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ORIGINAL ARTICLE 
 

 

Modal balancing of flexible rotors with distributed unbalance 

 
Hao Shu1 • Chu Zhang1 • Huimin Dong1 

 
 
 
 
 
 
 
 
 
Abstract: A discrete dynamic balancing method for flexible 

rotors is proposed in this paper. The polynomial functions are 

adopted to characterize the mass eccentricity curve of rotor, and 

the relationship between the parameters of eccentricity curve 

and vibration response is established by finite element 

substructure method. Based on the vibration response at the 

bearing location, the parameters of mass eccentricity curve are 

identified, which are then decomposed into various modes to 

achieve the modal balance of the flexible rotor. Upon the 

proposed method, the simulation of a hollow rotor under 

cantilever support is performed, which indicates the 

effectiveness of the discrete dynamic balancing method. 

Keywords: Finite element model • Eccentric curve • Mode shape 

fitting • Modal dynamic balance 

 

1  Introduction 

 

Rotating equipment is the throat component of power 

machinery. In industrial production, rotor unbalance is 

considered to be the main factor causing vibration of 

rotating machinery. Severe vibration will not only bring 

noise, reduce the operating efficiency and service life of 

machinery and equipment, and even cause dangerous 

problems. According to the different dynamic balance 

principles, the flexible rotor dynamic balance can be 

classified as: influence coefficient method [1-2], which has 

the disadvantages of starting and stopping the equipment 

multiple times, modal balance method [3-4], and 

comprehensive balance method [5], which is developed to 

integrate the two aforementioned balancing haptic methods. 
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A wide range of scholars have conducted quantities of 

research on rotor dynamic balance, but most of them are 

based on lumped mass models [6]. Tiwari et al [7] adopt the 

concentrated lumped mass model to simultaneously 

identify the unbalance and the bearing dynamic stiffness 

parameters. However, very little attention was devoted to 

the topics of distributed unbalance, support installation 

position and counterweight plane limitation. Lee and Shih 

[8] used general transfer matrix method to discretize the 

unbalanced eccentric curve into Fourier series and analyzed 

the balance effect. Lee et al [9] proposed that the unbalance 

of the rotor should be continuously distributed and the 

lumped mass model is only applicable to thin disks, not to 

shafts. Due to the complexity of the method, Yang and Lin 

[10] proposed a finite element method that uses a 

polynomial curve to fit the unbalanced rotor distribution for 

the identification of eccentricity of long continuous rotors. 

Hundal et al [11] proposes a method to balance all modes 

order by order by establishing the relationship between 

unbalanced modal components and corrected modal 

components. Deepthikumar et al [12] established the finite 

element rotor model, carried out the dynamic balance 

experiment, and introduced the concept of distributed 

unbalance quantization for the first time.  

In the present study, based on the finite element method, 

a polynomial curve which is used to fit the distribution 

unbalance is obtained from the relationship between 

vibration and unbalance force, then, based on the mode 

orthogonal theory and the fitted mode function, the 

cantilever supported rotor is balanced in one single plane. 

 

2  Modelling of rotor-bearing system with 
substructure method 
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The rotor bearing system is usually consisting of rotating 

shaft, rigid disks, and bearings. Assume that the system is 

linear and the damping of the shaft is not considered in the 

present study.  

 

2.1  Shaft model 

The rotating shaft is generally discretized into a finite 

number of elements and the node of an element expressed 

at the geometric center on the left cross section of the i-th 

element is shown in Figure 1, where O-XYZ is the fixed 

coordinate system, and o-xyz the rotating coordinate 

system attached of the rotor. The origin of the fixed 

coordinate system and the rotating coordinate system 

coincide, as shown in Figure 1. The rotor rotates around 

the Z axis with an angular velocity Ω, and u, v is the node 

displacement of the rotor in X, Y axis, and θx, θy the node 

deflection angle of the rotor around the X, Y axis. The 

mass center Me, geometric center Ge, eccentric 

component and phase of any cross-section are depicted in 

Figure 2. The appropriate number of elements depends on 

the modal order expected to be analyzed and the geometry 

of the rotor. It is assumed that the cross-sectional shape, 

dimension, and material constant are uniform in each 

shaft element. In this paper, the rotor is modelled by using 

two-nodes Timoshenko beam elements, and two dofs in 

translation while another two dofs in rotation of each node 

are considered.  

