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Abstract  12 

Background:  Alt hough invasive method s are currently used to monitor blood pressure (BP) for 13 
intensive care patients, accurate and timely non-invasive BP monitoring in non -invasive way is still 14 
significant . Yet, physiological signal data  of patients is irregular , with more noise and abnormal 15 
patterns included , making accurate and stable prediction ch allenging . The traditional BP 16 
measurement methods are cuff-based, and the prediction accuracy and stability of the machine 17 
learning based cuff-less prediction model needs to be further improved.  Additionally , data must be 18 
cleaned and effective features must be grubbed from the irregular signals , which is a prerequisit e for 19 
model training .  20 

Results: In the present study, we proposed a novel heterogeneous ensemble learning BP prediction 21 
(ELBP) model, where: 1) Related features are systematically extracted and selected for systolic, 22 
diastolic and mean BP prediction tasks; 2)Then, multiple regression models are trained and  then are 23 
weighted for final prediction, wherein the weight s are learned from data; 3) Hyper-parameters of 24 
each model are optimi sed using Bayesian optimi sation based on cross-validation. We experimentally 25 
verified the ELBP effectiveness, the mean absolute error of ELBP is 1.802 mmHg, 3.936 mmHg  and 26 
3.121 mmHg  for diastolic, systolic  and mean BP respectively on mimic -1, and 2.722 mmHg,  5.039 27 
mmHg and 3.812 mmHg respectively on mimic -2. Further experiments demonstrated that ELBP 28 
performance is superior to state-of-the-art algorithms on seven evaluation metric s. 29 

Conclusion:  In conclusion, BP prediction precision can be further improved by integra ting multiple 30 
learners appropriately, and this study is valuable in promoting BP prediction in practical application.  31 

Keywords:  Blood pressure prediction , Ensemble learning, Feature extraction, Bayesian optimi sation 32 
 33 

Background 34 

Blood pressure (BP), is essential to health as a crucial bioindicator of cardiovascular disease (CVD) 35 
[1]. The World Health Organization has identified hypertension as the most significant risk factor for 36 
cardiovascular and cerebrovascular disease. Therefore, automatic BP prediction and management is 37 
required, as it can help user to prevent early CVD, and provide a reference to assist physicians in 38 
making decisions. For example, continuous BP tracking for critically ill patients is performed to 39 
monitor th e states of patients. The BP tracking method currently used in practice is arterial 40 
cannulation . Which is an invasive method accompanied by potential risk and adverse effects. 41 
Naturally, it would be better if continuous BP tracking could come into reality non-invasively . 42 
Traditional BP measurement methods, such as the Kirschner stethoscope [2], vascular unloading 43 
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technique [3], and oscillography method  [4] etc. are all cuff-based, which is uncomfortable when 44 
worn for a long time and unsuitable for continuous real-time BP monitoring. Pulse transit time(PTT) -45 
based methods [5-7], as a representative of parameter methods, model the relation between BP and 46 
PTT based on the mathematical or physical model. Although, PPT-based methods are promising, 47 
they are not suitable for complex clinic al situations and their parameters, determined by the 48 
calibration process, vary between different individuals.   49 

Benefiting from the breakthrough development of machine learning (ML) technology and its 50 
potential broad applications, many researchers [8-33],[37] attempted to predict BP by exploiting the 51 
ML algorithm,  both in the critical  care and home usage settings. Artificial neural network, also known 52 
as back propagation network or multi -layer perceptron (MLP), is the simplest feed-forward neural 53 
network and has been widely used in related studies [11-16] for training the BP prediction model in 54 
early years. Chiang et al. [17,18] proposed random forest w ith feature selection (RFFS) to select 55 
features to enhance the prediction. They developed an online version prediction model based on the 56 
proposed online weighted -resampling technique. Zhang et al.  [19] applied a gradient boosti ng 57 
decision tree (GBDT) to train the prediction model using electrocardiogram (ECG) and 58 
photoplethysmogr am (PPG) signals collected from the EIMO device. Zhang et al. [20] trained a 59 
support vector regression (SVR) model based on the optimal feature subset. Results exhibited that 60 
the SVR model is better than the BP model and logistic regression (LR) model. S et al. [21] used K-61 
means singular value decomposition (K -SVD) as an alternative method of feature extraction to learn 62 
the sparse representation of the signal from PPG and then use the learned sparse representation as 63 
features to train a prediction model. Fuji ta et al. [22] extracted level-crossing features (LCFs) from the 64 
second derivative waveform of PPG, and then these LCFs were used to train a partial least-squares 65 
regression model. The results exhibited that this model is superior to multiple regression analysis). 66 
Simjanoska et al. [23] extracted features from the ECG based on complexity analysis, and the model 67 
training was divided into two steps: first, an ensemble classifier was trained to predict the BP category, 68 
and then the category was extended to the original features to train a random forest model. Similar 69 
[20], Chen et al. [24] also trained a SVR model based on ECG and PPG signals, of which the genetic 70 
algorithm was used to solve SVR model hyper-parameters to obtain the optimal mod el. Celler et al. 71 
[25,26] proposed a Gaussian mixture model and hidden Markov model (GMM -HMM), which is 72 
train ed using time domain features extracted from auscultatory and oscillometric waveforms. 73 
Addi tionally, there are some works [27,28] that systematically compared different learning 74 
algorithms and the algorithm with the best performance was selected to train prediction model. In 75 
conclusion, most of the existing work belongs to single model, a small part belongs to homogeneous 76 
ensemble model. 77 

