Online single-shot pulse reconstruction for optimizing a seeded X-ray free-electron laser

Li Zeng
Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Duan Gu
Shanghai Advanced Research Institute, Chinese Academy of Science

Chao Feng (fengchao@zjlab.org.cn)
Shanghai Advanced Research Institute, Chinese Academy of Science

Bo Liu
Shanghai Advanced Research Institute, Chinese Academy of Science

Zhentang Zhao
Shanghai Institute of Applied Physics

Article

Keywords: X-ray Free-electron Laser, Temporal Profile Reconstruction, Laser-electron Timing Feedback

Posted Date: January 6th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-70548/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Online single-shot pulse reconstruction for optimizing a seeded X-ray free-electron laser

Li Zenga,b, Duan Guc, Chao Fengc,*, Bo Liuc,*, Zhentang Zhaoc

aShanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
bUniversity of Chinese Academy of Sciences, Beijing 100049, China
cShanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 116023, China

Abstract

X-ray free-electron lasers (FELs) hold promising prospects for opening up opportunities for ultra-fast sciences at the atomic and molecular system. A precise knowledge of temporal information of FEL pulses is the central issue for experiments. Here we proposed and demonstrated an online diagnostic method to determine the FEL temporal profiles at the Shanghai Soft X-ray FEL facility. This robust method, designed for seeded FELs, allows researchers to acquire real-time longitudinal profiles of FEL pulses with a resolution better than 3 fs. Based on this method, for the first time, we can directly measure various properties of FEL pulses from two stages and correlations between them online. This helps us to further understand the physics and realize the lasing of a stable, nearly fully coherent soft X-ray FEL through a two-stage harmonic up-shift configuration. This method also provides an intuitive way for precise detection and control of the relative timing between electron beams and external optical lasers.

Keywords: X-ray Free-electron Laser, Temporal Profile Reconstruction, Laser-electron Timing Feedback

1. Introduction

X-ray Free-electron lasers (FELs), with the capacity of generating ultrashort, highly coherent and extremely brilliant photon pulses, have given us the first chance to explore the structures and dynamics of the atomic and molecular system at femtosecond time scales andangstrom space scales. To date, several X-ray FEL facilities have been constructed worldwide [1, 2, 3, 4, 5, 6] and have already enabled the observation and control of very fast phenomena at the atomic time scale, providing an ideal tool in various subjects such as femtochemistry, ultrahigh-resolution imaging, and the investigation of the dynamics in atomic and biological systems [7, 8, 9]. Of particular interest is the experiment performed at seeded X-ray FELs, which have the major advantage of full coherence, precisely arrival time control, uniform longitudinal profile and so on. For most of FEL experiments, a precise knowledge of the characteristics of FEL pulses

*Corresponding authors

Email addresses: fengchao@zjlab.org.cn (Chao Feng), liubo@zjlab.org.cn (Bo Liu)
shot-by-shot is critical and highly desired. Among these pulse properties, the temporal
shape of FEL pulses is essential for researches with time resolution much shorter than
the pulse length[10, 11]. Hence, one of the crucial challenges for FEL experiments is
the development of methods and technologies which enable us to measure the temporal
profiles of FEL pulses on a shot-to-shot basis.

Methods for extracting the temporal profiles of FEL pulses can be roughly divided
into two categories. One is by directly measuring the FEL pulses and the other is based
on electron bunch diagnostics.