 

 
Figure 1  Coordinate system of the rotor bearing system 

 

 
Figure 2  Eccentricity of a shaft cross section 

For a shaft element as is shown in Fig.1, the equation 

of motion can be expressed as: 

 

            
( ) ( )( ) ( ) ( ) ( )e ee e e eM q G q K q f+ + =  (1)  

       

where [M](e), [G](e), and [K](e) are the mass, gyroscopic, 

and stiffness matrix of shaft element, {q}(e) and {f}(e) are 

the displacement and force vector of the element node, 

respectively. (A detail of the matrix is given in [13])  

Assuming that the unbalance of the rotor is continuous 

piecewise along the axis of the rotor, and expressed in 

m-degree polynomial, the unbalance of the rotor in the 

rotating coordinate system is expressed as follows: 

 

0

( ) ( )( ) ( ) ( )
m

i

i i

i

s
e s a jb x s y s

l=

= + = +         (2) 

 

where  

 

0 0

( ) ( ) , ( ) ( ) , 1
m m

i i

i i

i i

s s
x s a y s b j

l l= =

= = = −   

 

The gravity factor is not considered in this paper, which 

is given by [13] for the opposite circumstance. The 

generalized unbalanced force can be derived from the 

beam element shape function and virtual work principle. 

 

2 T

0
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cos sin
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e

e e

c s

x s y s
Q t t ds

y s x s

Q t Q t


−   

=    +    
   

=  + 


  (3) 

 

 

2.2  Rigid disc model 

The thin disc is still modeled by adopting the 

concentrated and lumped mass method, the motion of the 

rigid disk can be expressed as: 

 

       d d d d dM q G q f+ =            (4) 

 

where [Md], [Gd] are the mass, gyroscopic matrix of disc, 

{qd} and {fd} are the disc displacement and force vector 

respectively. (A detail of the matrix is given in [13]) 

Assuming that there is mass eccentricity on the disc, 

the unbalanced force of disc can be expressed as: 

 

2
coscos sin

sinsin cos

d

d d d

d

t t
f m e

t t





 −    
=    
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      (5) 

 



Hao Shu et al. 

 

·4· 

where md, ed, and φd are the mass, disc eccentricity, and 

eccentric phase of the disc, respectively. 

 

2.3  Bearing model 

The bearing is modeled with eight stiffness and damping 

coefficients, and the force on each bearing can be 

expressed as: 

 

           
xx xy xx xy

B B B
yx yy yx yy

c c k k
q q f

c c k k

   
+ =   

   
   (6) 

 

where {q}B and {f}B are the displacement and force vector 

of the bearing, respectively 

 

2.4 Equation of motion of the rotor substructure 

The equation of motion of the rotor substructure can be 

obtained by assembling the equation of motion of the 

shaft element and the disk, expressed as: 

 

                  M q G q K q f+ + =        (7) 

 

where {q} and {f} are the displacement and force 

vectors of the rotor substructure, and [M], [G], and [K] 

are the rotor mass, gyroscopic, and stiffness matrix, 

respectively. 

  The overall system is composed of the rotor 

substructure and the bearing substructure, and the 

equation of motion can be expressed as: 

 

                ( ) ( )BM q C G q K K q f+ + + + = (8) 

 

Where [M], [G] and [K] are the mass, generalized 

damping, and stiffness matrix of the rotor-bearing system, 

{q} and {f} are the displacement and force vector of the 

master node respectively.  

The above overall motion equation is abbreviated as:   

 

          M q C q K q f+ + =       (9) 

 

where {q} and {f} are called the overall generalized nodal 

displacement and force vectors, respectively. Matrices 

[M], [C] and [K] are the overall mass, damping and 

stiffness matrices, respectively, in which matrix [C] 

includes damping and gyroscopic effects. 

