j

c




 



  ,            (17)

where 1j   , 2

0 0
/p V r= , 

c
c    , 

0,1 0 0,1/ j      and 
0    is the frequency 

detuning between the loops frequencies’  and the voltage frequency. 

In the context of electronics, it is well known that the real part of the dissipated 

power (i.e. the active power) determines the absorption, while its imaginary part 

(i.e the reactive power) simulates the dispersion properties of the atomic medium. 
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In Fig. 7, the normalized absorbed power (
0 0/P p ) of the main loop is reported as a 

function of the normalized voltage frequency 
0/   according to the coupling 

strength regimes for dimer ZC and dimer Z. The solid blue and the dashed red 

curves respectively represent the real (  0
P ) and the imaginary (  0

P ) parts of 

the power obtained when the main loop oscillator 0 is loss (
0 0.1 0   ) while the 

green curves presented in insets are obtained for the main loop gain (
0 0.1 0    ). 

In addition, the natural frequency is assumed positive
0 0   for the dimer ZC while 

for the dimer Z, it is considered as negative
0 0  . By modulating the gain/loss ratio 

  from positive to negative values such as to maintain the system in a given 

coupling regime, we demonstrated that our system can replicate the features 

observed in EIT, EIA, ATS and related phenomena. For example, fixing the 

capacitive coupling  constant ( 0.75  ) for the dimer ZC, we choose the values 

0.71
C
  and 0.2

C
  , leading the coupling in the weak and the strong regime, 

respectively. In absence of coupling (SW1 off), the absorption profile presents a 

lorentzian curve as discussed in Fig.5. Once a coupling is made between loops, it is 

remarked from Fig.7 (a) for a weak coupling ( 0.71
C
  ) that, a narrow dip appears 

in the spectrum when 0.2  leading to two absorption peaks. In the same time, the 

dispersion curve that we observed in Fig.5 is modified. If 0  , a zero absorption, 

so a transparency window occurs in the spectrum. Then, the dispersion curve 

becomes much steeper near the zero central frequency. This behavior is similar to 

the EIT phenomenom interpreted for atomic systems, as a direct manifestation of 

the destructive interference between the normal modes of oscillations. The EIT 

phenomenon has been already replicated via LRC circuits [28]. On the contrary, 

when a small negative dissipation is introduced into the pumping oscillator 1 (

0.1   ), a negative absorption is observed in the transparency zone. Since a 

negative absorption refers to the amplification, we named this last behavior as 

electromagnetically induced amplified transparency (EIAT). For a further decrease 

of   until the value 0.18   , an enhanced absorption peak occurs in the profile 

where the dip was expected to be. Then, the system allows to mimic the absorption 

spectrum of three levels atom in lambda ( L ) configuration in the regime known as 

electromagnetically induced absorption (EIA). This EIA behavior has for it been 

interpreted for atomic systems as a manifestation of a constructive interference 

between the normal modes of oscillations.  

Fig. 7 (b) shows the absorption profile of the dimer ZC considering the strong 

coupling ( 0.2
C
  ).  It is observed for higher losses into the pumping field (for 

example when 3  ), two absorption peaks separated by a large transparency 

window. These peaks are clearly identified when the losses decrease to zero i.e 

when 0  .The phenomenon is similar to the well-known Autler-Townes Splitting 

(ATS) effect which is generally interpreted as a consequence of a gap between two 

atomic resonances peaks. The peaks are located on both side of the central 

frequency
0 . A further decreasing of the damping that is, for a negative dissipation 
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into the pumping oscillator 1 (i.e. 0.8   ), a negative absorption occurs in the 

spectrum leading to the enhancement of the absorption peaks. On the contrary, 

when   less than -1, the peaks become inverted so that once a negative power 

(amplification) is observed in the profile. We termed this behavior as the Autler-

Townes splitting with amplification (ATSA).  All these results obtained with a 

positive frequency can be obtained with the negative voltage frequencies when 

0 0  , as illustrated in fig. 7(d) in the case of dimer Z of which the set parameters 

are 0.02
C
   (weak coupling) and 0.5

C
   (strong coupling). This demonstrates the 

ability for such a circuit to offer a large range of investigations. Also notice that 

whether for the weak or the strong coupling, the plots in insets dictate what is 

observed if the main loop was gain.

