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Abstract 21 

Background: Lens opacity seriously affects the visual development of infants. Slit-illumination 22 

images play an irreplaceable role in lens opacity detection; however, these images exhibited 23 

varied phenotypes with severe heterogeneity and complexity, particularly among pediatric 24 

cataracts. Therefore, it is urgently needed to explore an effective computer-aided method to 25 

automatically diagnose heterogeneous lens opacity and to provide appropriate treatment 26 

recommendations in a timely manner. 27 

Methods: We integrated three different deep learning networks and a cost-sensitive method into 28 

an ensemble learning architecture, and then proposed an effective model called ECCNN-29 

Ensemble (ensemble of cost-sensitive convolutional neural networks) for automatic lens 30 

opacity detection. A total of 470 slit-illumination images of pediatric cataracts were used for 31 

training and comparison between the CCNN-Ensemble model and conventional methods. 32 

Finally, we used two external datasets (132 independent test images and 79 Internet-based 33 

images) to further evaluate the model’s generalizability and effectiveness. 34 

Results: Experimental results and comparative analyses demonstrated that the proposed method 35 

was superior to conventional approaches and provided clinically meaningful performance in 36 

terms of three grading indices of lens opacity: area (specificity and sensitivity; 92.00% and 37 

92.31%), density (93.85% and 91.43%) and opacity location (95.25% and 89.29%). 38 

Furthermore, the comparable performance on the independent testing dataset and the internet-39 

based images verified the effectiveness and generalizability of the model. Finally, we developed 40 

and implemented a website-based automatic diagnosis software for pediatric cataract grading 41 

diagnosis in ophthalmology clinics.  42 

Conclusions: The CCNN-Ensemble method demonstrates higher specificity and sensitivity 43 

than conventional methods on multi-source datasets. This study therefore provides a practical 44 

strategy for heterogeneous lens opacity diagnosis and has the potential to be applied to the 45 

analysis of other medical images. 46 

Key words: cost-sensitive; deep convolutional neural networks; ensemble learning; 47 

heterogeneous slit-illumination images; pediatric cataract. 48 
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Background 49 

Optical imaging technologies play a vital role in clinical diagnosis and treatment of 50 

ophthalmology [1, 2]. Computational vision approaches for automatic diagnosis of lens opacity 51 

have greatly improved the efficiency of ophthalmologists and the entire treatment chain, 52 

providing real benefits for patients [3-6]. In our previous studies, we applied artificial 53 

intelligence methods to the classification of diffuse-light ocular images [7-9]. However, 54 

diagnosis that is solely dependent on diffuse-light images will inevitably miss a substantial 55 

proportion of potential ophthalmology patients [10-12]. The common slit-illumination image 56 

offers another effective diagnosis medium and provides an essential supplement to these 57 

diffuse-light images [13, 14]. Therefore, development of computer vision techniques for slit-58 

illumination images will move the automatic diagnosis of ophthalmic diseases towards a more 59 

comprehensive and intelligent strategy. 60 

At present, the existing computer-aided diagnosis methods generally focus on senile cataracts 61 

using slit-illumination images [3-5, 15]. Thresholding localization and support vector 62 

regression methods were used to grade the nuclear cataract [16]. Recursive convolutional neural 63 

networks and support vector regression methods were implemented to enable automatic 64 

learning of features for evaluating the severity of nuclear cataracts [17]. However, the 65 

phenotypes of senile cataracts are relatively simple and fairly homogeneous. The study of such 66 

senile cataracts alone will not be sufficient for the development of a computer-aided diagnosis 67 

system for lens opacity in complex clinical scenarios. Practical clinical applications need the 68 

ability to diagnose heterogeneous lens opacities with high recognition rates [18-20]. It is 69 
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therefore essential to develop an efficient, feasible and automatic diagnostic system to address 70 

heterogeneous slit-illumination images.  71 

The pediatric cataract is a typical lens opacity disease that suffers from severe heterogeneity 72 

and complex phenotypes [21-23]. Large-scale slit-illumination images of pediatric cataracts 73 

were collected from the long-term Childhood Cataract Program of the Chinese Ministry of 74 

Health (CCPMOH) project [24], which covered a wide variety of lens opacities. In addition, 75 

imbalance between the categories is an inevitable problem in pediatric cataract diagnosis [21, 76 