In recent years, there has been some progress in the utilisation of deep learning techniques for 78 
the prediction of BP [29-33]. Su et al. [30] devised a multi -layer recurrent neural network  (RNN) 79 
network named DeepRNN and multi -task training strategy is utilized to train a model to predict 80 
systolic BP(SBP), diastolic BP(DBP) and mean BP(MBP) simultaneously. Results shows that 81 
DeepRNN achieved better results for long-term predictions; Li et al. [31] devised a new network 82 
called LSTM-CL, in an attempt to use both the user's contextual(profile) data and measure data to 83 
make predictions. The results exhibited that LSTM-CL is better than LSTM and RNN -CL. Baek et al. 84 
[32] designed a new fully convolutional network for BP prediction, where raw PPG and ECG signals 85 
were directly fe d as input without additional feature extraction. Slapnicar et al. [33] designed a 86 
complex convolution network with raw PPG signal and its first and second derivatives as inputs, in 87 
an attempt to train the prediction model using  a large database-MIMICIII. According to the signals 88 
used, above works can be grouped into three types of PPG based [10],[13],[15],[21,22],[28],[33], ECG 89 
based [14],[23] and PPG and ECG based [12],[16],[19,20],[24],[27],[30],[32]. ECG contains abundant 90 
electronic activities and can assist PPG to better predict BP. 91 

Although several studies has been published on the prediction of BP (including SBP, DBP and 92 
MBP) as above, while, the number of features used for building prediction model varies from several 93 
to dozens, there are few studies focus on feature screening, namely the selection of  informative 94 
features most relevant to the task from the feature set, which is the premise of the construction of  a 95 
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valid prediction model . Additionally, various regression algorithms have been utili sed to train a 96 
single prediction model in this field . The single model attempts to learn one hypothesis from data, 97 
given the hypothesis space, which is more likely to fall into high -bias. In contrast, an ensemble model 98 
attempting to combine a set of learned hypotheses, could achieve a better generalisation ability over 99 
a single model by combining multiple weak models . The bias-variance decomposition theory  [41] 100 
lays the foundation for the ensemble model to outperform its c onstituent component . Ensemble 101 
learning has been applied to emotion recognition  [58], gender recognition [59], etc. in the f ields 102 
related to physiological signals . To date, there are still few studies that utilising the integration of 103 
multiple models to predict BP.  The inclusion of ensemble learni ng may improve the precision and 104 
stability of BP prediction  105 

Considering many studies in this field often use privately -owned, unavailable data collected 106 
from healthy volunteers, or unspecified subset of public data source like MIMIC , which  is collected 107 
from intensive care patients. In addition, patients often suffer from adverse events and more rapid 108 
fluctuations in physiological state, resulting in substa ntial changes in blood pressure, and 109 
physiological signals are often accompanied by more severe noise interference, ÛÏÌÙÌÍÖÙÌȮɯÐÛɀs more 110 
challenging to achieve accurate BP prediction . Based on the above considerations, we start our work 111 
with MIMIC, a free ly accessed critical medicine database, wherein both PPG and ECG signals are 112 
used for training prediction model , and the records part used is explicitly specified.  113 

Our contributions  are as follows:  114 
(1) The features required for constructing the BP prediction model were systematically extracted 115 

and analysed. 116 
(2) The model prediction performance was improved through ensemble learning, where the base 117 

modelɀs weights were learned from data. 118 
(3) The proposed algorithm was experimentally proven to outperforms each single learning 119 

model with more accurate and robust outputs for all three prediction tasks and have competitive 120 
result compared with other state -of-the-art methods, including dee p learning models.  121 

The rest of this paper is organized as follows: In section 2, we described the proposed method 122 
systematically: including dataset description, waveform preprocess, feature extraction and feature 123 
selection, we then detail the model training, next with model evaluation. In section 3, the performance 124 
of the proposed methodology was evaluated from various aspects. Last, we summarized the paper 125 
and discussed possible topics for further exploration in section 4. 126 

Methods  127 

The major procedures of the proposed method-ELBP can be summarised in the following seven parts: 128 
1) Dataset preparation, 2) Waveform preprocess, 3) Feature point positing, 4) Feature extraction, 5) 129 
Feature selection, 6) Model training , 7) Model evaluation , as shown in Figure 1. We will discuss each 130 
part in the following sections.   131 
 132 
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Figure 1. An overview flowchart for BP prediction.  134 

Dataset preparation  135 
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MIMIC [34,35] is an open access heterogeneous critical medicine database including physiological 136 
data records collected from over 90 intensive care unit (ICU) patients, suffer ing from various diseases 137 
or symptoms, such as respiratory failure, congestive heart failure, pulmonary oedema, sepsis, angina 138 
and brain injury,  etc. Each record lasted of at least 20ɬ40 h. Data content included signals such as 139 
ECG, PPG, ambulatory blood pressure  (ABP), periodic measurements obtained from a bedside 140 
monitor , and clinical data obtain ed from the patient's medical record. Based on the ECG signal leads 141 
used, two data subsets of MIMICɭɭmimic -1 and mimic-2, were developed because different 142 
records contain ECG signals with  different leads. The major characteristics of mimic-1 and mimic-2 143 
are summarised in Table 1. 144 