Fig.7: Absorbed power (dissipated) by the main loop of the dimer ZC (from (a) to (c)) when the natural 

frequencies of the loop are positive
0 0   and the one of the dimer Z (d) when frequencies are negative
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0 0  . The solid blue and dashed red correspond to the real and imaginary parts of the absorbed power 

when the main loop is loss (
0 0.1 0   ). The insets in green show the real part of the power corresponding 

to the main loop gain (
0 0.1 0    ). The other plot parameters are identical to those used in fig.5. 

Fig.7 (c) illustrates the absorption at the CPLP of the dimer ZC ( 0.75
C

   ), a 

particular point where the effective coupling cancels i.e 0c  . Replacing the 

couplingless condition into Eq. (17), the expression of the absorbed power by the 

main loop of the dimer ZC is reduced to the expression of power given in Eq. (12) 

for the isolated cell. Hence, the cancellation of the effective coupling has effect to 

decouple the parts of the system and then, no exchange of energy can be observed. 

It results that no interference phenomenon can be obtained as it can be well 

confirmed by the plots which are simply the reproduction of what shown in Fig.3, 

where only lorentzian curves centered on the central frequency
0  were observed. 

Accordingly, all the replicated atomic phenomena disappear. This is not a surprise 

for us, given the analysis made in the previous section about the transfer of energy 

in the CPLP. The results obtained here with the analogous circuit model, would be 

very interesting and could be an efficient way to control quantum information 

storage and the occurrence of the EIT windows in experiments with real atomic 

systems.  

3.3 Dynamic in a ZRC multi dimer 

Let us now focus on the ZRC multi dimer scheme when N   , as depicted in Fig. 

1(a). Such a system is used to replicate the multiple EIT, EIA or ATS windows as 

well for the positive as for the negative voltage source frequencies. It has been 

demonstrated [29] that, to obtain multiple transparency windows, each part of the 

circuit must oscillate with its own natural frequency  0..
i

i N  , which differs from 

one loop to another. In presence of the voltage, Eq. (1) describing the ZRC multi 

dimer is reduced to Eq. (7) when rewriting it by incorporating the harmonic voltage 

( ) 0 c.cj t
u t V e

w= +  in the right term. The amplitudes ( )0...
i

A i N= , can then be obtained 

and accordingly, the charge solution 
0 ( )Q t  through the main loop. Thanks to Eq. 

(12), we calculated the general expression of the steady state frequency-dependence 

power  0
P  , which is dissipated by the main loop as a function of the number N (

N 1 ) of the coupled loops in place. Under the approximation    = , 
i i
   

, where 
0  is the mean frequency of the system, and using a few steps of algebra, 

the dissipated power  0
P   can be expressed in this case as: 

       
2 3

1

0

2 1 11

1 ,
N N N n N n N n u

N N n

l m h v

n m h m v m ul

j
P N c N n c

D
    



     
 

     

      
 

    L L  (18) 

where( )0..i N= ,
ii c i

c    , /
iC C ei

r r  ,
0/

i i
   ,

0/
i i i

j     ,
i i
    , /

i i ei
R r  ,

1/
i ei ei

r C  , 
ei i c

r r r   and  /
ei i C i C

C C C C C   . The expression of the denominator 

 D   is found in Eq. (8) as: 
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Fig. 8: The real and imaginary part of the steady state normalized dissipated power 
0 0/P p  as function of the 

normalized frequency
0

/   for different cases of multi dimer ZC according to the coupling regimes: weak 

(first column), strong (second column). In all plots, we set 0 0   ,
0 0.5   and 0.75  . (a) and (b): N=1, bi 

dimer ZC. (c) and (d): N=3, tri dimer ZC. (e) and (f): N=4, tetra dimer ZC. The other parameters are inserted in 

text.