25], where the number of positive samples is relatively smaller than the number of negative 77 

samples. This can easily cause the classifiers to produce a higher false negative rate. Therefore, 78 

these datasets represent an ideal medium for exploration of the appropriate computational 79 

vision methods required to adapt to complex clinical application scenarios.  80 

To develop an effective and efficient computer vision method for analysis of these 81 

heterogeneous slit-illumination images, we integrated three deep convolutional neural networks 82 

(AlexNet, GoogLeNet and ResNet) [26-28] and a cost-sensitive algorithm [29, 30] into an 83 

ensemble learning framework and created the CCNN-Ensemble model (ensemble of cost-84 

sensitive convolutional neural networks). The three convolutional neural networks (CNNs) 85 

with their different structures were used to improve both overall recognition rate and stability 86 

of the model. The cost-sensitive algorithm was used to address the imbalanced dataset problem 87 

and thus significantly reduce the model’s false negative rate. We performed detailed 88 

experiments to compare performance of the CCNN-Ensemble method with that of conventional 89 

methods in three grading indices of lens opacity. We also used two external datasets (an 90 
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independent testing dataset and an Internet-based dataset) to validate the method’s versatility 91 

and stability. Finally, potential computer-aided diagnostic software was developed and 92 

deployed for use by ophthalmologists and their patients in clinical applications.  93 

Methods 94 

Dataset 95 

The slit-illumination datasets consist of the following three parts: the training and validation 96 

dataset, the independent testing dataset, and the Internet-based dataset. A total of 470 training 97 

and validation datasets were derived from the routine examinations of the Zhongshan 98 

Ophthalmic Center in Sun Yat-sen University (Fig. 1a) [24]. 132 independent testing images 99 

were selected randomly in advance from the Zhongshan Ophthalmic Center; 79 Internet-based 100 

images were collected using a keyword search (including words such as congenital cataract, 101 

infant and pediatric) of the Baidu and Google search engines. 102 

There are no special pixel requirements for the enrolled images provided that the lens area of 103 

the image is retained. To ensure grade labeling accuracy, three senior ophthalmologists jointly 104 

determine the grade of each image and comprehensively evaluate its severities in terms of three 105 

lens lesion indices (opacity area, density and location) [7, 9]. An opacity area that covers more 106 

than half of the pupil is defined as extensive; otherwise, it is defined as limited. An opacity 107 

density that completely blocks the light is labelled as dense; otherwise, it is defined as 108 

transparent. An opacity location that fully covers the visual axis of the pupil is called central; 109 

otherwise, it is called peripheral. The collected datasets covered a variety of pediatric cataracts, 110 

which were divided into limited and extensive categories for area, dense and transparent 111 
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categories for density, and central and peripheral categories for location, as shown in Table 1. 112 

Table 1. Distributions of slit-illumination datasets in terms of three grading indices. 113 

Preprocessing and model evaluation 114 

We preprocessed all labeled datasets using twice-applied Canny detection and Hough 115 

transformation [31, 32] to acquire the lens region of interest and eliminate surrounding noise 116 

zones such as the eyelids and the sclera (Fig. 1a). The localized images were subsequently 117 

resized to a size of 256×256 pixels and were then input into the computational vision models. 118 

Using these training and validation datasets, we performed a five-fold cross-validation 119 

procedure to compare and evaluate the performances of the different models (Fig. 1b). Four 120 

representative handcrafted features (WT: wavelet transformation; LBP: local binary pattern; 121 

SIFT: scale-invariant feature transform; and COTE: color and texture features) [8, 9, 33-35] 122 

were selected and combined with support vector machine (SVM) and adaptive boosting 123 

(Adaboost) classifiers for performance comparision. After selection of the optimal CCNN-124 

Ensemble model, we further verified its effectiveness and stability using the two external 125 

datasets (the independent testing dataset and the Internet-based dataset).  126 

Evaluation metrics 127 

To provide a full assessment of the superiority of the CCNN-Ensemble method when compared 128 

Datasets Total number 
Opacity area Opacity density Opacity location 

limited extensive transparent dense peripheral central 

Training and validation datset 470 275 195 260 210 274 196 

Independent testing datset 132 91 41 104 28 100 32 

Internet-based datset 79 19 60 18 61 16 63 
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with the conventional methods, we calculated several evaluation metrics, including accuracy, 129 

sensitivity, specificity, F1-measure, and G-mean, as follows. 130 

( ) ( )Accuracy TP TN TP FN TN FP                   (1) 131 

 ( ) ( )Sensitivity Recall TP TP FN                       (2) 132 

( )Specificity TN TN FP                             (3) 133 

( )Precision TP TP FP                             (4) 134 

2* *
1-

Recall Precision
F measure

Recall Precision



                     (5) 135 

- *
TP TN

G mean
TP FN TN FP


 