The most direct approach is to analyze the properties of the radiation pulse itself.
The statistical analysis of the FEL spectra [12, 13, 14] provides a relatively easy way to
determine the average temporal width of radiation pulses. But this method is strictly
applicable only to non-saturated self-amplified spontaneous emission (SASE) sources
since it is based on several assumptions derived from physics of the FEL process, such
as the Gaussian distribution for the electron bunch and the Gamma distribution for
the radiation energies probability distribution [15, 16]. A more straightforward deter-
mination of the pulse length is possible with autocorrelation [17] and cross-correlation
[18, 19] techniques. The autocorrelation requires pulse splitting and recombination
while the cross-correlation needs two different pulses. Hence, they heavily rely on suit-
able materials for short wavelength pulses control and interaction. Additionally, the
spectral interference pattern generated by two FEL pulses has been acquired to analyse
the spectro-temporal characterization by means of the SPIDER algorithm [20]. But
this method requires special setup of the machine and thus has limited scope of appli-
cation. Another direct method, terahertz (THz) field streaking [21, 22] has also been
applied to reconstruct the temporal shape of FEL pulse. By measuring the momentum
change of the photoelectrons which have been streaked in a strong THz field, single-shot
photoelectron spectra can be analyzed and the temporal profile can be reconstructed.

On the other hand, there are indirect methods to acquire the FEL temporal profiles
by measuring electron bunches after lasing. One of them is based on the streaking of
the electron bunches with a transverse deflecting cavity (TCAV) which, in combination
with a dispersive energy spectrometer, can provide a measurement of the electron beam
longitudinal phase space[23, 24, 25]. The reconstruction of the temporal profile of a
single-photon pulse becomes possible when comparing the phase space distributions
between "lasing-on" and "lasing-off" shots. Specifically, the "lasing-off" phase space
is chosen from a pre-recorded set which causes mismatches between "lasing-on" and
"lasing-off" shots. This always leads to irrational predictions especially when the ra-
diation power is relatively weak. Sometimes even negative power profile occurs due to
shot-to-shot fluctuations of the electron beam longitudinal phase space and instability
of the RF phase of the deflecting cavity, et cetera.

In this paper, we proposed an online method to retrieve FEL pulses shot-by-shot
at the Shanghai Soft X-ray FEL facility (SXFEL). This method designed for seeded
FEL is an extension of what was discussed in Ref.[24]. Instead of building a set of
"lasing-off" shots, the initial electron beam centroid energy and energy spread at the
interaction point between seed laser pulses and electron bunches are evaluated by the
locally weighted polynomial regression since the seed laser pulses are much shorter than
the electron bunches. This avoids the erroneous measurement inherent to the original
algorithm and makes it reliable to characterize the properties of the FEL pulses shot-by-shot during the machine tuning. Based on this method, we have directly observed the evolution of FEL pulse profiles during the FEL amplification and analyzed the correlation of the FEL properties in real time, which helped us to realize the lasing and parameters optimization of the SXFEL. Our experiments also indicate the feasibility to construct a timing diagnostic and feedback system for the electron beam and an external laser source with a resolution better than 3 fs. This has been proved to be very useful to stabilize the seeded FEL output and paves a new way for interpretation of user experiment data in the future.

2. Methods

2.1. Temporal power profile reconstruction of a seeded X-ray FEL.

As the first X-ray FEL facility in China, the SXFEL is a seeded FEL aiming at generating soft X-ray radiation from a 266 nm conventional seed laser through two stages harmonic up-shift configurations [26, 27, 28, 29]. One of the basic operation modes of SXFEL is the two stages high-gain harmonics generation (HGHG). The schematic layout of the undulator system based on two stages HGHG is shown in Fig.1. The first stage is a normal HGHG which consists of two undulator sections separated by a dispersion section. The electron beam first interacts with an external seed laser at 266 nm to generate sinusoidal energy modulation in the electron beam longitudinal phase space. After a small dispersion chicane (DS), the energy modulation has been converted into electron density modulation (micro-bunching) which contains frequency components at high harmonics of the seed laser. With this kind of electron beam, coherent 44.3 nm (6th harmonic) radiation pulses are generated and amplified in the following radiator undulator. The output of HGHG inherits the proprieties of the seed laser with high degrees of coherence and stability. However, the harmonic up-conversion number of an HGHG is limited due to the conflict requirements of the electron energy spread between harmonic multiplication and FEL amplification [4, 30, 31]. To cover the X-ray wavelength range, multiple stages of HGHG with the "fresh bunch" (FB) technique are generally required [32, 33, 34]. As the seed laser pulse is much shorter than the electron bunch length, the FEL pulse obtained from the intermediate radiator can be served as the seed laser to interact with the "fresh" part of the electron beam in the following stage and generate higher harmonic radiation pulses at 8.8 nm. At the SXFEL, the pulse duration of seed laser is about 170 fs (FWHM) which is much shorter than the length of electron bunch of about 1 ps (FWHM) at the undulator entrance. In order to characterize the FEL pulses, an X-band RF deflector which streaks the electron beam horizontally and a dipole magnet which disperses the beam vertically have been installed downstream of the undulator section. This enables the acquirement of the time-energy longitudinal phase space images of the electron beams on the screen. The detailed experiment set-up can be found in Section 2.2.