Following the procedure adopted by Yang and Lin [10], 

the trajectory of the axis in the steady-state response of 

the lateral vibration of the shaft can be expressed as: 

 

( ) cos sin

( ) cos sin

c s

c s

u t U t U t

v t V t V t

=  + 

=  + 
          (10) 

 

In order to simplify the expression, the node 

displacement of the rotor is expressed as: 

 

     cos sinc sq q t q t=  +          (11) 

 

where 
T

1 1 1 1 ( 1) ( 1) ( 1) ( 1)

T

1 1 1 1 ( 1) ( 1) ( 1) ( 1)

{ } { }

{ } { }

c c c xc yc c n c n xc n yc n

s s s xs ys s n s n sc n sc n

q U V U V

q U V U V

   

   

+ + + +

+ + + +

=

=
 

Correspondingly, the synchronous external force on the 

rotor can be expressed as: 

 

     cos sinc sf f t f t=  +         (12) 

 

where             

T

1 1 1 1 ( 1) ( 1) ( 1) ( 1)

T

1 1 1 1 ( 1) ( 1) ( 1) ( 1)

{ } { }

{ } { }

c xc yc xc yc c n c n xc n yc n

s xs ys xs ys s n s n sc n sc n

f Q Q M M Q Q M M

f Q Q M M Q Q M M

+ + + +

+ + + +

=

=
 

Substituting equation (11) and equation (12) into 

equation (9) , we obtain: 

 

   
~ ~

sysT q f  =                   (13) 

 

where 

 

   
2 ~ ~

T T

2
; ;sys c s c s

K M C
T f f f q q q

C K M

 − 
  = = =   − − 

 

3  Balancing methodology 

 

Based on the finite element model established in the 

previous section, assuming a set of global and local 

discrete unbalanced polynomial functions, the relationship 

between the global and local unbalanced polynomial 

coefficients is established through the node position 

information, and the rotor unbalanced force is obtained by 

the local polynomial coefficients, furthermore, the 

relationship between the vibration response and the global 

unbalanced polynomial is determined. The mass 
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imbalance is expressed in the form of modal components, 

and the first-order bending speed dynamic balance is 

performed on the flexible rotor based on the mode 

orthogonal theory. The general process of discrete 

dynamic balancing method is shown in the flow chart 

below, Figure 3. 

 

Figure 3  Flow chart of balancing methodology 

  

3.1  Identification of unbalanced coefficient of global 

distribution 

The local eccentricity curve is defined for each shaft 

element unit, while the global eccentricity curve is 

throughout the rotor. The local eccentric curve is 

expressed in the x-z and y-z planes as: 

 

0 0

( ) , ( ) , ,0 1
m m

i i

i i

i i

s
x a y b

l
     

= =

= = =       (14) 

 

Correspondingly, the global eccentric curve can be 

expressed as: 

 

0 0

( ) , ( )
m m

i i

i i

i i

X z A z Y z B z
= =

= =          (15) 

 

where ai and bi (Ai and Bi) are local (global) eccentric 

polynomial coefficients in the x-z and y-z planes, 

respectively. X(z) is the projection of the global 

eccentricity curve on the x-z plane, and Y(z) the projection 

of the global eccentricity curve on the y-z plane. s is the 

local coordinate in a shaft, l the length of the shaft 

element and z the global axial coordinate. In order to 

ensure that the eccentric curve coefficient can be solved, 

the following condition must be satisfied: 8(n+1)>=2(m+ 

1), where n is the number of axis element and m is the 

degree of the polynomial. 