                       (6) 136 

where TP, FP, TN and FN denote the numbers of true positives, false positives, true negatives 137 

and false negatives, respectively. Accuracy, sensitivity and specificity are the most commonly 138 

used evaluation measures. The F1-measure and G-mean [36] indicators simultaneously 139 

consider the accuracies of both classes and can thus effectively measure the recognition abilities 140 

of models in the case of an imbalanced dataset. Additionally, three more vital objective 141 

measures – the receiver operating characteristic curve (ROC), the area under the ROC curve 142 

(AUC), and the precision recall curve (PR) – were used for visual comparison and analysis.  143 

Overall framework of CCNN-Ensemble 144 

As shown in Fig. 2, the overall diagnosis framework of the CCNN-Ensemble consists primarily 145 

of three deep CNN models (GoogLeNet, AlexNet and ResNet), a cost-sensitive adjustment 146 
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layer, ensemble learning, dataset augmentation technology and transfer learning. The three 147 

heterogeneous CNN models, as classifiers, were employed to construct the ensemble learning 148 

framework to enhance the recognition rates of the algorithms. The cost-sensitive adjustment 149 

layer was used to manage the imbalanced dataset problem, and the dataset augmentation and 150 

transfer learning processes were adopted to overcome the overfitting problem and accelerate 151 

model convergence. The technical details are described below.  152 

Ensemble learning of multiple CNNs 153 

We used three heterogeneous CNNs (AlexNet, GoogLeNet and ResNet) to form the ensemble 154 

learning framework (Fig. 2). The AlexNet CNN, which was proposed by Krizhevsky [26], 155 

performed image classification and won first prize in the ImageNet Large Scale Visual 156 

Recognition Challenge (ILSVRC) in 2012, mainly used convolutional layers, overlapping 157 

pooling, nonsaturating rectified linear units (ReLUs) and three fully-connected layers to 158 

construct an eight-layer CNN. Subsequently, a number of variants of CNN method were 159 

proposed to enhance its recognition rate and incorporated many emerging technologies. In 160 

particular, a 22-layer inception deep network was achieved by Google researchers [27] that was 161 

based on the Hebbian principle, intuition of multi-scale processing, filter aggregation, average 162 

pooling and auxiliary classifier technologies. Kaiming He then used the residual connection 163 

scheme, batch normalization and scale operations to establish a 50-layer ultra-deep residual 164 

CNN (ResNet) [28]. Because the above CNNs implemented different principles and techniques, 165 

their network structures show distinct heterogeneity, and this can effectively improve the 166 

recognition rate of the ensemble learning model.  167 
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In order to adequately utilize the advantages of the three convolutional neural networks, we 168 

implemented a two-stage ensemble learning scheme. Specifically, in the first stage, starting 169 

with the initial parameters of models pre-trained on the ImageNet dataset, three CNNs with 170 

different structures were trained using transfer learning, respectively. Thus, the optimal 171 

parameters of each CNN were obtained. In the second stage, the Softmax functions of the three 172 

CNNs were removed, the high-level features of the CNNs were merged into the same cost-173 

sensitive Softmax classification function to construct a unified ensemble CNN. The learning 174 

rate of the feature extraction layers was set to one-tenth of the ensemble learning layer. The 175 

transfer learning method was adopted to fully train the ensemble learning layer and fine-tune 176 

the previous feature extraction layers. Through the above two-stage ensemble learning scheme, 177 

three different types of CNNs can complement their shortcomings, which is beneficial to 178 

improve the overall performance of intelligent diagnosis for pediatric cataract. 179 

Transfer learning 180 

Because the number of medical images is very small, the fully-trained deep learning system 181 

cannot adequately optimize the millions of trainable parameters from scratch and this can easily 182 

lead to overfitting. Transfer learning [37, 38] is a critical technology for application to such 183 

small datasets that allows the model to be trained from a better starting point and uses the color, 184 

texture and shape characteristics that have been learned from natural images. Fine-tuning 185 

allowed the final trained CNN model to obtain the unique features of the ophthalmic images 186 

and also overcame the overfitting problem. Additionally, data augmentation methods, including 187 

transformed images and horizontal reflections [26, 39], were adopted to accelerate the 188 
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convergence of the models.  189 

