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Abstract
Background

Genotype-to-environment (G2E) association analysis coupled with genotype-to-phenotype (G2P)
association analysis promises exciting advances towards discovering genes responsible for local
adaptation. We combine G2E and G2P analysis with gene annotation in Pinus ponderosa (ponderosa
pine), an ecologically and economically important conifer that lacks a sequenced genome, to identify
genetic variants and gene functions that may be associated with local adaptation to drought.

Results

We identified SNP markers in 223 genotypes from across the Sierra Nevada by aligning GBS sequence
fragments to the reference genome of Pinus taeda (loblolly pine). Focusing on SNPs in or near coding
regions, we found 1458 associated with 5 largely-uncorrelated climate variables, with the largest number
(1151) associated with April 1st snow pack. We also planted seeds from a subset of these trees in the
greenhouse, subjected half of the seedlings to a drought treatment, and measured phenotypes thought to
be associated with drought tolerance, including root length and stomatal density. 817 SNPs were
associated with the control-condition values of six traits, while 1154 were associated with responsiveness
of these traits to drought.

Conclusions

While no individual SNPs were associated with both the environmental variables and the measured traits,
several categories of genes were associated with both, particularly those involved in cell wall formation,
biotic and abiotic stress responses, and ubiquitination. However, functions of many of the associated
genes have not yet been determined due to the lack of gene annotation information for trees and future
studies are needed.

Introduction

Genomics promises exciting advances towards exploring adaptive genetic variation and evolutionary
potential under rapidly changing and often unpredictable environment [1-3]. Intraspecific genetic
variation represents the potential for adaptive change in response to new selective challenges, which is
critical for local species persistence under environmental change [4, 5]. Adaptation to local climate
conditions is common in tree populations [6—9]. However, tree populations with long life cycles may
become maladapted if environmental shifts rapidly [10—12]. Understanding the distribution of genetic
variation related to environmental responses may help us better predict changes and manage forests in a
changing climate [13, 14]. This includes selecting seed sources for restoration or breeding that have
desirable characteristics such as drought tolerance [15, 16].
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Landscape genomics offers enormous potential to discover genes responsible for local adaptation by
investigating the statistical association between genetic variation at individual loci and the causative
environmental factors [17-20]. This approach is sometimes known as genotype-to-environment (G2E)
association analysis. Prior studies in Arabidopsis — the primary plant model organism - have found that
environmentally-associated SNPs can predict performance in common gardens [21], and a study in Pinus
pinaster suggests this could be true in trees as well [22]. However, G2E studies often don’t by themselves
reveal why certain allele are more prevalent or favored in particular environments — for example, are they
responsible for selectively favored traits? Genotype-to-Phenotype (G2P) association identifies loci linked
to a particular phenotype [23, 24]. To eliminate the effects of environment on phenotypes, traits must be
measured in a common environment, such as a greenhouse. However, G2P association study does not
reveal whether a trait variant would be favored in the field. G2E and G2P association are thus
complementary, and by combining them one might identify both the loci and traits that are selectively
favored in particular conditions [18, 25].

The large genome size of conifer trees (> 19 GBP) represents a challenge for analysis. Most association
studies in conifers have focused on SNPs within a few hundred genes [18, 23, 24, 26—28], or fewer than
2,000 genome-wide SNPs [29]. One notable exception is a recent study on lodgepole pine that made use
of a sequence capture dataset created by mapping the Pinus contorta transcriptome to the P, taeda
genome sequence [25], but most conifers have neither a published genome sequence nor a full
transcriptome. Though targeted sequencing is efficient, candidate gene approaches may miss other
important genes with previously unsuspected roles in local adaptation, while focusing on variants within
genes may miss important variants within regulatory regions.

Several approaches to identifying more genetic variants for genome-wide association studies (GWAS)
utilizing next generation sequencing (NGS) have been proposed in recent years [30, 31]. Genotyping-by-
Sequencing (GBS), which can generate tens of thousands of SNP markers (Single Nucleotide
Polymorphisms) without the need for a reference genome or full transcriptome, has emerged as a cost-
effective strategy [32, 33]. By combining the power of multiplexed NGS with restriction-enzyme-based
genome complexity reduction, GBS is able to genotype large populations of individuals for many
thousands of SNPs in an increasingly rapid and inexpensive way [31, 34].