In Fig. 8, the real and the imaginary part of the dissipated power are reported as a 

function of the normalized frequency 0/  and the number N of the loops which 

are coupled to it, for different values of  parameter as indicated on the figure. As 

we can see, the graphs shows the dependence of its modulation with the absorption 

profile. For illustration, we have considered the natural frequencies of the loops 

same as those used in Fig. 4, i.e., for the bi dimer ZC (N=2): 
1 0 00.1     and 

2 0 00.1    ; for the tri dimer ZC (N=3): 
1 0 00.1    , 

2 0 00.02     and 
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3 0 00.1     while for the tetra dimer ZC (N=4): 
1 0 00.1    , 

2 0 00.1   

3 0 00.2    and 
4 0 00.2    , where 0 , the mean frequency is the natural 

frequency of the main loop which is taken negative here ( 0 0  ). In addition, the 

main loop is considered as a loss loop (
0 0.5 0   ). In all plots we set 0.75  . For 

the imaginary resistive coupling parameter 
C
  taken near this value, the coupling is 

in the weak regime (left column), whereas for 
C
  taken far away this value, the 

coupling is in the strong regime (right column).  

Specifically, for the bi dimer ZC, the coupling parameters are 0.85
C
 

(weak regime) and 0.2
C
  (strong regime). For a weak coupling, see Fig. 8(a), we 

notice in the absorption spectrum when 0  , two symmetric dips centered at 

00.9  and 
01.1   on both sides of the central peak, thus leading two EIT 

windows. This behavior is similar to the quantum well known phenomenon of 

double electromagnetically induced transparency (DEIT). This behavior was also 

replicated in ref. [29] using LRC circuits. Accordingly, two steep slopes are 

observed from the dispersion curve in the transparency domain. Decreasing  to the 

value 0.008   , a phenomenon similar to the EIAT appears in the absorption 

spectrum however in two points where the negative power is automatically 

observed. Accordingly, we called this new behavior as double EIAT (DEIAT). For 

a further decreasing of e , to 0.002 and then to the value 0.1 , it is remarked in the 

spectrum the occurrence of one EIA peak where the first EIT dip was observed and 

then another one, where the second dip was expected to be. As consequence it 

results two enhanced absorbed peaks. Then, the bi dimer circuit allows to replicate  

double EIA peaks. We then termed this as double EIA (DEIA).  

In the strong coupling regime (see Fig. 8 (b)), when a dissipation is introduced into 

the coupling field ( 0.1  ), it is observed two dips inside the profile, one of which 

is more pronounced and centered to the frequency 
0  and the other which is narrow. 

Both dips are separated by a large transparency domain, similar to the ATS effect 

described above. The location of the peaks is in perfect accordance with the 

discussions made for the eigenspectrum (see Fig. 4) where two frequencies are 

closed together while the other is far away. A further decrease of  to the value 

0  reduces the dip to a zero absorption, leading to the phenomenology of EIT.  So 

that the system allows to reproduce an EIT and an ATS window instead of two ATS 

windows as we could imagine. However, as one would expect, by lowering   to 

the negative values for example 0.02   , a negative power typical to the EIAT 

effect described above in the case 0   occurs in the transparent region between the 

two EIT peaks. For 0.03   , it is not a surprise to note that the spectrum just pass 

from the EIAT to the EIA behavior as in the case of the dimer ZC. In all cases, it is 

noted that the dispersion profile is modified according to the type of phenomenon 

reproduced. 

In the case of tri dimer ZC (N=3), it is remarked from Fig. 8(c) for the 

coupling in the weak domain ( 0.803
C
  ), that the system allows to reproduce when



21 

0  , three narrow dips centered at the naturel loops frequencies
00.9 , 

01.02 and 

01.1 , thus exhibiting three EIT windows, a behavior similar to the Triple EIT 

(TEIT) which was observed in atomic context [48, 49] and studied in a 

superconducting quantum circuit with a four-level V-type energy spectrum [55].  