Cost-sensitive method and optimization process  190 

To address the imbalanced dataset problem of the slit-illumination images effectively, the cost-191 

sensitive approach [29, 30, 40] was adopted to adjust the cost-sensitive weight of the positive 192 

samples in the loss function (Fig. 2). Specifically, we discriminatively determined the cost of 193 

misclassification of the different classes and assigned a larger cost-sensitive weight to the 194 

positive class. For one iterative training stage, n samples were selected at random to form a 195 

training dataset 
(1) (1) (2) (2) ( ) ( ){( , ),( , ) ...,( , )}n nx y x y x y，  , where 

( )i lx R   and 
( ) {1,..., }iy k  . 196 

Here, 
( )ix  denotes the features of the i-th sample and 

( )iy  is the category label. The cost-197 

sensitive loss function can be expressed as shown in Eq. 7. 198 

   
( )

( )

( ) ( ) 2
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1
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n e
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 
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 
     
 
 

 


    (7) 199 

where n, m, k and   denote the number of training samples, the number of input neurons, the 200 

number of classes, and trainable parameters, respectively.  ( )iI y j  represents the indicator 201 

function (  ( )     1iI y is equal to j    and  ( )      0iI y is not equal to j   ) while 202 

 ( )   iCS y positive class   is the cost-sensitive weight function 203 

(  ( )      iCS y is the positive class lable C  and  ( )      1iCS y is the negative class label  ). Using 204 

a grid-search procedure, we determined that the value of the effective cost-sensitive weight 205 

parameter C was within the interval [4–6]. 2

1 12

k m

ij

i j




 

  is a weight decay term that is applied 206 

to penalize the larger trainable weights. To obtain the optimal trainable weights    (see Eq. 8), 207 

we needed to minimize ( )F   using a mini-batch gradient descent (Mini-batch-GD) [41] as 208 
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shown in Eq. 9.  209 

arg min ( )F


                                                    (8) 210 

 ( ) ( ) ( ) ( ) ( )

1

1
( )  * *( { } ( | ; ))

j

n
i i i i i

j

i

F PW y positive class x I y j p y j x
n

   


        
 211 

(9) 212 

Experimental environment 213 

In this study, we implemented dataset preprocessing, automatic lens region of interest (ROI) 214 

localization, conventional feature extraction, the SVM and Adaboost classifiers, and uniform 215 

dataset partitioning for cross-validation using MATLAB R2014a [8, 9]. The CCNN-Ensemble 216 

training, validation and testing procedures were all performed in parallel using eight Nvidia 217 

Titan X graphics processing units (GPUs) based on the Caffe toolbox [42] in the Ubuntu 16.4 218 

OS. The initial learning rate was set at 0.001 and successively reduced by one tenth of the 219 

original value after every 500 iterations; a total of 2000 iterations were performed. We set the 220 

mini-batch size to 32 on one GPU and used eight GPUs; we thus acquired a total of 256 samples 221 

in every iteration and calculated the average value of these samples to update the trainable 222 

parameters. Appropriate settings for these parameters can ensure better performance and rapid 223 

convergence for the CCNN-Ensemble method. 224 

Results 225 

To achieve an effective solution to assist in the diagnosis of pediatric cataracts using slit-226 

illumination images, we explored three different methods, including four conventional features, 227 

four Adaboost ensemble methods, and the CCNN-Ensemble method. First, we trained and 228 
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compared the performances of these methods on the training and validation datasets to obtain 229 

the optimal CCNN-Ensemble method. Then, we used two external datasets to provide further 230 

evaluation of the robustness and the clinical effectiveness of the CCNN-Ensemble. Finally, we 231 

developed and deployed cloud-based software to serve patients that were located in remote 232 

areas.  233 

Performance of CCNN-Ensemble and conventional methods 234 

After application of the five-fold cross-validation [43], we compared the performances of the 235 

nine intelligent algorithms for diagnosis of the lens opacity in terms of the three grading indices 236 

(opacity area, density and location). We calculated three main indicators – accuracy (ACC), 237 

specificity (SPE) and sensitivity (SEN) (Fig. 3) – along with more detailed test results with 238 

means and standard deviations (Table 2 and Supplementary Table S1–S2). First, when using 239 

the conventional feature methods, both the ACC and SEN indicators are low; for example, the 240 

