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Abstract: The present communication owns to address the mathematical framework of two-

dimensional electrically conductive and thermally radiative Jeffrey nanofluid flow by a curved 

surface. The interaction of a periodic magnetic field with the suspended nanoparticles and mixed 

convection are critically important due to its application in a broad spectrum. Buongiorno’s model, 
incorporates the effect of thermophoretic force and Brownian movement, describes the nature of 

Jeffrey nanofluid. The influence of activation energy, viscous dissipation, and thermal radiation 

effects are reserved. The dimensionless system of differential equations has been diminished from 

the modeled equations via transformation framework which is solved analytically versus 

homotopic algorithm. The stability and convergence analysis has been carried out to optimize 

system parameters and accuracy of the system. The effect of physical constraints on flow field, 

energy, and concentration of nanoparticles are portrayed via plotted graphs and debated. 
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1. Introduction 

The advancements in nanofluid technology increased largely during the past few years due to their 

higher thermal performances. Nanofluid is a suspension of small size (1-100 nm) particles into a 

base liquid. Normally such fluids are made by using a mixture of solid particles into base fluids 

like water, engine oil, ethylene glycol (EG) and many other base liquids. The structure of 

nanoparticles consists of metal carbide, nitride, metal oxide, and even nanoscale liquid droplets 

[1]. Such particles have shape of sphere, tubular, rod-like etc. Choi’s investigation [2] shows that 
the implementation of the nanofluids is utilized in vast range of industrial manufacturing processes 

like textile, transportation, paper production, electronic equipment, energy production and many 

others. The basic characteristics of nanofluids are their thermal conductivities which are much 

higher than the other base fluids. The combination of such substances offers us a medium for heat 

transfer that behaves as a fluid. In fact, addition of nano size particles in the base fluids develops 

thermal behavior due to which heat transfer characteristics are increased substantially. Further, the 

magnetohydrodynamic (MHD) nanofluids are significant in engineering and industrial processes. 

Such fluids are used in optical modulators, optical gratings, opticallswitches, tunable optical fiber 

filters, stretching of plasticcsheets and metallurgy, polymerrindustry, and other applications. Many 

metallurgic procedures involve drawing continuous strips/filaments through a nanofluid to cool 

them. Such strips are sometimes stretched processes the drawing and thinning of copper processes. 

In suchhsituations, the quality and wanted features of the final product is obtained by drawing such 

strips into electricallyyconducting fluid. Magneticcnanoparticles have a key role in the 

construction of loudspeakers, magnetic cell separation, hyperthermia, druggdelivery etc. The 

general applications of nanofluids include cooling of vehicle, making new types of fuel, saving of 

fuel in electric powerrgeneration units, cancer therapy, imaging and sensing and other useful 



applications. References [3–10] show some recent attempts on this topic. Ahmad et al. [11] 

investigated MHD flow of three-dimensional unsteady Jeffreyynanofluid with thermal radiation 

and Joule heating in view of porous medium. Fiza et al. [12] studied homotopic solution 3D steady 

state Jeffrey liquid in rotating channel subject constant magnetic field with the application of Hall 

current. Ahmad et al. [13] proposed analytical solution of unsteady 3D flow of Jeffrey nanofluid 

past a bi-directional oscillatory surface. The influence of Brownian movement and thermophoretic 

force are analyzed by incorporating Buongiorno's model. Rasheed et al. [14] discussed the 

consequences of unsteady hydromagnetic thermally radiative Jeffrey nanofluid flow over a vertical 

surface with viscous dissipation and Joule heating. Naidu et al. [15] debated numerical implication 

of partial slip effect on MHD Jeffrey nanofluid flow including microorganisms over a stretching 

surface. Ge-JiLe et al. [16] examine numerically the implication of slip flow of Jeffrey nanofluid 

by a stretching surface with entropy generation and activation energy. Noor et al. [17] studied heat 

mass transfer effect on thermally radiative and chemically reactive time dependent Jeffrey 

nanofluid flow in a permeable channel with slip condition and heat reservoir source. Shahzada et 

al. [18] scrutinized numerical solution of steady state 2-dimensional Jeffrey nanofluid by an 

elongated surface. Hayat et al. [19] studied entropy generation in flow with Ag and Cu 

nanoparticles over a rotating circular disk with variable thickness and thermal radiation. 