Different from FELs that operate with the self-amplified spontaneous emission (SASE) principle [35, 36], cascade seeded FELs usually require electron beams with sufficient longitudinal uniform regions to support the fresh-bunch technique. In addition, the region of the electron bunch to be seeded in modulators is relatively small.
Figure 1: **Schematic diagram of SXFEL undulator line.** Schematic layout of the two stages cascaded HGHG undulator line at SXFEL. (M: Modulator, DS: Dispersion section, R: Radiator. FB: Fresh-bunch chicane) The panels (a-c) show the measured electron beam longitudinal phase space images on the screen before lasing, after first stage and after second stage, respectively. The bunch charge is about 580 pC with the beam energy of 794 MeV. The bunch head is to the top.

When comparing to the entire electron bunch. These facts make it reasonable to estimate the initial central energy and energy spread distributions from the longitudinal phase space after lasing. In order to demonstrate this method, start-to-end simulations with all components and parameters (see Section 2.2) of SXFEL have been performed. The simulated image of the electron beam longitudinal phase space on the screen after lasing is shown in Fig. 2(a). The induced additional energy spread leaves a conspicuous imprint of FEL radiation from the first stage (close to the tail) and the second stage (close to the head) on the longitudinal phase space.

Figure 2: **Reconstruction of FEL power profile.** Panel (a) shows the simulated electron beam longitudinal phase space image on the screen after lasing. The current profile, central energy and energy spread are shown as green, red and yellow lines. Panel (b) shows the time-resolved central energy for two cases: lasing on (red) and lasing off (blue). The magenta line is the estimation of central energy after removing the effects of FEL lasing process. Panel (c) shows the reconstructed X-ray power profile (red) comparing with the simulated ones (blue) of the first (solid lines) and second (dashed lines) stages. The bunch head is to the top in (a) and to the right in (b-c).
By ‘slicing’ Fig.2(a) along the time dimension, we can obtain the time-dependent electron beam parameters after lasing [37]. The green, red and yellow lines represent the electron beam current profile $I(t_i)$, the central energy after lasing $E_{\text{on}}(t_i)$ and the FEL-induced energy spread $\sigma_{E,\text{on}}(t_i)$ in each time slice t_i, respectively.

The energy spread curve has been used to define the lasing region of the electron bunch in the first and second stages. Instead of many longitudinal spikes in the SASE mode, there are only two main peaks of the energy spread curve for cascaded HGHG mode. One is the result of FEL radiation from the first stage (bottom) and the other is from the second stage (top). The magenta dots in Fig.2(a), referred as the interest points (P_1, P_2), mark the strongest lasing part of the electron beam in the first and second stages.

In Fig.2(a), the first interest point, corresponding to the peak of the first stage radiation pulse, can be easily found by the continuous wavelet transform-based peak detection algorithm [38]. The fresh-bunch chicane is used to delay the electron beam so that the first-stage FEL pulse can interact with fresh electrons. The delay distance can be accurately calibrated with the set of the fresh bunch chicane. This gives a general position of the second interest point which is then precisely chosen as the maximum point near the estimated position.