SEN of the LBP method is less than 70% for all grading indices. Second, after application of 241 

the Adaboost ensemble learning methods, the SEN indicator is greatly improved, whereas the 242 

value of the SPE indicator is reduced. As a result, the ACC is almost equal to the performance 243 

of the conventional feature methods (see Fig. 3). Notably, the SEN of the SIFT method 244 

increased from 76.41% to 84.62%, whereas the SPE decreased from 76.73% to 65.45% for 245 

opacity area grading (Fig. 3 and Table 2); the SEN of the LBP method increased from 68.88% 246 

to 81.10%, whereas the SPE again decreased from 80.27% to 73.34% for opacity location 247 

grading (Fig. 3 and Supplementary Table S2). The comparison results for the other feature 248 

methods and the Adaboost ensemble learning methods are also similar. Third, the CCNN-249 
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Ensemble method provided significantly improved recognition rates for all grading indices (Fig. 250 

3). All the average ACCs were maintained at 92% or more, while both the SPE and the SEN 251 

were satisfactory for the grading opacity area (92.00% and 92.31%), the opacity density (93.85% 252 

and 91.43%) and the opacity location (95.25% and 89.29%). Similarly, the F1-measure, G-253 

mean and AUC indicators also showed values of more than 90% (Table 2 and Supplementary 254 

Table S1-S2).  255 

Table 2. Performance comparison of the different methods in opacity area grading. 256 

Method ACC (%) SPE(%) SEN (%) F1_M (%) G_M (%) AUC (%) 

WT 80.21(3.33) § 87.27(5.45) 70.26(2.92) 74.73(3.50) 78.26(2.86) 87.47(2.87) 

WT-Adaboost 81.28(2.77) 83.27(3.25) 78.46(5.90) 77.61(3.59) 80.76(3.13) 89.68(2.54) 

LBP 75.11(4.09) 80.73(4.56) 67.18(5.85) 69.11(5.09) 73.59(4.26) 83.45(3.82) 

LBP- Adaboost 76.17(4.36) 73.82(5.08) 79.49(5.13) 73.48(4.69) 76.56(4.36) 83.69(3.38) 

SIFT 76.60(4.32) 76.73(8.76) 76.41(5.56) 73.12(3.56) 76.35(3.90) 85.66(4.05) 

SIFT- Adaboost 73.40(3.98) 65.45(6.03) 84.62(4.80) 72.56(3.67) 74.33(3.94) 85.61(4.15) 

COTX 79.79(7.52) 86.18(10.5) 70.77(7.82) 74.62(8.54) 77.93(7.02) 87.22(5.22) 

COTX- Adaboost 84.68(4.02) 88.73(6.48) 78.97(7.78) 81.01(4.92) 83.53(4.34) 91.07(2.85) 

CCNN-Ensemble 92.13(1.21) 92.00(2.07) 92.31(2.56) 90.68(1.42) 92.14(1.25) 97.76(0.81) 

Notes: ACC: accuracy; SPE: specificity; SEN: sensitivity; F1_M: F1-measure; G_M: G-mean; 257 

AUC: area under the receiver operating characteristic curve; WT: wavelet transformation; LBP: 258 

local binary pattern; SIFT: scale-invariant feature transform; COTE: color and texture features; 259 

Adaboost: adaptive boosting ensemble learning; CCNN-Ensemble: ensemble learning of cost-260 

sensitive convolutional neural networks; §Mean (Standard Deviation). 261 

Additionally, we used the ROC and PR curves to compare the performances of the above 262 

methods (Fig. 4, Supplementary Fig. S1-S2). The ROC curve of the CCNN-Ensemble is close 263 
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to the upper-left area of the graph and the PR curve shows a similar performance. All the AUC 264 

indicators were maintained at more than 0.969 for the three grading indices. This indicates that 265 

the CCNN-Ensemble method is superior to the conventional features and Adaboost ensemble 266 

learning methods. 267 

Performance in independent testing dataset 268 

Table 3. Quantitative evaluation of the CCNN-Ensemble method using two external 269 

datasets. 270 

External Datasets Grading 
ACC 

(%) 

SPE  

(%) 

SEN 

(%) 

F1_M 

(%) 

G_M 

(%) 

AUC 

(%) 