Noise [33],[53],[55] such as meaningless zero or non-zero constant value, missing value or large 145 
fragment of missing value, baseline drift, power frequency interference, high frequency noise and 146 
motion artifact  was observed in PPG, ECG and ABP signals, as Figure 2 shows. Therefore, signal 147 
waveform must be preprocessed to acquire a clean signal with high quality, which is the premise for 148 
extracting valid feature s. 149 

Table 1. Dataset description. 150 

Dataset #Record  Age Record number  Signal type  Sampling 

rate 

 

mimic -1 

 

7 

  

 

70 ρχ 

 

039m,055m,284m,430m,437m,456m,466m 

ECG(III)  500Hz          

ABP 125Hz 

PPG(PLETH) 125Hz 

 

mimic -2 

 

 

46 

 

 

70 14 

211m,212m,213m,216m,218m,219m,221m,224m,225m,226m, 

230m,231m,237m,240m,252m,253m,254m,260m,276m,281m,

284m,401m,403m,404m,409m,411m,414m,417m,418m,427m,

437m,438m,439m,443m,444m,446m,449m,451m,452m,454m, 

471m,472m,476m,482m,484m, 485m 

ECG(II) 500Hz 

ABP 125Hz 

 

PPG(PLETH) 

 

125Hz 

 151 

 152 
(a) 153 

 154 

(b) 155 
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 156 
(c) 157 

Figure 2. Visuali sation of original signal . (a)PPG signal fragment of record-437m; (b)ECG signal fragment 158 
of record-226m; (c)ABP signal fragment of record-212m. 159 

Figure 3 illustrate s the distribution of the SBP, DBP, MBP and corresponding fitting curve with 160 
normal distribution at 95% confidence interval , separately in the final constructed mimic -1. All 161 
parameters exhibited a wide range of change, with SBP value varying  from 70 mmHg  to 190 mmHg , 162 
DBP from 40 mmHg  to 100 mmHg , and MBP from 50 mmHg  to 120 mmHg . 163 

 164 

 165 
 (a)                           (b)                            (c) 166 

Figure 3. Hist ogram of BP distribution  in mimic -1. (a)Systolic BP; (b)Diastolic BP; (c)Mean BP. 167 

Waveform preprocess 168 

ECG signal was initia lly  down -sampled to 125Hz by averaging every 4 adjacent values through a 169 
sliding window , and then the signals were segmented according to time interval -T. Figure 4 170 
illustrate s the waveform preprocess. For signal fragments (includ ing PPG signal and synchronized 171 
ECG and ABP signals), presence of large fragments of missing value or outlier  (zero or non-zero 172 
constant value) in any signal through the sliding window  was initially checked.  If the signal 173 
presented with large fragments of missing value, the signal fragment and other two corresponding 174 
signal fragments were discarded to ensure signal synchronisation. Then, possible isolated missing 175 
values in any signal were filled through linear interpolation. The different signals  were then denoised 176 
separately: for ECG signal, 50 Hz power frequency interference was excluded and then baseline drift 177 
was overcome based on high-pass filter, wherein cut -off frequency of passband and stopband were 178 
set to 0.8 and 0.2, respectively. For PPG signal, the signal was smoothened with 5 -order moving 179 
average filter and then baseline drift was overcome based on high-pass filter as in the ECG signal. 180 
For ABP signal, baseline drift was excluded based on the wavelet transform.  The signal was processed 181 
concretely with 9 -layer wavelet decomposition and the baseline drift trend was fitt ed based on 182 
reconstruction with 7 -th details. Then, the fitted curve was subtracted from the original signal. Last ly , 183 
the quality of the processed signal fragment was evaluated using the skewness [36] measure, and the 184 
fragment with poor quality was discarded. Figures 5,6,7 illustrate  the before and after process on 185 
ECG, PPG and ABP signals, respectively. 186 

Large fragment of abnormal value

Meaningless zero constant value
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 187 

Figure 4. Waveform preprocessing process. 188 

 189 

Figure 5. Denoising ECG signal for part of record-456m. 190 

 191 

Figure 6. Denoising PPG signal for part of record-039m. 192 

 193 

Figure 7. Denoising ABP signal for part  of record-039m. 194 

Locate feature point  195 

For a beat of standard PPG signal, the positions of wave start, main wave peak, wave valley, dicrotic 196 
wave peak, and wave end were denoted as a, b, c, d and e, respectively. For continuous PPG signal, Ὡ 197 
was actually  the wave start of the next beat. The positions of the five points were determined 198 
according to the order: ὦO ὥᴼὧO ὩO Ὠ. 199 

Given a fragment of the preprocessed PPG signal lasting T second. ὦ was the easiest point to 200 
determine. Therefore, ὦ of all beats was determined based on findpeaks, a function for finding all local 201 
maximum points, the resulting points sequence was denoted as ╫ ὦȟὦȟȢȢȢȟὦ , and then the 202 
possible noisy points were filter ed out using the first order difference information of ╫ based on 203 
interquartile range (IQR), a statistical method for detecting abnormalities. Concretely, the first order 204 
difference of ╫ was denoted as ╫ ὦȟὦȟȢȢȢȟὦ , if ὦ ὗ ρȢυϽὍὗὙ, where ὗ  and ὍὗὙ 205 
were the lower quartile and interq uartile range of sorted sequence of ╫ respectively, then one of 206 
points ὦ or ὦ  was discarded from ╫ based on ‘ . Next, all local minimum points were found  207 
by applying findpeaks on negative PPG signal and ὥ was determined at the region starting from the 208 
middle position of the adjacent ὦ and end to ὦ in the current beat. Then, ὧ was determined from 209 
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the remaining local minimum points using a similar method as that of finding ὦ. Lastly , Ὠ was 210 
determined by finding the local maximum point at the region starting from ὧ in the current beat and 211 
ending to ὥ in the next beat. Finally, four sequences - a, b, c and d were acquired, and had to satisfy 212 
ὥ ὦ ὧ Ὠ for  the i-th element. 213 