With these interest points and the preset pulse lengths $(PL_{\text{set1}}, PL_{\text{set2}})$, the roughly estimated energy spread curves for each stage can be defined as $\sigma_{E,\text{on}}(t_{P_1} \pm PL_{\text{set1}}/2)$ and $\sigma_{E,\text{on}}(t_{P_2} \pm PL_{\text{set2}}/2)$. The second order polynomial fittings of these curves are performed separately to remove the "failed" shots. The curves are valid only if $c_0 > 10$ and $c_2 < 0$ and $abs(c_1/c_2) < 1$, where c_0, c_1, c_2 are the polynomial coefficients ordered from low to high. This validation process excludes distorted longitudinal phase space images and ensures that the energy spread curves conform to acceptable shapes.

For those valid shots, the pulse boundaries are chosen as the local minima near the interest points, as shown by orange dots in Fig.2(a-b). After removing the lasing part of the electron bunch, the locally weighted polynomial regression [39] for central energy is performed based on the un-lasing part. The data between the lasing part are chosen as the query points that are given greater weights. In Fig.2(b), the blue and magenta lines are the simulated and reconstructed electron beam central energy for the lasing-off case. The Fréchet distance between these two lines is about 0.15 MeV.

With the obtained time-resolved central energy loss, the absolute FEL power profile $P(t_i)$ can be directly determined as $P(t_i) = (E_{\text{off}}(t_i) - E_{\text{on}}(t_i)) \times I(t_i)/e$ due to the conservation of energy, where e is the elementary charge. Another alternative method to retrieve the FEL power profile is based on the energy spread increase. This can be written as $P(t_i) \propto P_{\text{cal}}(t_i) = I(t_i)^{2/3} \times (\sigma_{E,\text{on}}^2(t_i) - \sigma_{E,\text{off}}^2(t_i))$ (Ref.[40]), where $\sigma_E(t_i)$ is the RMS slice energy spread and the indices in σ_E represent lasing-on and lasing-off cases, respectively. The 2/3 power scaling of the current comes from the pierce parameter ρ which is proportional to $I^{1/3}$[41]. The scale factor is found by normalizing the integral of calculated $P_{\text{cal}}(t_i)$ to the independently measured FEL pulse energy from a calibrated detector. These two methods generally agree very well during the high-gain regime (pre-saturation) of FELs as indicated in Ref.[24]. The approach utilizes the central energy loss are less sensitive than the one based on the change in energy spread, but it can be used to measure the pulse energy and peak power directly. The
results in this section and throughout are calculated by the central energy loss.

Figure.2(c) represents the reconstructed (red) and simulated (blue) X-ray FEL power profile in the first (solid lines) and second (dashed lines) stages. The pulse lengths and pulse energies for the simulated and reconstructed FEL pulse profile of the first stage are around 115 fs (FWHM) and 16.6 µJ, 116 fs (FWHM) and 16.2 µJ, respectively. Those of the second stage are about 105 fs (FWHM) and 13.5 µJ for the simulation, 104 fs (FWHM) and 13.0 µJ for the reconstruction.

These simulation results demonstrate that the proposed method can be applied to accurately characterize the FEL pulse by single shot. Before we show how to optimize the seed FEL performance based on this technique, a detailed description of the machine set-up is given in the following subsection.

2.2. Machine set-up

All experiments are carried out at the SXFEL. The electron beam is generated by a photocathode RF gun (RF frequency at 2856 MHz) at a repetition rate of 10 Hz and can be boosted up to 794 MeV by a linac which consists of 4 S-band and 6 C-band linac structures. The electron bunch is compressed to over 500 A by a magnetic chicane. The electron bunch charge is about 580 pC and the electron bunch length at the end of linac is about 1 ps (FWHM). The relative project energy spread is about 10^{-3} and the normalized transverse emittance is about 1.5 mm · mrad. A laser heater has been installed at the beginning of linac to suppress the microbunching instability.