Despite the high economic and ecological importance of ponderosa pine (Pinus ponderosa) in the
western United States [35], no previous study has attempted to identify the relationship between gene
sequence variation and drought tolerance in this species. Some studies have investigated P ponderosa
evolutionary history and phylogeography using mitochondrial DNA markers; these reflect the long-term
biogeographical process contributing to the modern distribution of the species, but have little adaptive
significance in themselves [36, 37]. Other studies have emphasized the importance of intraspecific
variation of P ponderosa in environmental responses, but focus on the phenotypic variation within and
among populations without identifying the underlying genetic variation [38, 39]. California’s historic
2012-2016 drought may represent an increasingly common condition as climate changes [40, 41]. Such
“hot droughts” can lead to mass tree mortality, negatively impacting the sustainability of conifer forests
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[42]. A deep understanding of the genetic basis of adaptation in ponderosa pine and other western
conifers is critical for successful reforestation and conservation programs.

In the 1970’s the Forest Service's Pacific Southwest Regional Genetic Resources Program planted clones
of 302 wild ponderosa pines from diverse climate conditions in the central portion of the Sierra Nevada
mountains in an orchard located in Chico, California. We chose 223 individual P ponderosa genotypes
from the orchard that span the full climatic range included in the collection for the G2E analysis, and
seedlings of a subset of 50 genotyped parent trees for a G2P analyses of putative drought-response traits
based on a greenhouse experiment. We ran gene annotation to ascribe biological function to the genes
that the associated SNPs were in or near. Then we assessed overlap in SNP identity or gene functions
among G2E and G2P association analysis that might indicate particular importance for local adaptation.

Results

Genetic diversity and population structure

A total of 4,155,896 SNPs were identified from GBS data of the 223 genotypes after initial filtering. With
these SNPs, we ran both principal component analysis (PCA) and admixture analysis to determine the
number of populations (K) represented by these individuals. Two principle components best explained
the genetic variation between our samples, but nearly all individuals clustered together (Fig. 1 and
Additional file 1: Table S1), and according to the admixture analysis result the best K value was one
(Additional file 1: Fig. S1). We also plotted the admixture of each individual tree and found that
“populations” completely overlapped geographically (Fig. 1 and Additional file 1: Fig. S2). Thus, we
concluded that the sampled genotypes belong to one interbreeding population and used K =1 for the
association analysis.

Environmental and phenotypic associations at individual loci

Initial gene annotation revealed that many of the 4,155,896 SNPs fall between genes and regulatory
regions (in the intergenic regions) — likely have no direct effect on gene expression or function. To
eliminate false positives that might arise from this, we filtered out the intergenic SNPs, leaving 927,740
(22.3%) SNPs in or near genes for the association analyses. This is similar to the approach used in
Jordan et al. for Eucalyptus [43]. We used latent factor mixed model 2 (LFMM2) for G2E and G2P
association analysis with these 927,740 SNPs and K= 1.

The five 1921-1950 mean climate variables used in the G2E analysis — climatic water deficit (CWD);
minimum winter temperature (TMIN); maximum summer temperature (TMAX); monthly winter
precipitation (PPTW); and April 1st snow pack (PCK4) — had low-to-moderate correlations with one other
(Additional file 1: Fig. S3). After the running of LFMM2 (q < =0.05) for G2E, we found 1,458 significant
associations with the environmental variables out of the 927,740 filtered SNPs (Table 1). PCK4 had the
most associations by far, with TMIN having the next highest number of associations. The number of
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SNPs associated with more than one climatic variable was low, with the highest degree of overlap
between PCK4 and TMIN (64 SNPs) and between CWD and TMIN (17 SNPs) (Fig. 2).

Table 1
Number of environmentally associated SNPs Icoated in different regions.
Location of SNP PCK4 TMIN CwWD TMAX PPTW
Upstream 335(29%) 33(23%) 11(16%) 12(24%) 16 (36%)

intragenic (intron) 336 (29%) 34 (23%) 24 (36%) 18 (36%) 7 (16%)

Synonymous 92 (8%) 22 (15%) 6(9%) 5(10%) 2 (4%)
Missense 157 (14%) 20 (14%) 2 (3%) 11(22%)  5(11%)
Downstream 229 (20%) 36(25%) 24((36%) 3(6%) 15 (33%)
Other 2(01%) 0 0 1(2%) 0

Total 1151 145 67 50 45

For both PCK4 and TMIN, there were roughly similar numbers of associated SNPs in upstream and
downstream regions versus with the gene itself, with 14% of associated SNPs being missense (non-
synonymous) mutations (Table 2). SNPs associated with CWD were also roughly evenly split between
flanking regions and the main gene sequence, but only 3% were missense mutations. A higher proportion
of SNPs associated with TMAX were within the gene, with 22% being missense mutations, while PPTW
showed the opposite pattern, with 69% of SNPs being in the flanking regions.