For ease of expression, the following uses a five 

polynomial curve as an example to illustrate, the 

polynomial curve of any order can be obtained in the 

same way, so the overall eccentric curve and the local 

eccentric curve are: 

 
5 4 3 2

5 4 3 2 1 0

5 4 3 2

5 4 3 2 1 0

5 4 3 2

5 4 3 2 1 0

5 4 3 2

5 4 3 2 1 0

( )

( )

( )

( )

X z A z A z A z A z A z A

Y z B z B z B z B z B z B

x a a a a a a

y b b b b b b

     

     

= + + + + +

= + + + + +

= + + + + +

= + + + + +

    (16) 

 

For the same axis element, in order to match the local 

eccentric curve and the global eccentric curve, the values 

and derivatives of the local and global eccentric curves at 

the node of the element are required to be equal. The 

following uses the boundary conditions of the x-z plane as 

an example to illustrate, and the y-z plane is the same: 

 

  

1 0

1

1

2
1 2

2 5 4 3 2 1 0

5 34 2 1

2

5 34 2
2 2 2 2 2

( ) (0)

( ) (0)

2
( ) (0)

( ) (1)
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( ) (1)

20 612 2
( ) (1)

X l x a

a
X l x

l

a
X l x

l

X l x a a a a a a

a aa a a
X l x

l l l l l

a aa a
X l x

l l l l

= =

 = =

 = =

= = + + + + +

 = = + + + +

 = = + + +

   (17) 

 

where l=l2-l1 , l1 , l2 are the z coordinate at the node of the 

element. ‘‘’ ’’ denotes the derivative with respective to z. 

In order to simplify the expression, the above formula 

is organized into a matrix form: 

 

     5

ee e

lu T =              (18) 

 

where {u5}e is the local eccentric curve coefficient vector 

and {α}e the function or derivative value vector of the 

global eccentric curve at the node and [Tl]e the transfer 
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matrix between the two vectors.  

In order not to lose the generality, the above expression 

can be extended to a general expression of order m and 

integrate all axis element, we obtain: 

 

     
2 ( 1) 1 2 ( 1) 12 ( 1) 2 ( 1)m ln m n mn m n m

u T 
+  + +  +

=     (19) 

 

where m is an odd number because if m is even, the 

derivatives up to order of m/2 of the local and global 

eccentric curves are matched at one node of the element, 

while only the derivatives up to m/2 are matched at another 

node. 

Similarly, the function value and derivative value of the 

global eccentricity coefficient at the node can be 

expressed as: 

 
5 4 3 2

1 5 1 4 1 3 1 2 1 1 1 0

4 3 2

1 5 1 4 1 3 1 2 1 1

3 2

1 5 1 4 1 3 1 2 1

5 4 3 2

2 5 2 4 2 3 2 2 2 1 2 0

4 3 2

2 5 2 4 2 3 2 2 2 1

3

1 5 2

( )

( ) 5 4 3 2

( ) 20 12 6 2

( )

( ) 5 4 3 2

( ) 20 12

X l A l A l A l A l A l A

X l A l A l A l A l A

X l A l A l A l A l

X l A l A l A l A l A l A

X l A l A l A l A l A

X l A l A

= + + + + +

 = + + + +

 = + + +

= + + + + +

 = + + + +

 = + 2

4 2 3 2 2 26 2l A l A l+ +

     (20) 

 

Then, the above formula is simplified to matrix form: 

 

     5

ee

LT U =                (21) 

 

where {U5} is the global eccentric curve coefficient 

vector and {TL}e the transfer matrix between the two 

vectors.  

In order not to lose the generality, the above expression 

can be extended to a general expression of order m and 

integrate all axis element: 

 

 2 ( 1) 1 2 ( 1) 12 ( 1) 2 ( 1)
{ } { }n m L m h mn m h m

T U +  + +  +
=     (22) 

 

So far, we have determined the coefficient relationship 

between the global eccentric curve and the local eccentric 

curve: 

 

     m l L mu T T U=                 (23) 

 

At the same time, the relationship between the 

unbalanced force of the shaft element and the local 

eccentricity coefficient can be determined by Equation (2) 

 

           2 2

5 5,
e e e e e e

c c s sf F u f F u=  =    (24) 

 

Assembling the element equations, we obtain: 

 

        
~

T 2;c s mF F F f F u= =       (25) 

 

If the thin disc is considered to have mass eccentricity, 

the identification coefficient matrix can be expressed as: 

 

 
T T

;d d

m d dU U U U x y = =       (26) 

 

Correspondingly, the unbalanced force of the disc 

should be embedded in the position of the node where the 

disc is located. so, the unbalanced force matrix is 

modified to: 