In actual data processing, the waveform of different individuals varies greatly. For example, 214 
some records have a clear dicrotic notch in the PPG signal, wherease, dicrotic notch is not quite 215 
distinct  or even non-exist on other records. For the latter, we processed by assuming that ὧȟὨ and Ὡ 216 
were overlapped. Figure 8 illustrates the results of feature point positioning in PPG signal, wherein 217 
both sides of the feature point sequence are cropped to maintain  all beats are intact. 218 

 219 
(a) 220 

 221 
(b) 222 

Figure 8. Positing feature points of PPG signal. (a)PPG signal fragment of record-039m with dicrotic notch; 223 
(b)PPG signal fragment of record-466m with-no clear dicrotic notch.  224 

Feature extraction  225 

Feature extraction plays significant  role in traditional ML, extracting vali d and informative features 226 
that are most relevant to the prediction task is crucial for training an accurate prediction model. 227 
Therefore, features [22],[24],[27],[37],[55] were systematically extract from PPG and ECG signals. 228 
Some features are illustrat ed in Figure 9. The used features can be divided into four groups: time-229 
related features, waveform features, frequency domain features and mixed feature. 230 
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 231 

Figure 9. Schematic diagram of feature points and some features. 232 

Time-related feature: 233 
ptta: The time between the R-peak of ECG and the start point  - a of PPG. 234 
pttk: The time between the R-peak of ECG and the point-k of PPG that has maximum gradient in 235 

the up branch. 236 
pttb: The time between the R-peak of ECG and the systole peak of PPG. 237 
T: The total time of a pulse in PPG. 238 
Tupr: The time of the up branch-Tup in PPG div ided by the total time  -T. 239 
Tdownr: The time of down branch -Tdown in PPG divided by the total time  -T. 240 
Tacr: The time length of systole in PPG divided by the total time  -T. 241 
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Tadr: The time length of between the start point  - a and the peak point-d of dicroti c notch in PPG 242 
divided by the total time -T. 243 

hr: Heartbeats per unit time in ECG, equalling  60/TRR (unit: bpm). 244 

Waveform feature: 245 

H: The height of systole in PPG. 246 
Hfr : The height-f of PPG in the start point-a divided  by H. 247 
Hgr: The height-g of the start point-c of dicrotic notch in PPG divided by H. 248 
Hhr: The height-h of the dicrotic notch in PPG divided by H. 249 
PPGm: The mean value in a pulse of PPG, computed as ρȾὝϽ᷿ὖὖὋὸὨὸ. 250 
kValue: The characteristic parameter, defined as ὖὖὋ ὖὖὋὥ ȾὖὖὋὦ ὖὖὋὥ . 251 
rup: The average slope of the up branch, defined as Ὄ ὪȾὝ . 252 

s: The area of the region comprising  of a pulse of PPG and axis. 253 
s1r: The area of the region corresponding to systole in a pulse of PPG divided by s. 254 
s2r: The area of the region corresponding to down branch of dicrotic notch in a pulse of PPG 255 

divided by s. 256 
lcf_nodenum: The number of intersections between the second derivative of PPG(SDPPG) signal 257 

and its 0% counter line in a beat. As Figure 9 shows, lcf_nodenum equals 4 in the beat. 258 
lcf_timeup: The total length of 30% counter line that lies within the SDPPG in a beat. As Figure 9 259 

shows, lcf_timeup equals the length of the solid green line in the 30% counter line in the beat. 260 
sqi_ppg: Signal quality index of PPG, skewness reflects the PPG quality to a certain extent and is 261 

computed as ρȾὝϽ᷿ ὖὖὋὸ ‘Ⱦ‏ Ὠὸ, where ‘ and ‏ are the mean and standard deviation of 262 
PPG value respectively. 263 

minv: The maximum value of PPG. 264 
maxv: The minimum value of PPG.  265 

Frequency domain feature: 266 

pow_lhf_ecg: The ratio of low frequency energy to high frequency energy in ECG si gnal. Low 267 
frequency range [0.4, 50], high frequency range [80, 125]. 268 

pow_lhf_ppg: The ratio of low frequency energy to high frequency energy in PPG signal. Low 269 
frequency range = [0.04, 0.15], high frequency range [0.15, 0.4]. 270 

Mixed feature: 271 

‌: The Womersley parameter  Ὣ ρπφπϽὬὶȾὌ. 272 

H t: Output characteristic of each beat, Ὄρ Ὕ ȾὝ . 273 

A signals fragment with T seconds should have multiple beats . Values of each feature computed 274 
on all beats were initially  filtered based on IQR to remove possible outliers (values that were below 275 
ὗ ρȢυϽὍὗὙ or exceeded ὗ ρȢυϽὍὗὙ) for the consideration that the value of a statistic does not 276 
change significantly in a short time . Then the retained values were averaged as the final value of each 277 
feature. Addition ally , the target-SBP and DBP in the fragment, indicating the maximum and 278 
minimum in ABP signal, were also computed. After all the 28 features were extracted, each feature 279 
was normali sed with a Z-score normali ser to eliminate the effect of dimension.   280 