Before running G2P analysis, seedlings from a subset of the 223 genotyped trees were grown in the
greenhouse and subjected to wet (control) and drought treatments, with multiple phenotypic traits
thought to be associated with drought response being measured for both groups. Fifty families were
initially selected, although only 42 had sufficient germination for measurements to be included in
analyses. Six out of the eight measured phenotypic traits were significantly different in the drought
treatment versus the wet treatment: height growth (GR), shoot weight (SW), root length (RL), root-shoot
dry mass ratio (R2S), stomata density on adaxial side (SD_AD), and number of stomatal rows on abaxial
side (NR_AB). We therefore focused on these traits for the G2P association. We measure the association
of SNPs to either the control treatment family breeding value (BV) for each trait, or the average change in
the trait from wet to dry conditions (drought responsiveness).

More SNPs were associated with the trait drought responses (1,154) than with the control traits (817).
While control R2S had the most associations and SW the least (Table 2), the opposite was the case for
drought responsiveness (Table 3). The number of SNPs associated with more than one trait was low in
both G2P analyses. The highest degree of overlap was in control traits of RL and R2S (12 SNPs) and of
R2S and NR_AB (9 SNPs) (Fig. 3). The proportion of associated upstream SNPs was similar across
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control traits (32-40%), but proportions of other categories varied widely, with the proportion of missense
SNPs ranging from 8—25%. For drought response, the distribution of SNPs in all categories differed, with
proportion of upstream being 19-34% and proportion of missense being 7-16% for traits other than R2S.
R2S was only associated with 6 SNPs, 5 upstream and 1 downstream.

Table 2
Number of SNPs associated with traits in control conditions.

Location of SNP R2S NR_AB RL GR SD_AD SW

upstream 166 (35%) 90(32%) 12(43%) 6(40%) 4(33%) 3(33%)

intragenic (intron) 106 (23%) 79 (28%) 5(18%) 2(13%) 3(25%) 1(11%)

synonymous 40 (8%) 18 (6%) 1(3%) 0 (0%) 2(17%) 1(11%)

missense 61 (13%) 21 (8%) 3(11%) 3(20%) 3(25%) 2(22%)

downstream 100 21%) 72 (26%) 7 (25%) 4(27%) 0(0%) 1(11%)

other 0 (0%) 0 (0%) 0 (0%) 0(0%) 0% 1(11%)

Total 473 280 28 15 12 9

Table 3
Number of SNPs associated with drought responsive traits.

Location of SNP AR2S ANR_AB  ARL AGR ASD_AD ASW
upstream 5(83%) 43(28%) 84(22%)  48(33%) 11(19%) 138 (34%)
intragenic (intron) 0 (0%) 41 (26%) 115(30%) 41(27%) 33(58%) 113 (28%)
synonymous 0 (0%) 10 (6%) 29 (8%) 11 (7%) 1(2%) 43 (10%)
missense 0(0%) 15(10%) 60(16%)  15(10%) 4 (7%) 46 (11%)
downstream 1(17%) 45(29%) 85(23%)  35(23%) 8(14%) 69 (17%)
other 00%) 2(1%) 3 (1%) 0 (0%) 0 (0%) 0 (0%)
Total 6 156 376 150 57 409

Gene annotation for the significantly associated SNPs

Of the 1458 SNPs associated with environmental gradients, functions could be assigned for 788 (54%),
while the rest had no matches in available gene ontology databases. We found that 283 SNPs belonged
to protein types that have functions that may be directly related to drought tolerance or other
environmental responses (Fig. 4). We categorized these genes into five main functional groups: (a) the
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ubiquitination pathway, (b) seed, pollen and ovule formation, (c) cell wall formation, (d) stress responses,
and (e) cell division and growth.

Many of the SNPs associated with TMAX, TMIN, CWD, and PCK4 were in or near genes in the protein
ubiquitination pathway or the jasmonic acid synthesis response pathways (Fig. 4 and Additional file 2:
Table S2), both of which are involved in responses to biotic or abiotic stress [44-46]. CWD and PCK4
were also associated with SNPs in or near genes involved in seed dormancy and the abscisic acid (ABA)
signaling pathway, both of which have been previously linked to drought responses in trees [47]. Genes
involved in reproduction, including pollen and ovule formation, were associated with TMAX, TMIN, and
PCK4. CWD and PCK4 were associated with genes involved in cell wall organization. Both TMAX and
PCK4 were associated with genes involved in vascular tissue formation, growth regulation, and stress
responses, while TMIN and PCK4 were associated with genes involved in stomatal regulation and
pathogen responses. Further biotic and abiotic stress response genes were associated with PCK4, as
were genes involved in nutrient transport, photosynthesis, respiration, sugar synthesis, and light
responses (Additional file 2: Table S2),