Krishnamurthy et al. [20] investigated numerical solution of 2-dimensional slip flow by a curved 

surface in view of porous matrix. Kumar et al. [21] examined thermally radiative Marangoni flow 

of Casson nanofluid in view of extended surface with chemical reaction, heat reservoir source and 

heat generation mechanism. Roja et al. [22] debated numerical solution of thermally radiative 

hydromagnetic flow of micropolar nanofluid by an inclined curved surface with entropy 

generation, Joule heating and multiple slip effects. Hamid et al. [23] examined convection and heat 

transfer features in MHD flow of water based CNTs in a fin-shapeddcavity with thermal radiation 

and viscous dissipation effect. Khan et al. [24] developed numerical algorithm to analyzed Eyring–
Powell nanofluid by nonlinear curved surface by incorporating Brownian thermophoretic effects 

in the model equations. Khan et al. [25] explored various mechanism to developed heat and mass 

transfer rates by considering different permeable cavities for innumerable fluid models. Some 

recent and interesting attempt on this topic are provided in [26–31] for innumerable fluid models 

to understand heat transfer mechanism.  

2. Mathematical model of the problem 

Here, we assumed magnetohydrodynamics flow of Jeffrey nanofluid in view of vertically 

extending sheet enclosure by a uniform magnetic field and thermal radiation. The fluid flow is 

expected to be incompressible and laminar. The applied magnetic field is taken as 
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 with strength 0B . The Reynolds number is small enough such that the 

influence of induced field is weaker in comparison to the applied magnetic field. Therefore, 

induceddmagnetic effect is zero. The electriccfield is absent and physical properties are constant 

and independent of temperature. Fig. 1 particularizes the physical configuration of modeled flow 

problem.  

 



 

 

 

 

 

 

 

 

 

 

 

Fig.1 Physical sketched and flow patent of the problem 

where Gr  Grashof number,   wave length,  dimensionless time, T dimensionless time, C  is the 

dimensionless concentration profile, ,U V are dimensionless velocities,  * *,u v are the dimensional 

velocities and  * is the dimensional time. Thus, the fundamental flow equations turn into the 

following form: 
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With boundary postulates 
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whereas,   denote thermal expansion coefficient, * concentration expansion, *

wT wall 

temperature, *

wC  species concentration at wall, b stretching constant,  kinetic viscosity,  denote 

fluid density, 
1  relaxation time, 

2 denote ratio of relaxation to retardation time,  represent 

thermal conductivity, 
pc specific heat, 

rq is the unidirectional heat flux, 
BD  represent Brownian 

diffusion coefficient,  
TD thermophoresis diffusion coefficient. The heat flux term by incorporating 

the Roseland approximation is defined by the relation as 
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By incorporating following transformation to nondimensional quantities: 
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In view of Eq. (6) the non-dimensional Eq. (1) is justified routinely and Eqs. (2)– (5) reduced 

into the dimensionless state: 
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Following are boundary criterions in dimensionless variables: 
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The variables appearing in Eqs. (8)– (10) are signified as: 
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Labeled as magnetic parameter, mass Grashof number, the radiation term, Prandtl number, Lewis 

number, Brownian factor, thermophoresis constraint, Grashof number and respectively. 

The parameters having engineering applications in the present problem are skin-friction and 

Nusselt numbers elucidated as: 
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3. Convergence analysis of homotopic solution 

In section, we opted a well-known explicit analytical technique HAM for nonlinear computation. 

The computational analysis is remained insufficient unless the stability and convergence of the 

analytical solution are discussed. The derived series solution is mainly depending on the 

appropriate optimal selection of auxiliary constraints [12–14]. The precise choice of these 

parameters has a substantial importance in controlling and regulating convergence criteria. In this 

regard, we plotted and outlined curvesh for nonlinear governing Eqs. (8)– (10) in Fig. 2. The 

plat part of these curves which is parallel to x axis  fixes the allowable region of the convergence. 