The seed laser is originated from a commercial Ti:Sapphire laser system, which can provide lasers up to 3 mJ at 800 nm. A third harmonic generation is employed to convert the laser to 266 nm.

The SXFEL undulator system[42] consists of two stages of seeded FELs. The first stage contains a 1.28 m-long permanent magnetic modulator with the period length of 80 mm and three 3 m-long variable gap radiators which have a period of 40 mm. The momentum compaction R_{56} of the fresh-bunch chicane can be continually tuned from 0 mm to 10.6 mm which can shift the first-stage radiation ahead up to 17.7 ps. The second stage is composed of a 1.65 m-long modulator (30 periods with a period length of 55 mm) and six variable gap radiators. Each radiator is about 3 m long with a period length of 23.5 mm.

The longitudinal phase spaces of electron beams are measured by the combination of deflecting cavities and an energy spectrometer. Two 1-meter-long X-band (11.424 GHz) rf deflecting structures [43] powered by a 50 MW klystron are adopted to provide a horizontal kick to the electron beam. After a 22-meter-long drift section, a 2-meter-long dipole is adopted to vertically disperse the electrons with different energies. Finally, the electron beam is captured by the YAG crystal screen which is installed downstream of the dipole magnet. The temporal resolution is better than 3 fs and the energy resolution is about 36 keV. The FEL pulses from the first stage are reflected by a movable gold mirror placed in the middle of the FB chicane. The longitudinal phase space of the electron beam and the pulse energy of the FEL pulse can be measured simultaneously.
3. Results

3.1. Stability and validity of the method at SXFEL

In order to demonstrate the stability and validity of the proposed method, the measured and reconstructed pulse energies for the first stage are compared in Fig.3, as denoted by \(P_{E_{\text{mea}}} \) and \(P_{E_{\text{rec}}} \), respectively. The pulse energies are continuously measured with a calibrated photodiode for more than 4 hours.

![Comparison of measured and reconstructed FEL pulse energies](image)

Figure 3: Comparison of measured and reconstructed FEL pulse energies. A more-than-four-hour continuous acquisition of the measured (red) and reconstructed (blue) pulse energy for the first stage.

The stability of the method is evaluated by the proportion of dirty data. The reconstructed pulse energies are divided into several groups and referred as "dirty" if they exceed \([\mu_j - 2\sigma_j, \mu_j + 2\sigma_j]\), where \(\mu_j \) and \(\sigma_j \) are the mean and standard deviation of the \(j^{th} \) group. Under this definition, the proportion of dirty data is about 3%.

To quantify the difference between measurements and reconstructions, we introduce the relative root mean square error (RRMSE) defined as:

\[
RRMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} (P_{E_{\text{mea}}^i} - P_{E_{\text{rec}}^i})^2 / P_{E_{\text{mea}}^\text{mean}},}
\]

where \(P_{E_{\text{mea}}^\text{mean}} \) is the mean of the measured FEL pulse energies. In this case, the RRMSE is about 0.15 which means the reconstructions and measurements fit very well.

3.2. Correlation analysis.

In a cascaded HGHG FEL, the radiation generated in the first stage is served as the seed in the second stage. Thus, the output-pulse characteristics are significantly influenced by the properties of the electron beam and the first-stage radiation. The correlation analysis between two stages is not only instructive for machine commissioning but also beneficial for understanding the cascaded FEL process.
To investigate the correlations between two stages, the electron beam was compressed more comparing with the normal operation condition to increase the output jitters. Strengths of dispersion sections were optimized to maximize the pulse energies from two stages. Under this condition, the microbunchings in the electron beam will be "over-bunched". This results in a FEL pulse length much longer than the theoretical prediction considering only the pulse shortening effect [44].