Feature selection  and f iltering  281 

Generally, the higher the dimension of features, the more calculations and system overhead, in 282 
addition, even more likely to cause the model to fall into overfitting. On the other hand, too many 283 
redundant, unrelated and noisy features do not improve  performance; they may even worsen 284 
performance. Therefore, feature selection is required before training model.  285 

Maximal information coefficient (MIC) [38], as a noted maximal information -based 286 
nonparametric exploration statistic, can capture any association between two variables, including 287 
linear, nonlinear relation , and even non-function relation. The filter method is utili sed here due to its 288 
efficiency and simplicity compared with the  wrap per method [39] and embedded method [40]. The 289 
most relevant features to target variable were selected based on MIC initially , and then the redundant 290 
features were filtered based on Pearson correlation coefficient (PCC). 291 
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For two variables ὼ and ώ, ὓὍὅὼȟώ is computed as follows: 292 
                        ὓὍὅὼȟώ ÍÁØ

Ͻ
Ὅȟ ὼȟώ ὰέὫÍÉÎ ὥȟὦϳ                   (1) 293 

where ὔ equals the number of instances, ‌ is set to 0.6, Ὅȟ represents the maximum mutual 294 
information on all possible ὥ by ὦ ÇÒÉÄÓȟ which is formulated as follows:  295 

                     Ὅȟ ὼȟώ ÍÁØ
ȟ

В В ὖάȟὲὰέὫὖάȟὲ ὖάὖὲϳ             (2) 296 

Ὃȟ denotes one of the ὥ by ὦ grid applied to the feature space composed of ὔ observations of two 297 
variables- ὼ, ώ. ὖάȟὲ denotes the frequency of instances that fall into the ά-th row, ὲ-th column 298 
region of the grid.  299 

The MIC value was computed between each feature and the target variable and then the features 300 
were sorted in the descending order of their MIC values. Denot ing the resulting feature sequence as 301 
ὼǮ, we define  302 

                      ὃ ὼǮȡ ȿВ ὓὍὅ ὼǮ ȟώȾВ ὓὍὅὼǮ ȟώ —
ȿȿ

              (3) 303 
where ὼǮ  denotes the Ὥ-th feature in the feature sequence ὼǮ, ȿὃȿ equals the number of total 304 
features, —ᶰ πȟρ. Apparently,  ὃ denotes the sequence composed of all features -A.  305 
 306 

 307 

Figure 10. Mean absolute error of predicting SBP, DBP and MBP versus — on mimic -1. 308 

Next, we determine — by visuali sing the relation between mean absolute error (MAE ) and —, — 309 
increases from 0.1 to 1 with a step of 0.1. Figure 10 illustr ates that the MAE  of all SBP, DBP and MBP 310 
prediction tasks descend to a steady state and then gradually star ts to rise when — exceeds 0.5. Thus, 311 
feature subsequence-ὃȢ  was selected separately for each prediction task. Finally, PCC was 312 
computed between each pair of features-(ὼǮ ȟὼǮ ) from left to right, if ὖὅὅὼǮ ȟὼǮ  exceeded 313 
0.90, then the feature  ὼǮ (with smaller MIC value)  was filtered out. PCC is computed as 314 

ὖὅὅὼȟώ
Ӷ

                                 (4) 315 

where ὼӶ denotes the mean value of observation values of variable ὼȟ Ὁ denotes expectation and 316 
ὺὥὶ denotes variance. 317 

M odel training  318 

Figure 11 illustrate s the model training diagram. The final training set was acquired. Here, we 319 
introduce  the model training process from the following three aspects: base model used, weights 320 
determination for integration and hyper -parameters tuning. The proposed model is an instantiation 321 
of the idea of stacked generalisation that was originally proposed in  [48]. 322 
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 323 

Figure 11. Model  training framework.  324 

Base model 325 

The predictive power of each base model and the diversity among these models are the two key 326 
factors for the success of ensemble model [41]. The base learning algorithms used in the present study 327 
are typical representatives of a certain category, and each of them was widely used in previousl y 328 
related work.  329 

ÅRandom forest. RF [42] is a classical bagging learning algorithm  that has been widely used for 330 
regression prediction. Both sampling technique and attribute perturbation are utili sed in RF to 331 
improve  the independence of each weak model. Concretely, it is assumed that there are N instances 332 
with M  dimension features in the dataset, n_estimator copies of data are acquired by bootstrapping. 333 
Then, a decision tree is constructed from each copy of data, wherein m(m<M ) randomly selected 334 
features are considered when splitting. Finally, outputs of all n_estimators models are averaged to 335 
obtain the final prediction.  336 

ÅK-nearest neighbor regression. KNNR  [43] is a simple but effective lazy learning a lgorithm. New 337 
instance is predicted by local interpolation of the ta rgets associated with  the n_neighbors nearest 338 
neighbors in the training set, the selection of n_neighbors is a dilemma. Additionally , distance 339 
measurement affects prediction result. 340 