The ranges of acceptable values of the auxiliary constraints for fruitful convergence have been 

disclosed in Table1. It has been perceived that average squared residual error dwindled via larger 

order of approximations. 



 

Fig. 2(a). curveh for velocity  

 

Fig. 2(b). Combined curvesh for temperature and concentration. 

 

 

 

 

2.0 1.5 1.0 0.5 0.0 0.5

40

30

20

10

0

U
'

1

U' 1

1.0 0.5 0.0 0.5

150

100

50

0

T
1

,
C

1

C 1

T 1



Table 1. The allowable ranges for convergence solutions. 

Solutions  Auxiliary parameters Convergent intervals 

 ,U X Y  Uh  1.5 0.0U  h  

 ,T X Y  Th  0.9 0.1T  h  

 ,C X Y  Ch  0.9 0.2C h  

 

4. Results and discussion 

The discussion segment is devoted to understanding the elementary features of the physical 

constraints graphically. The nonlinear constitutive flow laws in Eqs. (8)– (10) subject to boundary 

postulates, in Eq. (11), are tackled via homotopic technique. The consequences of relevant 

parameters on velocity, energy, and concentration field are explored through plotted graphs in 

Figures 3–20. By letting 

0.4,  Pr 1.0,  0.5,  0.2,  0.3,  0.2,  1,  0.2,   0.1M Nt Nb Gr Gm Le R and Ec           for 

computational analysis.  

The result of radiation constraint  R on fluid velocity is described in Fig 3. From this graph it can 

be perceived that velocity field upsurges with the intensifying values of radiation constraint. Fig. 

4 explains the velocity fields  U for different values of magnetic  M  parameter. It has been 

perceived that higher magnetic field diminished nanofluid flow. In reality when magnetic field is 

applied to fluid it intensifying viscosity of the fluid. In consequence, fluid particles experience 

resistance to flow due to which velocity retards. It is of great engineering interest that the yield 

stress of fluid flow can be measured correctly through a variation in magnetic strength. Figure 5 

depicts variations in thermal field  T subjected to larger radiation parameter  R . This figure 

discloses temperature development for higher thermal radiation factor. In fact, the working fluid 

gets additional heat energy subject to radiation parameter. In consequence, temperature upsurges. 

Variations in thermal field curves for diverse values of the magnetic constraint  M  is established 

in Fig. 6. It has been detected from this graph that the thermal energy curves augmented for 

intensifying values of magnetic parameter. Furthermore, an increment in  M  leads to decline 

elastic stress variable. Consequently, fluid temperature augmented in the neighborhood of the flow 

configuration. Moreover, due to the Joule heating and thermal dissipationneffects, extra heat 

energy flow to working fluid, which, developed thermal energy in the boundaryylayer region. 

Attributes of  Ec on temperature distribution  T curves perceived in Fig. 7. It is seen clearly 

from this plot that the temperature upsurges for the escalating values of  Ec constraint 

effectively. This augmentation in the fluid temperature is largely because of the fact that the 

frictional viscous heating in nanofluid reasons to allow heat energy into the working nanofluid due 

to which the temperature augments in the boundary layer section. Similarly, the presence of 

viscous dissipation effects in the energyyequation, the temperatureeprofile is boosted. When 



Eckert number is zero it signifies absence of viscous dissipation effects. Fig. 8 unveils the influence 

of  Nb on temperature field. The arbitrary motion of nanoparticles boosts for larger  Nb  value 

developed the kinetic energy of the fluid particles due to which additional thermal energy is 

produced. Hence, fluid temperature upsurges. Fig. 9 predicts variations in thermal field curves 

boosts through larger thermophoresis constraint  Nt . Here, one can perceive that  T is 

increasing function of thermophoretic force. Physically, thermophoretic force upsurges when