 

( /2) ( 2) ( /2) ( 2)

0 0 0

0 0
;

0 0

0 0

d dd d

c s

c d s d

p q p q

m m
F F

F m F m

 +  +

   
   
   
   −

= =   
   
   
   
      

(27) 

( 2) ( 2) ( 2) ( 2)

0 0 0 0

0 1 0 ; 0 1 0

0 0 1 0 0 1

l L

d d

l L

q q q q

T T

T T

+  + +  +

   
   

= =
   
      

 

 

Substituting Equation (25) and (27) into Equation (11), 

we obtain: 

 

   

   

~
2 1

( ) ( ) ( )( ) ( 1)

2

1

[ ] [ ] [ ]sys p p l q q L q r mp q r

m rp r

q T F T T U

T U

−

   



= 

= 
  (28) 

 

where p=8(n+1), q=2n(m+1), r=2(m+1)+2d 

In Eq. (28), [Tsys] is obtained from FEM model. {F}, 

{Tl} and {TL} are obtained from Eqs. (25), (18) and (21). 

{q} is the measured vibration response.  

Given the vibration information, we can find the global 

eccentricity curve by Equation (28). In the actual 

measurement process, not every node can be measured. 

Only the row corresponding to the degrees of freedom is 

retained in [T]. Thus the stability of the equation solution 

depends on the new matrix [T] formed under multiple 

measurements. The equation can be solved by singular 

value decomposition method or Tikhonov regularization 

method since the condition number of [T] may be very 

large, which has been introduced in [7] and [10]. At the 

same time, in order to ensure the existence of solution to 
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the equation, the total degree of freedom of the 

measurement should be greater than 2(m+1)+2d. 

 

3.2  Single plane modal balancing 

This paper is more interested in modal dynamic balance 

with limited weight plane, so single-plane modal dynamic 

balancing method is used for first-order bending 

valancing, with emphasis to limit the vibration amplitude 

at location of the bearings.  

The rotor mass imbalance distribution can be expressed 

by the following two methods according to the centroid 

eccentricity and modal components (the following uses 

the Y plane as an example to illustrate): 

 

'

1

( ) ( ) ( )

( ) ( )

y

i i

i

U z m z e z

U z Y z


=

=

=
           (29) 

 

where ηi
’ is the mass unbalanced modal component 

coefficient 

Based on the mode orthogonal theory, the above 

formula can be expressed as: 

 

' '

0 0
( ) ( ) ( ) ( ) ( ) ( )

l l

i i i i i im z U z Y z dz m z Y z Y z dz M = =  (30) 

 

where Mi is the i-th modal generalized mass. 

Similarly, the counterweight is expressed as a modal 

component: 

 

1

( ) ( )
( ), i

i i i

i i

Pm c Y c
P Y x

M
 



=

= =       (31) 

 

where βi is the counterweight modal component 

coefficient and c is the location of the counterweight. In 

order to balance a certain mode, the coefficients of mass 

unbalance and counterweight in this mode should be 

opposite to each other, so the equation required to balance 

the i-th modal component is as follows 

 

2

0

2

0

( ) ( ) ( ) ( ) ( )    

( ) ( ) ( ) ( ) ( )    

l

x i x i

l

y i y i

P m c X c m z e z X z dz

P m c Y c m z e z Y z dz

= −

= −





   (32) 

 

where 

Px, Py are the weights needed to balance the i-th mode 

of the x-z and y-z planes at axial position c. 

m(c) is the mass at axial position c. 

Xi(c) and Yi(c) are the values of the i-th mode functions 

of the x-z and y-z planes at the position c. 

m(z) is the axial mass distribution function. 

Xi(z) and Yi(z) are the i-th mode functions along z axis 

of the x-z and y-z planes. 