Of the 817 SNPs associated with seedling control trait values and 1,154 SNPs associated with trait
drought responsiveness, 43% and 51% could be assigned functions by gene ontology (Additional file 2:
Table S3 and Table S4), respectively. Many of the same functional categories of genes that were found to
be associated with the environment were also associated with measured phenotypes, though there was
no overlap in specific SNPs identified. This includes ubiquitination, seed development, cell wall
organization, stress response, and cell division (Fig. 4, 5, 6).

In the control treatment, the two stomatal traits were associated with genes involved in ubiquitination, cell
wall organization or modification, growth and development, and ABA response. Control root-to-shoot ratio
was associated with biotic & abiotic stress responses, cell wall organization or modification, cell division
or differentiation, lateral root formation and ubiquitination. Control height growth had no associated
SNPs and root length was only associated with one SNP located in a gene involved in ubiquitination (Fig.
5). However, drought responsiveness of height growth, shoot weight, and root length were associated with
all five functional categories (Fig. 6). Drought responsiveness of the two stomatal traits was associated
with genes involved in stress responses, cell wall formation/organization, cell division/differentiation,
and root formation.

Besides the five main functional groups of genes with SNPs associated with climatic, phenotypic and
drought response variables, several other functional groups were identified in both the G2E and G2P
annotation results (Additional file 2: Table S2, Table S3, and Table S4). For example, 111 (14%) of the
environmentally-associated SNPs, 53 (6%) of SNPs associated control traits, and 121 (12%) of the SNPs
associated with trait drought responses were in genes relating to ATP binding or protein kinases.
Associated SNPs in genes associated with RNA/DNA binding, metal ion binding, translation, and protein
transport were also fairly common.
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Discussion

We identified 1458 SNPs associated with 5 climate variables, with April 1st snow-pack associated with
most of the SNPs. We also identified 817 SNPs associated with the control-condition values of six
phenotypic traits, while 1154 associated with responsiveness of these traits to drought. No individual
SNPs overlapped between the genotype-to-environment (G2E) and genotype-to-phenotype (G2P)
analyses. But the associated SNPs did share similar gene functional categories including (a) the
ubiquitination pathway, (b) seed, pollen and ovule formation, (c) cell wall formation, (d) stress responses,
and (e) cell division and growth. Other shared categories including ATP binding or protein kinases,
RNA/DNA binding, metal ion binding, translation, and protein transport.

Different categories of SNPs may affect function in different ways. Non-synonymous (AKA missense)
variants may directly affect phenotype by changing protein form and function; these included 195 of the
climate-associated, 93 of the control environment phenotype-associated, and 140 of the phenotype
drought-response-associated SNPs (Table 1, 2, 3). Intragenic or synonymous variants are assumed to be
neutral with respect to fitness, but either might be in linkage disequilibrium with a nearby causal variant.
While linkage disequilibrium is fairly low in conifers [48], the GBS sequence fragments were quite short
(90-100 bp or less) and were trimmed further before SNP calling, so a linked non-synonymous variant
could have been missed. We also found quite a few upstream and downstream SNPs in both G2E and
G2P analysis that might either directly affect gene expression or be linked to a protein-altering variant.

For the G2E association, we used 1921-1950 average climate values to estimate the selective
environment under which these genotypes established as seedlings and saplings prior to their collection
in the 1970s. We chose to focus on raw environmental variables rather than environmental PCA axes, as
a number of previous studies have done [17, 18], because PCA associations can be difficult to interpret if,
for example, the axes include both temperature and moisture variables. We selected five climate variables
that exhibit low correlation with one another across the collection area. The number of SNPs associated
with more than one climatic variable was low (Fig. 2), which may indicate that we were successful in
selecting semi-independent climatic variables which require different genetic adaptations. The highest
degree of overlap was between PCK4 and TMIN (64 SNPs) and between CWD and TMIN (17 SNPs). The
former SNP set might be related to adaptation to cold and/or snow depth, while the latter SNP set might
be related to how quickly the site warms up in spring, drying out the soil.

