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DISTORTIONAL EXTREMA AND HOLES IN THE GEOMETRIC MANIFOLD
 
For the presently described spherically symmetric Maxwellian case, ϕ, the electrostatic potential, is a function of r  alone, and the Maxwellian electromagnetic tensor and the associated field tensor F1μ can be constructed according to equation (3), where the only surviving field tensor components are (following the symbolism and development of Tolman17): 

    i.e. 
                                   (3)

   
    
The resultant field quantities are
                                                                       (4)
                  
Therefore, we see that the static-spherically-symmetric Maxwellian tensors exhibit the same stress and energy relationship as the geometric tensors17,
                                                    (5)
The present geometric-modeling endeavor, with its Maxwellian-tensor-form mimicking-component, has produced the fundamental and limiting agent for the currently-studied distorted geometry, namely a particular constraining functional relationship between the geometry-defining tensors (for an empty-space geometry, all of the components of the energy-momentum tensor are zero). In using this simple equation-of-state, equation (5), as a restricting distortional-model tensor relationship, we thereby elicit the metric-defining differential equations for such a family of geometric distortions. 
The geometric-energy-density or field equations (2-5), after using solution Eq. (9), are repeated here (from16); also see17;
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,

or

   
and 
                    (6)
leading to

                    (7)



[bookmark: _GoBack]                                                                                                                              (8)
where

The field equations, in both the EM realm and the gravitational realm (Q = 0), exhibit r-6 geometric behavior which we have interpreted as constituting a “magnetic monopole” mimic (what is a “magnetic monopole” ?). 
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