Independent 

testing dataset 

opacity area 94.70 96.70 90.24 91.36 93.42 96.94 

opacity density 93.18 94.23 89.29 84.75 91.72 97.70 

opacity location 93.18 94.00 90.63 86.57 92.30 98.13 

Internet-based 

dataset 

opacity area 89.87 89.47 90.00 93.10 89.74 94.65 

opacity density 88.61 88.89 88.52 92.31 88.71 95.63 

opacity location 87.34 87.50 87.30 91.67 87.40 93.06 

Notes: ACC: accuracy; SPE: specificity; SEN: sensitivity; F1_M: F1-measure; G_M: G-mean; 271 

AUC: area under the receiver operating characteristic curve. 272 

To ensure an adequate investigation of the generalizability and the effectiveness of the CCNN-273 

Ensemble method, we used an independent testing dataset for further validation of the proposed 274 

method. A total of 132 slit-illumination images were selected randomly in advance from the 275 

Zhongshan Ophthalmic Center (details are given in the Methods section). Using the expert 276 

group’s decisions for reference, we presented detailed quantitative evaluation results (as shown 277 

in Table 3) and performance comparisons of the ACC, SPE and SEN indicators (Fig. 5a). We 278 
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also reported the ROC and PR curves for the three grading indices: opacity area, density and 279 

location (Fig. 5a). The experimental results indicated that the performance of the CCNN-280 

Ensemble method on the independent testing dataset is almost equal to that of the validation 281 

dataset, with the ACC and the SPE being maintained at more than 93% and 94%, respectively, 282 

and the SEN values are 90.24%, 89.29% and 90.63% for the opacity grading area, density and 283 

location, respectively. 284 

Performance in Internet-based dataset 285 

In addition, we also collected 79 slit-illumination images from the Internet (details are given in 286 

the Methods section). While the quality of these images varied significantly, the CCNN-287 

Ensemble was still able to detect the appropriate cases with a higher recognition rate. In the 288 

same manner, we obtained detailed prediction results (given in Table 3), intuitive comparison 289 

graphs for the main indicators (ACC, SPE and SEN), the ROC curve, and the PR curve (Fig. 290 

5b). Specifically, the CCNN-Ensemble method also offered satisfactory accuracy, specificity 291 

and sensitivity in terms of opacity area (89.87%, 89.47%, and 90.00%), opacity density 292 

(88.61%, 88.89%, and 88.52%) and opacity location (87.34%, 87.50%, and 87.30%), 293 

respectively. 294 

Web-based software 295 

To serve both patients and ophthalmologists located in remote areas, we developed and 296 

deployed an automatic diagnosis software based on cloud service (http://www.cc-297 

cruiser.com:5007/SignIn), which included user registration, an image upload module, a 298 

prediction module, regular re-examinations, sample downloads, and instructions. Before using 299 

http://www.cc-cruiser.com:5007/SignIn
http://www.cc-cruiser.com:5007/SignIn
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the website for diagnosis, the users needed to submit personal information including age, 300 

gender and telephone number to complete the registration process. This registration process 301 

allowed the doctor to contact patients who were diagnosed with serious conditions, and also 302 

prevented the illegal use of our software. After registration, either the patient or the 303 

ophthalmologist can upload the slit-illumination images for diagnosis; the software can then 304 

perform image preprocessing, make three grading predictions and provide a final treatment 305 

recommendation. Our software can diagnose multiple images simultaneously. A total of 30 306 

sample images were available for download, and our e-mail address and telephone number were 307 

also provided for all registered patients. 308 

Discussion 309 

The inferior performance of conventional feature methods when applied to diagnosis using the 310 

slit-illumination images is mainly attributed to the following two causes. First, the conventional 311 

feature methods use handcrafted descriptors to represent the original images, which are 312 

completely reliant on the designer’s experience and operator techniques, and which cannot 313 

learn statistical features from the existing large dataset. Second, the conventional feature 314 

methods and the SVM classifier do not take the problem of the imbalanced dataset into account, 315 

and this results in the final predictions being biased towards the majority class and ignoring the 316 

minority class (i.e., the positive samples). Therefore, these methods lead to inferior overall 317 

accuracy and lower sensitivity. 318 

The Adaboost ensemble learning methods led to moderate improvement of the recognition rates 319 

when compared with the conventional feature methods because they train and apply multiple 320 
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classifiers jointly to determine the final grading results. Simultaneously, an under-sampling 321 

method is incorporated into Adaboost to address the imbalanced dataset. Therefore, the 322 

sensitivity of the methods is greatly enhanced, but this improvement leads to reduction of the 323 

specificity. The overall accuracy rate is almost equal to that obtained when using the 324 

conventional feature methods alone. 325 

The CCNN-Ensemble method is significantly superior to the above methods in terms of all 326 

grading indices, which was attributed to the following four improvements. First, the CCNN-327 