In the G2E analysis, over half of the SNPs were associated only with April 1st snowpack (PCK4). Winter
minimum temperatures (TMIN) — affecting the depth and duration of snowpack — shows the next
highest number of associations. In this Mediterranean climate region, most of the annual precipitation
occurs during the winter, and melting of winter snow accumulation at high elevations feeds spring and
summer streamflow [49]. However, a heavy snowpack may also delay the start of the growing season for
juvenile trees. Consistent with this, at least one of the associated SNPs was in a gene involved in light
responses.
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In the G2P analysis, most of the SNPs associated with control phenotypic traits were linked with root-to-
shoot ratio (R2S) and number of abaxial stomatal rows (NR_AB,) while most of the SNPs associated with
phenotypic responses to drought were linked with shoot weight (SW), root length (RL), and R2S ratio.
Drought-stressed ponderosa pine seedlings allocated more to their root system, with longer root length,
higher root to shoot dry mass ratio, less dry shoot mass and less height growth. Other studies in pines
have found similar patterns [50-53]. This may indicate acclimation to drought at the cost of overall low
growth of aboveground structures. Many of the SNPs associated with phenotypic drought responses
were in genes associated with cell division & differentiation and with root growth, both of which make
sense in light of the observed changes in allocation to root vs. shoot growth. The number of SNPs
associated with more than one trait was low in both G2P analyses. The highest degree of overlap was in
drought responsiveness of RL and R2S and of R2S and NR_AB (Fig. 6).

Eckert et al. (2015) found two SNPs associated with both environmental PCAs and measured phenotypes
out of 31 and 6, respectively — a low rate, but one which led us to think we might see more with a higher
number of associations. We found no overlaps in specific SNPs between our G2E and G2P analyses, but
there was substantial overlap in functional categories, which directly related to drought tolerance or other
environmental responses in previous studies [44, 46, 47, 54]. The prevalence of genetic associations
related to abscisic acid (ABA)-signaling pathways and ubiquitination in both G2E and G2P analyses is
consistent with prior studies of drought response in conifers [47]. Increasing ABA concentrations are used
as a signal to keep stomata closed during dry conditions, reducing water loss [55]. In addition, ABA
signaling can also affect shoot growth and water uptake [56, 57]. Ubiquitination has been found to be
involved in drought responses in model species by playing a role in ABA-mediated dehydration stress
responses [58, 59], or through the downregulation of plasma membrane aquaporin levels [60]. The study
of the role of ubiquitin in conifer drought response is still somewhat limited. A study in black spruce
(Picea mariana) identified 16 out 313 candidate genes correlated with precipitation, including the genes
in the ubiquitin protein handling pathway [61]. The association between ubiquitin protein and roots and
stomatal density may indicate previously unidentified roles in drought response.

Moreover, genes associated with seeds and seed dormancy can also be directly involved in drought
tolerance; for instance, dehydrins can protect proteins from desiccation in both seeds and other plant
tissues [47]. However, reproduction-related genes might also show associations with environmental
gradients if they are involved in reproductive timing. Genes involved in xylem & phloem differentiation or
cell wall formation could play a role in shaping the hydraulic safety of water-transporting cells, something
that can be quite plastic in pines (Lauder et al. 2019). Other than these functions directly related to
drought tolerance or other environmental responses, the other overlapping functions among G2E and G2P
analysis are involved in gene expression (RNA or DNA binding, transcription factors, helicase activity,
ribosome components, methylation) or ATP binding (motifs found in membrane transporters, microtubule
subunits, enzymes, and other cell components that require energy). Our findings suggest the efficiency of
combining G2E and G2P analysis with GBS to uncover potentially important adaptive genetic variation.
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For many of the other loci associated with environmental gradients, gene ontology results were too vague
to draw many conclusions about their function or why the association might exist. However, some of
these genes have been previously associated with stress, including Ras-related protein RABC1 to drought
responses [62] and pentatricopeptide repeat-containing protein to cold stress [63]. Two of the SNPs
associated with minimum temperature are found in the intragenic regions of CGS1 and RE2, genes found
to be upregulated during cold stress [64] and heat stress [65], respectively.

Conclusions

In conclusion, by investigating adaptive genetic variation in ponderosa pine with G2E and G2P
association analysis, our study found thousands of genomic variants associated with response to
climate and physiological traits. Some of these have previously-identified functions associated with
drought responses, but for others the function — or how that function is relevant for environmental
responses — is still unknown. Molecular tools based on the associated genetic markers could be
developed to assist breeders and land managers in speeding up selection for drought tolerance or
selecting appropriate seed sources for a changing climate. In addition, our results should open up new
opportunities for functional studies to determine the molecular roles of the genes underlying these
associated genetic makers in influencing trees adaptation.