Figure 4: The two-stage correlation analysis. Panel (a,b) are two typical measured phase spaces with energy spread (yellow) and current (orange) distributions along the electron bunchs. The red and magenta lines mark the longitudinal position of the seed laser and the electron beam, respectively. ΔT_{L-E} quantifies the relative timing between the seed laser and the electron beam. Panel (c-h) show the correlation between the relatively timings and pulse lengths or pulse energies, and between the first and second stage FEL pulse energies or pulse lengths. The yellow ellipses are the 90% confidence ellipses.

Longitudinal phase spaces for about 700 consecutive shots have been acquired during the machine tuning. Figure 4(a,b) present two typical measurements of electron beam longitudinal phase spaces after two-stage HGHG. The FEL-induced energy spread changes (yellow dashed line) and the current profiles (orange dashed line) can be obtained through these images. The place of the largest FEL-induced energy spread
growth indicates the position of the strongest FEL lasing. In the external seeded FEL, this place is highly related to the seed laser and can serve as a longitudinal position indicator of the seed laser (red solid line). Additionally, the indicator of electron beam longitudinal position (magenta solid line) can be derived from the currents where a specified level is reached (in this experiment we set at 5% of the currents’ maximum value). The distance between these two lines, denoted ΔT_{L-E}, quantifies the relative timing between the external laser and the electron beam. The yellow areas in Fig.4(a,b) are the ”golden” regions of electron bunches. Compared with other parts, this ”golden” region has much more homogeneous and suitable distributions, such as the sufficient beam current, the good-quality longitudinal and transverse phase space and so on.

With the proposed method, the FEL power profiles for the first stage and second stage can be reconstructed simultaneously. The pulse energies, pulse lengths as well as the relative timings are shown in Fig.4(c-h). These strong correlations indicate that the relative timing between electron bunches and seed laser pulses plays an essential role in cascaded FEL process. As ΔT_{L-E} decreases (from Fig.4(a) to Fig.4(b)), a part of electrons in the ”golden” region, which are reserved for the second stage, have interacted with the seed laser in the modulator and lased in the radiator of the first stage. Thus, the FEL pulse lengths for the first stage have increased while those for the second stage have decreased. This leads to the same trends of FEL pulse energies for the first and second stages. Consequently, the FEL pulse lengths, as well as pulse energies, from first and second stages are negatively correlated as shown in Fig.4(g,h). These measurement results give an important guidance on tuning of the machine.

3.3. Stabilization of the machine

The result of two-stage correlation analysis confirms that the relative timing between the seed laser pulses and the electron bunches needs to be stabilized in order to perform reliable seeding for external seeded FELs. One approach is to install several bunch arrival time monitors (BAMs) which measure the arrival time of an electron bunch relative to an optical reference. This optical reference for the monitors can be provided by the all-optical synchronization system[45] based on the mode locked laser pulse train. The most challenging problems are the synchronization of several clock domains and online calibration. Those difficulties make it an extremely complicated system.

The method proposed above provides a much more straightforward approach to establish a laser-electron relative timing feedback system. ΔT_{L-E}, which is defined in Fig.4(a,b), is served as the objective of the proposed feedback system. Figure.5(a) shows the continuous acquisitions of relative timing between electron bunches and seed laser pulses before and after feedback at SXFEL. More convincingly, the effects of this feedback system on the second-stage FEL pulse energies are shown in Fig.5(b). The pulse energy decreases due to the drift of laser-electron relative timing, but becomes stabilized with the proposed feedback technique. The amplitudes of drifts (peak-to-peak values) have decreased from 526 fs to 87 fs for relative timings and from 3.82 μJ to 1.03 μJ for second-stage FEL pulse energies. The result shows that this method can be used to correct timing drifts between electron bunches and seed laser pulses. It also gives the value of shot-to-shot jitters of the electron beam with respect to an external laser source. The resolution of shot-to-shot timing measurements is about 3 fs, which
Figure 5: **The laser-electron relative timing diagnostics and feedback.** A more-than-four-hour continuous acquisition of the laser-electron relative timing (a) and FEL pulse energy in the second stage (b) before and after feedback.

can be further enhanced by increasing the voltage of X-band deflectors and enlarging the YAG screen.