Ensemble method does not need to design any feature descriptor manually because it learns 328 

high-level and statistical features directly from the original images. Second, we use three 329 

different CNNs for ensemble learning, so that they can learn the different characteristics from 330 

three different perspectives to enable joint determination of the final prediction. This ensemble 331 

of multiple CNN technologies is beneficial in enhancing the overall performance. Third, the 332 

cost-sensitive approach is integrated into the CCNN-Ensemble method and takes greater 333 

account of the minority class to ensure that the sensivity indicator is valid for the imbalanced 334 

dataset. In addition, transfer learning is applied to our model to enable fine-tuning of the 335 

trainable parameters from a better starting point, thus making it easier to jump out from the 336 

local minimum. As a result, the higher accuracy and specificity performances are maintained 337 

while the sensitivity is also greatly enhanced. 338 

The CCNN-Ensemble method also demonstrated better performance on two external datasets, 339 

and their recognition rates were almost equal to that of the validation dataset. This indicates 340 

that the proposed approach is insensitive to the different data sources, and that its 341 



18 
 

generalizability and robustness are better than those of the conventional methods. These 342 

experimental conclusions provide sufficient evidence to justify the application of the CCNN-343 

Ensemble method in complex clinical scenarios. 344 

Based on our proposed method, automated diagnostic software was developed and deployed to 345 

serve patients and ophthalmologists remotely in the form of a cloud service, which provided 346 

important clinical value for pediatric cataract diagnosis. By accessing our automatic diagnostic 347 

software remotely, any patient can upload slit-illumination images and can then quickly obtain 348 

prediction results and an appropriate treatment recommendation. Therefore, this remotely-aided 349 

diagnosis method freed the doctors from performing tedious examinations and helped patients 350 

located in remote areas. In addition, this work can also provide a teaching role for junior doctors. 351 

However, several limitations of this study should be mentioned. First, multiple CNNs with 352 

different structures are integrated into an architecture. Although the strategy of ensemble 353 

learning significantly improves the accuracy, it is slightly less cost-effective due to the high 354 

requirement of the computing resource than a single CNN model. Second, our model is solely 355 

depended on the slit-illumination image, which is insufficient to identify the lens opacity in 356 

occasional situations. Combining the electronic medical records and other optical images may 357 

provide valuable supplements for the comprehensive assessment of lens opacity. Third, the 358 

robustness and stability of our method are required to be verified before the further 359 

generalization of other medical situations. Despite the above limitations, this study provides a 360 

practical strategy for heterogeneous lens opacity diagnosis with promising performance 361 

validated in multi-source datasets. Further studies with the integration of electronic medical 362 
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records and more optical images will pave the way for wide-range clinical application of our 363 

work.  364 

Conclusions 365 

In this paper, we proposed a feasible and automated CCNN-Ensemble method for effective 366 

diagnosis of pediatric cataracts using heterogeneous slit-illumination images. We integrated 367 

three deep CNNs and cost-sensitive technology to construct an ensemble learning method that 368 

could identify the severity of lens opacity based on three grading indices. The experimental 369 

results and comparison analyses verified that the proposed method is superior to other 370 

conventional methods. The performance of the CCNN-Ensemble method on two external 371 

datasets indicated its improved robustness and generalizability. Finally, a set of cloud-based 372 

automatic diagnostic software was produced for use by both patients and ophthalmologists. 373 

This research could provide a helpful reference for analysis of other medical images and will 374 

help to promote the use of artificial intelligence techniques in clinical applications.  375 
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Figure legends 533 

Fig. 1. Dataset preparation and performance evaluation of multiple methods. (a) Dataset 534 

labelling and preprocessing. 470 training and validation samples and 132 independent test 535 

samples were derived from samples provided by the Zhongshan Ophthalmic Center of Sun Yat-536 

sen University; 79 Internet-based samples were collected using the Baidu and Google search 537 

engines. Each image was independently graded and labeled by three senior ophthalmologists; 538 

subsequently, the images were cropped automatically using twice-applied Canny detection and 539 