Methods
Sampling

The original source locations for the 223 P ponderosa genotypes in the Chico orchard (Fig. 1) fall within
just one of the several genetic subdivisions previously identified in ponderosa pine [66—68]. Fresh needles
were collected from these individuals and placed in labeled tea bags over silica gel to quickly dry them
and preserve the DNA for extraction.

Seeds were collected from a subset of 50 genotyped parent trees in the summer of 2018. Because pines
are wind-pollinated and outcrossing [67], seeds from the same tree are mostly half-siblings, occasionally
full-sibs. We placed 2—-3 mature cones from each mother tree into paper bags and placed them in a warm
dry place until seeds were released. The seeds were stored in a refrigerator until the greenhouse
experiment was carried out (see greenhouse experiment section below). All voucher specimens were
maintained at Moran’s Lab in University of California, Merced.

DNA sequencing

DNA was extracted from the dried needles using a modified Qiagen plant kits protocol and quantified
using an Eppendorf BioSpectrometer (Eppendorf, AG, Germany). Samples were frozen and sent to the UC
Davis Genome Center for processing. Four 48-plex GBS libraries consisting of 47 DNA samples and a
negative control (no DNA) and one 36-plex GBS library consisting of 35 DNA samples and a negative
control were prepared. The pool was quantified via gPCR using the KAPA Library Quantification Kit (Kapa
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Biosystems, Wilmington, MA, USA) for lllumina sequencing platforms, with 0.9X bead cleanup to remove
small fragments (< 250 bp). Additional DNA purification using the Zymo DNA Clean & Concentrator kit
(Zymo Research, Irvine, CA) was performed to increase the purity of the extracted DNA. The libraries were
then sequenced (single-end read 90 bp or 100 bp) using an lllumina HiSeq 4000 (lllumina, San Diego, CA),
one library per lane.

SNP calling

No reference genome is available for ponderosa pine (Pinus ponderosa), but one does exist for loblolly
pine (Pinus taeda) [69, 70]. Of the conifers that have been sequenced to date, P taeda is the most closely
related to P ponderosa [71, 72]. Furthermore, the P taeda reference genome was used to successfully
used to design probes for sequence capture in P contorta [73, 74]. Based on preliminary analyses, we
selected the Stack v.2.2 pipeline [75] with this reference genome
(https://treegenesdb.org/FTP/Genomes/Pita/) for SNP calling (Shu & Moran, in review). Each step in the
Stacks reference pipeline is performed internally in Stacks algorithms except alignment with BWA
v.0.7.17 [76] and the Samtools v.1.9 [77] step used to get read position. Default settings were used in
Stacks, BWA and Samtools.

SNP filtering

After calling the SNPs, we ran SnpEff [78] to identify the location of gene that the SNP locates. We built
the data base with the annotated genome and the reference genome of loblolly pine v.2.01 in TreeGenes
(http://treegenesdb.org/FTP/Genomes/Pita/v2.01/). The location of each SNP is listed in the output file
of SnpEff as one of six primary location categories, including intragenic variants, intergenic variants,
upstream SNPs, downstream SNPs, synonymous, and missense variants in the gene coding sequence. In
Snp Eff, "intragenic" refers to SNPs in introns, while "missense" refers to any non-synonymous mutation
in the transcribed region.

Many SNPs identified by GBS fall between genes and regulatory regions (in the intergenic regions) and
likely have no direct effect on gene expression or function. In addition, because of the low amount of
linkage disequilibrium in conifers [79, 80], any associations identified between such intergenic SNPs and
a phenotype or environment of interest are likely false positives, rather than reflecting linkage between the
SNP and a causal variant. We therefore filtered out the intergenic SNPs first before running the
association analysis using a Python script (https://github.com/shumengjun/LFMM).

Climate data

We obtained 30-year (1921-1950) averages of climate data for each genotype source location from the
270 m resolution California Basin Characterization Model (BCM) [81]. The five variables were mean
climatic water deficit (CWD, a measure of evaporative demand exceeding soil moisture); mean minimum
winter (December-February) temperature (TMIN); mean maximum summer (June - August) temperature
of summer (TMAX); mean monthly winter precipitation (PPTW); and mean April 1st snow pack (PCK4).
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Environmental associations

We used LFMM2, which was developed for G2E association and has been shown to outperform other
similar approaches with several orders-of-magnitude faster computing [82], and which also controls for
the effects of demographic processes and population structure on the distribution of genetic variation
[83]. This approach is robust to high amounts of missing data, such as GBS sequencing tends to
produce, when sample sizes are > 100 [84]. LFMM2 regression models combine fixed and latent effects
with the following equation