ÅSupport vector regression. As a representative soft-margin based ML algor ithm, SVR [8],[20] has 341 
been widely used for regression problem. The idea of SVR is to map the input space into a high 342 
dimension space through nonlinear mapping . The model parameters are optimi sed by achieving a 343 
balance between the parameter complexity term and error term, wherein C controls the weight of 344 
error term. Finally, the prediction formula is represented by a kernel function, r adial basis kernel 345 
function ( rbf) is used because of its fewer tuning parameters and powerful nonlinear ability.  346 

ÅGradient boosting decision tree. GBDT [19] is a classification and regression tree (CART) based 347 
boosting learning  algorithm. In the training phase, iteratively, a new model is learned by fitting the 348 
residuals between the current ensemble model and target and then integrated to the current ensemble 349 
model to form a new ensemble model until a specific number  is reached. There are some efficient 350 
implementations and extensions of GBDT, such as XGBoost [44]. Recently, light g radient boosting 351 
machine (LGBM)[45], as a new implementation of GBDT, has attracted much attention because of its 352 
higher efficiency and lower memory usage.  LGBM differs from XGBoost in the utilisation of gradient -353 
based one-side sampling for find ing splitting values.  354 

ÅMulti -layer perceptron. MLP [11],[13],[16] is a fully connected feed-forward neural network with  355 
a single hidden layer, whose goal is to learn a function that map s input to output. The nonlinear 356 
activation function connected behind hidden neurons enables MLP with powerful representation 357 
ability. The Relu [46] activation function was used in the present experiment. And the m odel 358 
parameters were optimi sed by Adam [47] solver. 359 

Learning weights for ensemble 360 
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Given training dataset Ὀ ●ȟώ  with N instances, where ● ᶰὙ  is d-dimension feature 361 
vector of the n-th instance, ώᶰὙ is the target value of the n-th instance. ώ could be one of SBP, 362 
DBP or MBP. D is divide d into K equal parts, with  Ὀ  the k-th part of D, and Ὀ  the other ὑ ρ 363 
parts. Therefore, Ὀ Ὀ ᷾Ὀ , Ὧᶰρȟςȟȣȟὑ .  364 

Suppose there are ὓ learning algorithms, ὓ υ, and Ὢ  the learned model based on RF, 365 

KNNR, SVR, LGBM and MLP separately. Then, the ensemble output could be expressed in the form 366 
of the following equation:  367 

Ὢ ὼ В ύὪὼȟ—ȟɡ                             (5) 368 

The model using the j-th Ὦɴ ρȟςȟȣȟὓ  learning algorithm and trained on Ὀ  can be 369 

denoted as Ὢ , Ὢ Ὢ ὼȟ—ȟɡ , where — denotes the model parameters value, and ɡ 370 

denotes the model hyper-parameters value. Prediction result of Ὢ  on ● ᶰὈ  is denoted as ᾀ , 371 

ᾀ Ὢ ●ȟ—ȟɡ , by iterating Ὧ from 1 to ὑ. Finally, we will get ᾀϽ ᾀȟȣȟᾀ . This process 372 

is repeated by iterating Ὦ from 1 to ὓ. Finally, we get ᾀ ᾀϽȠȣȠᾀϽᶰὙ . In ᾀ, each column-ᾀϽ 373 

represents all prediction outputs on  the i-th instance, each row-ᾀϽ represents the j-th-algorithm based 374 

prediction results for all instances. For convenience, ᾀ is denoted as ᾀ ᾀȟᾀȟȣȟᾀ Ȣ 375 
The robust weight ◌ is learned by using Huber regression [49], the definition of Huber loss 376 

function as follows:  377 

ὒ Ὡ
           Ὡ      ȟὭὪ ȿὩȿ ‐       

ς‐ȿὩȿ ‐ȟὩὰίὩ              
                             (6) 378 

It can be seen that the Hu ber loss penalises the error that smaller than ‐ in magnitude with 379 
squared loss, while, otherwise, penalize with absolute loss. 380 

The optimi sation target with ὒ regulari sation term can be expressed as fol lows: 381 

                          ὒ ◌ȟ‏ В ‏ ὒ
◌

‏ ‌ᴁ◌ᴁ                       (7) 382 

where ‌ controls the weight of the second term, additional parameter ‏ keeps ‐ with scaling 383 
invariant relative to s caling down or up ᾀ and ώ. Then ◌ is determined by solving  the following 384 
equation :              385 

                                 ÁÒÇÍÉÎ
◌ɴ

ὒ ◌ȟ386 (8)                                       ‏ 

The pseudo-code of the whole model training process is presented in Algorithm 2. 387 

Bayesian optimi sation for hyper-parameters tuning 388 

Traditionally, model hyper -parameters are often optimised through grid search based on K-fold 389 
cross-validation. For a model with p hyper -parameters, suppose each hyper-parameter has m 390 
candidate value, there will be ά  possible hyper-parameter combinations, which is laborious and 391 
time consuming. Therefore, Bayesian optimisation (BO) [50,51] is utili sed for solving hyper -392 
parameters.  393 

Different from the grid search, BO select next candidate hyper-parameter combinations based 394 
on observed results. Therefore, BO uses the Gaussian process as the prior hypothesis. First, Ὀ  is 395 

initiali sed, Ὀ ɡ ȟὒ ȟȢȢȟɡ ȟὒ , ὰḺὅ. Then, M  is trained on Ὀ  and the next possible 396 

ɡ  is computed by optimi sing acquisition function - Ὓ based on the trained model -ὖώɡȟὈ . 397 