Similarly, a further decreasing of   to 0.003 , then to 0.006  and finally to 0.04

allows to the spectrum to switch from Triple EIAT (TEIAT) to double EIA (DEIA) 

and then to Triple EIA (TEIA), respectively. However, for a strong coupling (

0.58
C
  ), the observations made in Fig. 8(d) when the gain/loss ratio takes 

respectively the values 0,  0.0037,   0.002,   and 0.01   , are similar to the 

ones obtained with the bi dimer ZC (N=2), however with a consequent increasing 

of the number of EIT, EIAT dips or EIA peaks but with an invariable number of 

ATS window, i.e. one. 

In the case of the tetra dimer ZC (N=4), in presence of the weak coupling (

0.78
C
  ), it is observed when 0  , four EIT windows, that we named as 

quadruple EIT (QEIT). By playing on the value of  , our model allowed us to also 

reproduce a quadruple EIAT (QEIAT) windows when 0.0007   , then a TEIA 

when 0.004   and finally a quadruple EIA (QEIA) if 0.01   .  In presence of the 

strong coupling (with 0.2
C
  ), the tetra dimer ZC (N=4) allows also to mimic TEIT 

( 0  ), TEIAT ( 0.001   ), DEIA ( 0.006   ) and TEIA ( 0.0025   ) 

accompanied in each case by the ATS window alone. 

To generalize, the ZRC multi dimer  is able  to  replicate N-EIT, N-EIAT or 

N-EIA windows in the weak coupling regime, the number of windows depending 

on the number N of loops coupled to the main loop of which the voltage source acts 

directly.  In the same way, in the strong coupling, the interplay between the control 

and the probe field induce a simultaneous one ATS, (N-1) EIT, (N-1) EIAT or (N-

1) EIA windows. It is also important to recall that, these results are obtained here 

with a negative main loop frequency and a positive value of
0 . They can also be 

reproduced as shown in Fig.5, at positive frequencies and even also when the 

parameter of non-hermiticity 
0 is negative. In this last hypothesis, all phenomena 

reproduced here should be amplified. Finally it is important for us to notice that at 

the couplingless point (CPLP) of any multi dimer ZC, all the mimicked phenomena 

disappear as discussed in Fig.7(c). 

4 Conclusion 
In summary, we have proposed a non-Hermitian electronic dimers based 

on the imaginary resistor, that mimics a (N+2) level atomic system in multi-pod 

type configuration. The equations describing the so called ZRC multi dimer circuit 

were theoretically analyzed under the resonance conditions considering as well 

positive as negative frequencies. The eigenanalysis allowed us to identify two 

coupling strengths; the weak and the strong coupling regimes. Thereafter, we have 

demonstrated that in the weak coupling regime, our system is able to replicate 

multiple EIT, EIAT and EIA. In the presence of the strong coupling, the system 
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also allows to mimic the quantum phenomena mentioned above in addition to the 

ATS-like effect. Remarkably, we have illustrated a particular point of the weak 

coupling regime where the system becomes couplingless as its effective coupling 

cancels. The analysis of the frequencies splitting reveals that at the couplingless 

point (CPLP), the systems seems as decoupled and consequently there is no 

exchange of energy between parts of the circuit. It comes out that all the replicated 

phenomena disappears. Finally, it is important to mention that to reproduce EIT, 

ATS or EIA and related phenomena with electronic circuit does not means that 

these phenomena are classical. In addition to show the analogy between the 

electronic circuit and the atomic system, our work well provides a description and 

observation of quantum interference processes happening in atomic media. This 

intuitively suggests to integrate a concept of non-hermiticity, a multiple coupling 

and the negative frequencies in modeling quantum phenomena. Thanks to the use 

of the imaginary resistance, the equations describing the ZRC multi dimer were 

easily manipulated.  We hope that it will be a better prototype that can help students 

and researchers in understanding quantum multiple phenomena observable in 

atomic media and could find further ideas for futures works. 
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