Y=XB"+W+E.

where Y is a matrix of genetic information measured from p genetic markers for nindividuals, and Xis a
matrix of denvironmental variables measured for nindividuals. The fixed effect sizes are recorded in the
B matrix, which has dimension p * d. The E matrix represents residual errors with the same dimensions as
the response matrix. The matrix W is a matrix of rank K, defined by K latent factors where K can be
determined by model choice procedures. The K factors represent unobserved confounders - usually
geographical structure in the genotypes of the samples — represented as an n*K matrix, U. Visa px K
matrix of loadings. The matrix U is obtained from a singular value decomposition (SVD) of the matrix.

w=UuvT

To determine K, we used the two approaches implemented in the LEA v.2.6.0 R package: principal
component analysis (PCA) and admixture analysis [85, 86]. First, we ran the LEA function pca to select
the number of significant PCA components by computing Tracy-Widom tests with the LEA function
tracy.widom [87]. Second, we ran the LEA function snmf for K values between 1 and 5 with 10 repetitions
each. The most likely K value was identified by minimizing the cross-validation error evaluated in the 10-
fold cross-validation procedure (Frichot & Francois, 2014). We then chose significant associations based
on a false rate of 5% (q<0.05) using the R package QVALUE [88].

Greenhouse experiment

We used fifty half-sib families that span the climatic range of ponderosa pine in California for the
greenhouse experiment and G2P analyses. We aimed to have 10 seedlings from each maternal family in
both wet and dry treatments, 1000 seedlings in total. During winter 2018, the seeds were stratified to
break dormancy by placing them in aerated water for 48 hours, then surface-drying them and placing
them in plastic bags in the refrigerator (~ 1.7°C) for 6 weeks. Forty-eight of the 50 families had enough
seeds in their cones to be included in the experiment (Additional file 1: Fig. S4).

Because maximum seedling root length in a pilot experiment conducted in 2017 was more than 110 cm,
we used plastic tubes with an 8-cm width and 120-cm depth for planting. The bottom of each tube was
capped with mesh to prevent the soil from falling out while allowing drainage, and the lightweight clear
tubes were wrapped in black plastic to keep roots in the dark. The planting soil was a mixture of 70%
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sand, 20% vermiculite, and 10% organic-rich potting mix to mimic the coarse texture of the soil of many
Sierra Nevada conifer forests [89]. To keep tubes upright we used PVC pipes to build 10 frames that could
each hold 100 tubes. Two seeds from each family were planted in each tube in February 2019, and two
tubes from each family were randomly placed within each frame. In April 2019, we replanted more
stratified seeds of the correct family in any tubes without seedlings. All the tubes were watered every
other day during the germination and seedling establishment period (February through June).

At the end of June 2019, all but one seedling per tube was removed, and alternating frames were
assigned to the wet treatment and the dry treatment (5 frames containing up to 500 seedlings per
treatment) (Additional file 1: Fig. S4). The wet treatment group was watered twice every week and the
drought treatment group was watered once every three weeks until mid-October (3.5 months). While wild
ponderosa pine seedlings would receive little to no precipitation during the summer months, this
occasional watering was necessary in the greenhouse environment to prevent complete mortality.
Temperatures inside the greenhouse in the low-elevation environment of Merced, CA reached as high as
37°C on the hottest days and the soil volume of the tubes was limited, with no access to groundwater,
both of which make evaporation and drought stress more intense than the no-precipitation condition in
the wild.

Multiple phenotypic traits were measured during and after the greenhouse experiment. We calculated
shoot growth as final height minus height at the initiation of the treatments. The length of fresh roots
was measured from soil surface to taproot tip immediately after the harvesting, to avoid shrinkage.
Following harvest, needles, fresh stem and fresh roots of all the seedlings were separately put into paper
lunch bags and dried at 75°C for 48 hours. We measured root dry mass (RW) as well as shoot weight (SW,
total of stem and needles). We then calculated root-shoot ratio (R2S) as RW/SW. Specific Root length
(SRL) was calculated as root length/root weight.

Before harvest, we also collected 3—-4 fresh needles from living seedlings to calculate stomatal density. In
pines, stomata are arranged into longitudinal rows. We put each needle on a slide and photographed it at
100x magnification using a Leica DME compound microscope equipped with a Leica DFC290 digital
camera. All counts were conducted near the middle of the needle to avoid variation that might occur at
the base and at the tip. Approximately 1.96 mm lengths of needle were surveyed for number of stomata
and stomatal rows on their adaxial (upper) and abaxial (lower) surfaces. Needle width was measured in
magnified images using the line measure tool in the Leica software. Then we calculated the stomata
density on each side as the number of stomata divided by 1.96*width of needle. Individual seedling
means were calculated by averaging adaxial (AD) stomatal density and number of stomatal rows on both
sides (AB & AD) across sampled needles. Only 42 out of 48 mother trees had enough germination to carry
out these measurements across both treatments.