Common acquisition function includes UCB, EI  and PI etc. UCB was used in this case. Next, loss-ὒ  398 
was computed and Ὀ  was updated. The loss based on K-fold cross-validation could be regulated 399 

as follows:  400 
                    ὒɡ ȟὪȟὈ В В ȿὪ ●▪ȟ—ȟɡ ώȿ●▪ȟ ᶰ                  (9) 401 

where negative MAE  is used for computing prediction error. This process was repeated until the 402 
maximum number of iterations  - C was reached, C is set to 30 in experiment. 403 

Finally, the hyper -parameter combination corresponding to the maximum negative target  404 
deviation was selected as the final hyper-parameters value of each base model. The pseudo-code of 405 
hyper -parameters optimi sation is presented in A lgorithm  1.  406 

 407 

Algorithm 1  Hyper -parameters optimization  
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Input : Mapping function  between model-Ὢᴂί hyper -parameters and loss function to be optimized-

L; Hypothetical model -M ; Acquisition function -S; Feasible region of model hyper-parameters-

ɡ ; Training data - Ὀ; the maximum number of iterations -C. 

Output : Optimized hyp er-parameters-ɡ. 

1.Ὀ INnitSamples(L, ɡ ); 

2.for i= Ὀ  to C 

3.   ὖώɡȟὈ ᴺ&ÉÔ-ÏÄÅÌὓȟὈ ; 

4.   ɡ ᴺÁÒÇÍÁØ
ᶰ

Ὓ ɡȟὖώɡȟὈ ; 

5.   ὒ ᴺὒɡ ȟὪȟὈ ; 

6.   Ὀ ᴺὈ ᷾ ɡ ȟὒ ; 

7.end 

8. ɡᴺÁÒÇ  ÍÁØ
ȟ ȟ ᶰ

ὒ ; 

 408 

Algorithm 2  Model training 

Input : Sampling rate-H; Time interval for segmentation -T; Learning algorithm - Ὢ Ƞ 

Original PPG, ECG, ABP signal sequence -P, E, B. 

Output : Final prediction model -Ὢ ὼ. 

1. Ὓ ὌϽὝ; ὔ ȿὖȿȾὛȠ 

2. Wave preprocess for P, E, B; 

3. Segment P, E, B into pieces of equal length, within each contains s values; 

4. Extract features-●  from each piece of P and E, acquire blood pressure-ώ from corresponding 

B piece simultaneously. Finally, denote train ing data Ὀ ●ȟώ ; 

5. Normalize each feature in ●  using Z-Score scaler; 

ƚȭɯ.×ÛÐÔÐáÌɯÌÈÊÏɯÔÖËÌÓɀÚɯÏà×ÌÙ-parameters - ɡ based on Bayesian optimization and 10- fold cross 

validation (Refer Algorithm -1) separately, denote solved hyper-parameters as ɡ ; 

7. Acquire z and optimize ╦ by solving equation -(8), denote the solved parameter value as ╦; 

8. Train each model-Ὢὼȟ—ȟɡ  on Ὀ separately, denote solved model parameters as — ; 

9. Ὢ ὼ В ὡὪὼȟ—ȟɡ ; 

 409 

Algorithm 3 Testing process 

Input : Trained model-Ὢ; Normalization scaler -s; Piece of PPG and ECG-Ps, Es. 

Output : Prediction result -ώ. 

1.Wave preprocess for Ps, Es; 

2.Extract features from each piece of Ps and Es, denote the resulting feature vector as ὼ ; 

3.Normalize ὼ  using the scaler-s; 

4.ώ Ὢ ὼ ; 

Model evaluation  410 

The following seven measures were used as evaluation metrics  to evaluate the performance of the 411 
proposed method: 412 
ACC. According to the Association for the Advancement of Medical Instrumentation  (AAMI )[27] 413 
standard, the acceptable error is 5 mmHg. Therefore, accuracy is defined as the percentage of 414 
instances that satisfy the AAMI standard, and regulated as ὃὅὅ В ρȿώ ώȿ υ Ⱦὲ, where 415 
ώ and ώ denote the ground-truth value and prediction value of  the ὰ-th instance respectively. 416 
MAE . Mean absolute error is the average of the absolute deviation between the prediction values and 417 
ground -truth values, which could be regulated as ὓὃὉ В ȿώ ώȿȾὲ.  418 
MAPE . Mean absolute percentage error is the average of the absolute value of the relative errors, 419 

represented as ὓὃὖὉ В
ȿ ȿ

Ⱦὲ. 420 
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MSE. Mean square error is the average of the square error between prediction values and ground-421 
truth values, i.e. ὓὛὉ В ώ ώ Ⱦὲ. 422 

RMSE. Root mean square error is square root of MSE, namely ὙὓὛὉЍὓὛὉ. 423 

R2. R-square[19] measures the fitness ability of the model, which is defined as Ὑ ρ
В

В
. 424 

ώ В ώȾὲ, Ὑ ᶰπȟρ. The closer Ὑ  is to 1, the more is the interpret ation ability of all base 425 
models on the final prediction result at the minimum mean square error setting.  426 
SRCȭɯ2×ÌÈÙÔÈÕɀÚɯÙÈÕÒɯÊÖÙÙÌÓÈÛÐÖÕɯÊÖÌÍÍÐÊÐÌÕÛɯ[20] measures the correlation between prediction results 427 

and ground -truth val ues based on their ranking. ὛὙὅρ φ
В



The SBP, DBP and MBP prediction models were trained independently, and ground -truth MBP 429 
was computed using -"0 3"0ςϽ$"0Ⱦσ [32]. A ll  algorithms were rigorously implemented in 430 
Python, and then all models were trained and tested on the same dataset. Training set and test set 431 
were partitioned in the ratio  4:1, wherein 10% instances in the training set were separated as 432 
validation set . Therefore, the final training set, evaluation set and test set were divided according to 433 
7.2:0.8:2 in each running. The pseudo-code of test process is presented in Algorithm 3. All 434 
experiments were repeated 10 times to obtain more reliable results. 435 