 Nt  is augmented. Such force assists to escaped nanoparticles by hotter towards colder part. In 

consequence, fluid temperature boosts. The higher values of  Pr  diminished conduction and 

develop heat transfer rate. Physically, larger Prandtl number significantly reduced thickness of the 

thermal boundary layer. Consequently, thermal field curves dwindle shown in Fig. 10. Figs. 11 

and 12 reveals the impact radiation and magnetic parameters on concentration profile. Here, one 

can perceived that heat mass transference coefficient boosts through higher radiation constraint 

consequently, C  escalates and diminishes with increment of magnetic parameter. Attributes of

 Nt  parameter on concentration field is unveiled in Fig. 13. Clearly  C  boosts via larger  Nt

. Physically higher thermophoresis constraint yields an upsurge in thermophoretic parameter which 

cause the frequently movement of the nanoparticlessfrom region of higher to lowerrtemperature. 

Thus, concentration field escalates. The contribution of  Nb on concentration profile is 

exemplified in Fig. 14. It is found that larger data of Brownian parameter, fluid concentration 

diminishes. Fig. 15 portrays variation in concentrationnprofile for innumerable values of  Le . 

Further,  Le  defines the ratio of thermalldiffusivity to masssdiffusivity and it is used to describe 

the fluid flow where there is simultaneoussheat mass transfer via convection. Thus, the 

concentration diminishes subject to larger Lewis number. The result of magneticcparameter on 

Cf  and Nu is captured in Figs. 16 and 17 are diminishing considerably keeping to the retarding 

effects of  M  on flow field. Figure 18 outlines the features of Nusselt number for the higher values 

of radiationnparameter. Clearly Nusselt number rises when  R  is increased which created 

sinusoidal pattern. On can perceived that higher magnetic parameter augmented kinetic energy 

between fluid particles. In consequence fluid temperature increases. The streamlines are presented 

against different values of magnetic parameter in Figs. 19 and 20. Physically it occurs because of 

a resistive Lorentz force of a magnetic parameter. 

 



 

Fig. 3. Variation of  R  on velocity 

 

Fig. 4. Variation of  M  on velocity  
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Fig. 5. Variation of  R  on thermal field 

 

 

Fig. 6. Variation of  M  on thermal field  
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Fig. 7. Variation of    on thermal field 

 

 

 

 

Fig. 8. Variation of  Nb  on thermal field 
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Fig. 9. Variation of  Nt  on thermal field  

 

 

Fig. 10. Variation of  Pr  on thermal field  
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Fig. 11. Variation of  R  on concentration profile 

 

 

Fig. 12. Variation of  M  on concentration profile  
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Fig. 13. Variation of  Nt  on concentration profile  

 

 

Fig. 14. Variation of  Nb  on concentration profile  
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Fig. 15. Variation of  Le  on concentration profile  

 

 

Fig.16 Skin friction illustration via  M  
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Fig.17 Nusselt number illustration via  M  

 

 

Fig.18 Nusselt number illustration via  R  
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Fig. 19 Illustration of streamlines for  1.0M   and  3.0R   

 

 

Fig. 20 Illustration of streamlines for  4.0M   and  3.0R   



5. Conclusion 

The present investigation displays the simulation of periodic magnetic Jeffrey nanofluid flow by a 

stretching surface. The fundamental flow laws diminished into dimensionless form via 

transformation and solved analytically with the implementation of homotopic method. One of the 

novel concerns is to perceive theoretically, how a periodic magnetic field affects nanoparticles. 

We witnessed following distinguished features through abovementioned investigation: 

 It is observed that velocity field enhances subject to increment in thermal radiation 

constraint. On the other hand, velocity profile diminishes due to higher implication of 

magnetic field.   

 Consideration of radiative factor and magnetic influence escalates thermal field curves. 

 One can perceived that heat mass transference coefficient boosts through higher radiation 

constraint and diminishes with increment of magnetic parameter. 

 An increment in Brownian motion parameter dwindles concentration profile and oppositive 

characteristics witnessed for thermophoretic force. 

 Here, one can noticed that heat mass transference coefficient boosts through higher 

radiation constraint.  

 The Nusselt number diminishes for higher values magnetic parameter and increases for 

larger radiation parameter. 

 The uprising value of magnetic parameter reducing fluid velocity and heat transfer rate 

rapidly.  
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