4. Discussion and conclusion

Knowledge of the FEL pulse temporal profiles is of great significance for FEL studies which are aimed at broadening the research frontiers of time-resolved phenomena. The method proposed in this paper can be applied as a robust online single-shot diagnostic tool to measure the X-ray temporal profiles for seeded FELs. Avoiding the explicit choice of baseline from hundreds of "lasing-off" longitudinal phase space images, the proposed method provides a reliable and stable stream of X-ray FEL temporal profiles during the FEL tuning process and user experiments. An electron beam and seed laser relative timing feedback system has been established at SXFEL based on the proposed method. The timing drifts between electron bunches and seed laser pulses can be well corrected. It also helps to stabilize the FEL pulse energies of the second stage. This feedback system has become a part of regular operation routines at SXFEL.

Conflict of interest
The authors declare that they have no conflict of interest.

Acknowledgments
The authors would like to thank Haixiao Deng, Tao Liu, Zhen Wang, Dao Xiang, Shanchuan Yan for useful comments on the experiments and simulations. Many aspects of this work have benefited a lot from the discussion with Jiawei Yan and Xiaofan Wang. This work is supported by the National Key Research and Development Program of China (No. 2016YFA0401901), National Natural Science Foundation of
China (11975300) and Shanghai Science and Technology Committee Rising-Star Program (20QA1410100).

Author Contributions

B.L. and Z.T.Z guided the work and organized the experimental activities. L.Z., D.G. and B.L. develop the code used in the experiment. L.Z., C.F., D.G. and B.L. conducted the experiment on the accelerator and FEL at SXFEL. L.Z. and C.F. carried out numerical simulations and analysed the experiment data. L.Z. and C.F. wrote the manuscript draft. All authors discussed and contributed to improving the final version of the manuscript.

References

Figures

Figure 1

Schematic diagram of SXFEL undulator line. Schematic layout of the two stages cascaded HGHG undulator line at SXFEL. (M: Modulator, DS: Dispersion section, R: Radiator. FB: Fresh-bunch chicane) The panels (a-c) show the measured electron beam longitudinal phase space images on the screen before lasing, after first stage and after second stage, respectively. The bunch charge is about 580 pC with the beam energy of 794 MeV. The bunch head is to the top.

Figure 2

Reconstruction of FEL power profile. Panel (a) shows the simulated electron beam longitudinal phase space image on the screen after lasing. The current profile, central energy and energy spread are shown as green, red and yellow lines. Panel (b) shows the time-resolved central energy for two cases: lasing on
and lasing off (blue). The magenta line is the estimation of central energy after removing the effects of FEL lasing process. Panel (c) shows the reconstructed X-ray power profile (red) comparing with the simulated ones (blue) of the first (solid lines) and second (dashed lines) stages. The bunch head is to the top in (a) and to the right in (b-c).

Figure 3

Comparison of measured and reconstructed FEL pulse energies. A more-than-four-hour continuous acquisition of the measured (red) and reconstructed (blue) pulse energy for the first stage.
Figure 4

The two-stage correlation analysis. Panel (a,b) are two typical measured phase spaces with energy spread (yellow) and current (orange) distributions along the electron bunchs. The red and magenta lines mark the longitudinal position of the seed laser and the electron beam, respectively. $\Delta TL-E$ quantifies the relative timing between the seed laser and the electron beam. Panel (c-h) show the correlation between the relatively timings and pulse lengths or pulse energies, and between the first and second stage FEL pulse energies or pulse lengths. The yellow ellipses are the 90% confidence ellipses.
Figure 5

The laser-electron relative timing diagnostics and feedback. A more-than-four-hour continuous acquisition of the laser-electron relative timing (a) and FEL pulse energy in the second stage (b) before and after feedback.