Experimental results and analysis  436 

Feature analysis  437 

Tables 2,3 and 4 exhibit  the ranking of the selected features-ὃȢ for DBP, SBP and MBP prediction 438 
tasks respectively. The table exhibit that the three tasks have eight common features, namely - {sqi_ppg, 439 
T, s1r, maxv, rup, lcf_timeup, pttk, Tupr}, where T and Tupr are the total time of a PPG cycle and the ratio 440 
of the time of ascending branch in a cycle respectively. pttk refers to the time taken by the pressure 441 
wave to travel from one arterial site to another, which is widely used in related work 442 
[16],[20],[24],[27],[30],[37]. lcf_timeup capture the microscopic characteristics of PPG waveform 443 
changes, sqi_ppg reflect the skewness of the PPG signal, slr is related to peripheral resistance [55], 444 
maxv capture the pulsatile changes in blood volume  caused by arterial blood flow around th e 445 
measurement site [55], and rup is the average slope of ascending branch.  446 

The PCC matrix between the features of mimic -1 is presented in Figure 12. For the DBP 447 
prediction task, ὖὅὅίρὶȟὝὥὧὶ, ὖὅὅὝὥὨὶȟίςὶ and ὖὅὅὴὸὸȟὝόὴὶ exceeded 0.9, the features 448 
with smaller MIC value -Tacr, s2r and Tupr were excluded. Finally, eight features ɬ {T, Tadr, pttk, rup, s1r, 449 
lcf_timeup, sqi_ppg, maxv} were used for constructing SBP prediction model. For the SBP prediction 450 
task, ὖὅὅὴὸὸȟὝόὴὶ and ὖὅὅὴὸὸȟὝὨέύὲὶ exceeded 0.9, the features with smaller MIC value-451 
Tupr and Tdownr were excluded. Finally, eight features - {T, pttk, rup, s1r, lcf_timeup, sqi_ppg, minv, maxv} 452 
were used for constructing DBP prediction model. For the MBP prediction task, ὖὅὅὴὸὸȟὝὨέύὲὶ 453 
and ὖὅὅὴὸὸȟὝόὴὶ exceeded 0.9, the features with smaller MIC value- Tdownr and Tupr were excluded. 454 
Finally, eight features - {T, pttk, rup, s1r, lcf_timeup, sqi_ppg, minv, maxv} were used for constructing 455 
the MBP prediction model.  456 

Table 2. Ranking of the MIC between the selected features and target (DBP). 457 

Rank sqi_ppg T s1r maxv rup Tadr Tacr s2r lcf_timeup pttk Tupr 

MIC  0.537 0.515 0.502 0.495 0.482 0.476 0.476 0.474 0.460 0.453 0.432 

Table 3. Ranking of the MIC between the selected features and target (SBP). 458 

Rank sqi_ppg maxv T pttk lcf_timeup rup Tupr Tdownr minv s1r 

MIC  0.496 0.488 0.445 0.405 0.404 0.394 0.340 0.335 0.323 0.285 

Table 4. Ranking of the MIC between the selected features and target (MBP). 459 
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Rank sqi_ppg T maxv lcf_timeup rup pttk minv Tdownr Tupr s1r 

MIC  0.531 0.448 0.421 0.417 0.401 0.376 0.352 0.313 0.311 0.250 

 460 

 461 

Figu re 12. Pearson correlation coefficient matrix between features on mimic-1. 462 

Based on the selected feature subset of the three prediction tasks, we additionally developed a 463 
model by using each single feature for each prediction task and employ ing MAE  to measure the 464 
performance on test set. Figure 13 presents the results. For SBP, DBP and MBP prediction task, a 465 
model built using only a single feature could not achieve results superior  to the results in Figure 10, 466 
impl ying  the necessity to utilize multiple features to establish the prediction model.  467 

 468 

   
     (a)       (b)        (c) 

Figure 13. Comparison results of MAE  of ELBP trained using each single feature for the three prediction 469 
tasks on mimic-1. (a) for DBP prediction; (b) for SBP prediction; (c) for MBP prediction.  470 

Result on mimic -1 471 

Performance evaluation of ELBP and each single ML method within it  472 

By using the selected feature subset of the three prediction tasks, we first trained  a model based on 473 
each base learning algorithm and then compare them with ELBP.  474 

Table 5 presents the comparison results between ELBP and the five base model, namely RF, 475 
KNNR, SVR, LGBM and MLP on mimic -1. For all SBP, DBP and MBP prediction  tasks, ELBP 476 
perform ed best for  all seven metrics, namely ACC, MAE , MAPE, MSE, RMSE, R2, SRC, compared 477 
with  the other five base models, which means the integration of all base models results in better 478 
results. The ACC value of ELBP reached 92.32%, 76.56% and 81.92% for  DBP, SBP and MBP prediction 479 




















