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Supplementary Table 5: 	Training hyperparameter of the proposed Transformer model.

Supplementary Fig. 1:  	(a) Optimal region (in green shade) of learning rate values that corresponds to the most rapid decline in the loss value and hence are better suited to be used in training. (b) Learning rate schedule during the training process. (c) Loss values on the training and validation set during training. (d) RMSE metric on the training and validation set during training.

Supplementary Fig. 2:  	(a) Relation between training modes and the RMSE metric. (b) Relation between training modes and training time.



















[bookmark: _bookmark23][bookmark: _Hlk75528090]Supplementary Table 1. Specifications of the cylindrical LG18650 LiNiMnCoO2 cell.

	Type

	Nominal
Capacity (Ah)
	Nominal
Voltage (V)
	Cut-off
Voltage (V)
	Maximum
Current (A)
	Specific
Energy (Wh/kg)

	18650 NMC
	3.0
	3.6
	2.5/4.2
	20
	240
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	Type

	Nominal
Capacity (Ah)
	Nominal
Voltage (V)
	Cut-off
Voltage (V)
	Maximum
Current (A)
	Specific
Energy (Wh/kg)

	18650 NMC
	2.9
	3.6
	2.5/4.2
	10
	206
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                   Supplementary Table 3. Train, validation, and test set drive cycles.

	Dataset
	Dataset	Drive Cycles
	Total timesteps

	Train
	Mix1, Mix2, Mix3, Mix4, Mix5, Mix6, HPPC, HWFET
	318,072

	Validation
	Mix7, Mix8
	68,032

	Test
	UDDS, LA92, US06
	152,215





Supplementary Table 4. Architecture hyperparameter values for model.

	Hyperparameter
	Value

	Input dimension
	3 (voltage, current, temperature)

	Number of layers in encoder
	3

	Sequence length
	400

	Number of features
	128

	Type of positional encoder
	Zeros

	Number multiheaded attention heads
	16

	Batch normalization
	False

	Dimension of feedforward layer
	256

	Activation function
	Gaussian Error Linear Units (GELU)

	Dropout in feedforward layer
	0.2

	Residual dropout in encoder
	0.1



[bookmark: _bookmark27]Supplementary Table 5. Training hyperparameter of the proposed Transformer model.

	Hyperparameter
	Value

	Pretraining LR	
	1e-3

	Retraining LR
	2e-4

	LR Schedule
	Flat and cosine annealing

	Optimizer
	Ranger

	Minibatch size
	128

	Training epochs
	25

	Loss function
	Log-cosh

	Error metric
	RMSE & MAE


	








Supplementary Figures


Supplementary Fig. 1 (a) shows the optimal region (in green shade) of learning rate values that corresponds to the most rapid decline in the loss value and hence are better suited to be used in training. Supplementary Fig. 1 (b) shows the learning rate schedule during the training process. In the beginning 75% of the training loop, the learning rate is held at a constant value and during the last 25% of the training, the learning rate value is decayed following the cosine function. Supplementary Fig. 1 (c) shows the loss values on the training and validation set during training. Supplementary Fig. 1 (d) shows the RMSE metric on the training and validation set during training.
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Supplementary Fig. 1 (a) Optimal region (in green shade) of learning rate values that corresponds to the most rapid decline in the loss value and hence are better suited to be used in training. (b) Learning rate schedule during the training process. (c) Loss values on the training and validation set during training. (d) RMSE metric on the training and validation set during training.


Supplementary Fig. 2 (a) shows the relation between training modes and the RMSE metric and supplementary Fig. 2 (b) shows the relation between training modes and training time. Supplementary Fig. 2 (a) shows that PT+RT always results in lower RMSE compared to T and PT+FT. Supplementary Fig. 2 (b) shows that PT+RT takes almost the same amount of training time compared to training mode T. In both subfigures, it is evident that PT+RT mode contributes to the lowest RMSE and take approximately the same amount of time compared to models trained in training mode T.
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Supplementary Fig. 2. (a) Relation between training modes and the RMSE metric. (b) Relation between training modes and training time.
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