Genotype-phenotype association analysis

The 42 individual mother trees had already been genotyped, and we used these same SNPs for the G2P

association analysis, focusing on the traits significantly associated with drought treatments. The
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breeding value (BV) of a tree reflects the tendency of an individual to produce offspring with high values
of that trait and is estimated by measuring relatives [16, 90]. For the wet treatment traits, we use the
average trait value across all members of each family in the wet treatment as the BV. For the drought
response traits, we deduct the average trait value for a given family in the wet treatment from the value
for each offspring of that family in the drought treatment and then use the mean difference as the BV. We
used LFMM 2 (Caye et al. 2019) to run the genotype to phenotype association analysis, and then

identified associations based on p (< 10™°) value.
Gene annotation

After identifying the significantly associated SNPs, we aligned the gene sequences for these regions
against the nonredundant protein sequences database using UniProt to identify the gene and protein with

the implemented Blastx (2.9.0+, E< 1e”9). The Gene Ontology Annotation Database [91, 92] was used to
further identify the potential functions of the genes. If a SNP is located in the intragenic region, we
performed a search by querying the flanking sequence 400 bp from the beginning position of the gene.
This had to be done separately because the “start” and “end” positions given for the genes containing the
introns were too far apart; no hits could be obtained by Blastx.
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Figure 1

Location and the admixture analysis of the 223 ponderosa pine genotypes. Left: Original geographic
distribution of the 223 ponderosa pine genotypes. Right: Proportion of each individual’s genome
allocated to “population 1” (green) and “population 2" (orange) by admixture analysis when K=2,
illustrating lack of geographical isolation. Trees were subsequently treated as part of a single population.
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Figure 2

Venn diagram comparing overlap in environmentally associated SNPs. The number of overlapping SNPs
that are associated with four climatic variables between April 1st snow pack (PCK4); mean monthly
winter precipitation (PPTW); Mean climatic water deficit (CWD), and mean minimum winter temperature
(TMIN). The 50 SNPS associated with mean maximum summer temperature (TMAX) did not overlap with
the other four climatic variables, and so are not included in this figure.
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Figure 3
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Venn diagram comparing overlap in phenotypically associated SNPs. Left: Overlap in SNPs significantly
associated with control root length (RL); root-shoot ratio (R2S); and abaxial stomatal rows (NR_AB). SNPs
associated with control height growth (15), adaxial stomatal density (12), and shoot weight (9) did not
overlap other categories. Right: Overlap in SNPs significantly associated with drought responsiveness of
shoot weight (ASW); root length (ARL); and number of stomatal rows on abaxial side (A NR_AB). SNPs
associated with drought responsiveness of height growth (150), adaxial stomatal density (57), and R2S
(6) did not overlap with any other categories.
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Figure 4

Five type of annotated SNP functions associated with different climatic variables. The number of non-
synonymous variants and other variants that are associated with the five climatic variables: Climatic
water deficit (CWD); Minimum winter temperature (TMIN); Maximum summer temperature (TMAX); April
1st snow pack (PCK4), and Monthly winter precipitation (PPTW). Missense (non-synonymous) SNPs are
shown in grey, other types of SNP in orange.
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Figure 5

Five type of annotated SNP functions associated with different traits in control conditions. The number
of non-synonymous variants and other variants that are associated with four traits in control conditions:
root length (RL), number of stomatal rows on abaxial surface (NR_AB), stomatal density on adaxial
surface (SD_AD), and root-to-shoot ratio (R2S). No SNPs in these categories were associated with height
growth or shoot weight. Missense (non-synonymous) SNPs are shown in grey, other types of SNP in

orange.
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Figure 6

Five type of annotated SNP functions associated with drought responsiveness of different traits. The
number of non-synonymous variants and other variants that are associated with drought responsiveness
of five traits: changes in height growth (GR), root length (RL), shoot weight (SW), number of stomatal
rows on abaxial surface (NR_AB), and stomatal density on adaxial surface (SD_AD). No SNPs in these
categories were associated with root-to-shoot ratio (R2S). Missense (non-synonymous) SNPs are shown
in grey, other types of SNP in orange.
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