Hough transformation. (b) Model comparison and evaluation. The training and validation 540 

dataset was used to train and evaluate the performances of the different methods and select the 541 

best model. Independent testing and Internet-based datasets were also used to evaluate the 542 

stability and the generalizability of the CCNN-Ensemble method. Notes: WT: wavelet 543 

transformation; LBP: local binary pattern; SIFT: scale-invariant feature transform; COTE: 544 

color and texture features; Adaboost: adaptive boosting ensemble learning; CCNN-Ensemble: 545 

ensemble learning of cost-sensitive convolutional neural networks. 546 

Fig. 2. Framework of the CCNN-Ensemble method. The preprocessed images were input 547 

into three parallel deep learning CNNs (AlexNet, GoogLeNet, and ResNet) with different 548 

network structures for feature extraction and classification; a unified ensemble learning of 549 

CNNs was then used to improve the recognition rate of the classifier. The cost-sensitive layer 550 

was used to adjust the costs of the positive and negative samples in the loss function to address 551 

the imbalanced dataset problem. Notes: CNN: convolutional neural network; AlexNet: eight-552 

layer Alex CNN; GoogLeNet: 22-layer inception CNN developed by Google researchers; 553 

ResNet: 50-layer residual CNN. 554 



28 
 

Fig. 3. Performance comparisons of the different methods for the three grading indices.  555 

Images (a)–(c) show performance comparisons of conventional features, adaboost ensemble 556 

learning and CCNN-Ensemble methods for the lens opacity area, opacity density, and opacity 557 

location, respectively. The sensitivity of adaboost ensemble learning methods is greatly 558 

improved over the conventional feature methods, whereas their specificity indicator is reduced 559 

and the accuracy has no significant improvement. The CCNN-Ensemble method outperforms 560 

other conventional features and adaboost ensemble approaches and offers exceptional accuracy, 561 

specificity and sensitivity in terms of three grading indices of lens opacity: area (92.13%, 562 

92.00%, and 92.31%), density (92.77%, 93.85%, and 91.43%) and location (92.76%, 95.25%, 563 

and 89.29%). Notes: ACC: accuracy; SPE: specificity; SEN: sensitivity; WT: wavelet 564 

transformation; LBP: local binary pattern; SIFT: scale-invariant feature transform; COTE: 565 

color and texture features; Ada: adaptive boosting ensemble learning; WT-Ada: adaptive 566 

boosting ensemble learning with wavelet transformation feature; CCNN-Ensemble: ensemble 567 

learning of cost-sensitive convolutional neural networks. 568 

Fig. 4. ROC and PR curves for the different methods in opacity area grading. (a) ROC 569 

curves and AUC values for the CCNN-Ensemble method and four comparison methods: WT-570 

Ada, SIFT-Ada, LBP-Ada, and COTE-Ada. (b) PR curves for the CCNN-Ensemble method 571 

and the four comparison methods. Notes: WT: wavelet transformation; LBP: local binary 572 

pattern; SIFT: scale-invariant feature transform; COTE: color and texture features; Ada: 573 

adaptive boosting ensemble learning; WT-Ada: adaptive boosting ensemble learning with 574 

wavelet transformation feature; CCNN-Ensemble: ensemble learning of cost-sensitive 575 

convolutional neural networks; ROC: receiver operating characteristic curve; AUC: area under 576 
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the ROC curve; PR: precision recall curve. 577 

Fig. 5. Performance analysis results for the CCNN-Ensemble on two external datasets. (a) 578 

The performance comparision, ROC curves and PR curves of the CCNN-Ensemble method for 579 

lens opacity area, density and location grading on independent testing dataset. (b) The 580 

performance comparision, ROC curves and PR curves for lens opacity area, density and 581 

location grading on Internet-based dataset. The model performances are satisfactory when 582 

applied to the two external datasets, independent test images: area (94.70%, 96.70%, and 583 

90.24%), density (93.18%, 94.23%, and 89.29%) and location (93.18%, 94.00%, and 90.63%); 584 

internet-based images: area (89.87%, 89.47%, and 90.00%), density (88.61%, 88.89%, and 585 

88.52%) and location (87.34%, 87.50%, and 87.30%), indicating that the model is universal 586 

and effective. Notes: ACC: accuracy; SPE: specificity; SEN: sensitivity; ROC: receiver 587 

operating characteristic curve; AUC: area under the ROC curve; PR: precision recall curve. 588 