Therefore, the balance weight and phase required to 

balance the first-order bending speed at the rotor axial 

position c are given by: 

 

2 2 1; tan ( / )r x y y xP P P r P P−= + =       (33) 

 

 

4  Numerical simulation 

 

In order to explain the above-mentioned distribution 

unbalance prediction and modal dynamic balance process, 

this paper establishes a horizontally installed rotor system, 

which is composed of a steel stepped shaft and rolling 

bearings as is shown in Figure 4. Among them, the shaft 

is discretized into ten two-node Timoshenko beam 

elements and the cross stiffness and damping terms are 

not considered in rolling bearings. The total length of the 

shaft is 2m and the counterweight plate to balance the 

first-order critical speed is in the cantilever state at 11 

nodes. The material properties and other parameters of the 

rotor system with equivalent bearing stiffness is shown in 

Table 1. The numerical simulation process is completed in 

Matlab (Ver. 2017b) 

 

Figure 4  Schematic diagram of rotor bearing system 

 

Since the rotor is divided into ten units, the mass matrix 

[M], generalized damping matrix [C], and stiffness matrix 

[K] of order 44×44 can be determined, we can then, fit the 

modal shape data calculated by the finite element model. 

The mode functions of the x-z and y-z planes can be 

obtained, which is shown in Figure 6. The 

first/second-order bending mode function is: 

4 3 2

1

4 3 2

2

( ) 0.10855 0.57620 0.63897 0.077 0.00788

( ) 0.19714 0.4352 0.1057 0.49734 0.00256

X z z z z z

X z z z z z

= − + − +

= − − + −
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Furthermore, the natural frequency of the system can 

be obtained through Equation (13). which is given in 

Table 2. Under the condition of cantilever support, the 

natural frequency of the rotor system will be lower than 

that under the simple support condition. 

 

Table 1 

Properties of rotor-bearing system 

Element 

no 

Element 

node 

Element 

length 

Outer 

diameter 

Inner 

diameter 

1 1,2 0.2 0.06 0.02 

2 2,3 0.2 0.06 0.02 

3 3,4 0.2 0.08 0.02 

4 4,5 0.2 0.08 0.02 

5 5,6 0.2 0.08 0.02 

6 6,7 0.2 0.06 0.02 

7 7,8 0.2 0.06 0.02 

8 8,9 0.2 0.06 0.02 

9 9,10 0.2 0.04 0.02 

10 10,11 0.2 0.04 0.02 

Bearing-1 at node 1  Bearing-2 at node 8 

kxx=kyy=1E9 N/m kxx=kyy=1E9 N/m 

Disc properties at node 11, md=0.35kg 

Rd=0.04m, xd=1e-6m, yd=1e-6m (mass eccentricity) 

 

 

Table 2 

Natural frequency of rotor –bearing system 

 First-order 

bending 

Second-order 

bending 

Natural frequency (Hz)     28.57     72.94 

 

As explained above, any odd number m can be used to 

simulate the distribution imbalance. Now the polynomial 

of degree 5 is adopted for the simulation. The 

transformation matrix [F], [Tl] and [TL] of order 

88×122,122×122,122×14 respectively are computed from 

Equations (25), (18), and (21), then the matrix [T] of 

order 88×14 is estimated. At each speed, we can only 

obtain the vibration value at the support, that is, for the T 

matrix, the corresponding row of matrix [T] is remained. 

In order to satisfy the condition of solving the equation, 

we can obtain the global eccentric curve coefficient {Um} 

and disc eccentricity by measuring the bearing vibrations 

at different speed. 

The distribution eccentric curve before dynamic 

balance is as below, which is shown in Figure 5 

5 4 3 2

5 4 3 2

( ) 0.00089 0.00088 0.00424 0.00426

0.00188 0.00057

( ) 0.00154 0.00114 0.00804 0.00653

0.00451 0.00111

x z z z z z

z

y z z z z z

z

= − − +

+ −

= − − +

+ −

 

  The bearing stiffness is exactly the same in the x and y 

directions, which can be account for the similarity of the 

modal shape in the x-z and y-z panes. The discrete mode 

shape data graph and the fitted mode shape function graph 

are shown in Figure 6. 

 

Figure 5  Global eccentricity curve before balance 

 

 

Figure 6 (a)  First-order bending mode shape 

 

 

Figure 6 (b)  Second-order bending mode shape 
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The vibration at the bearing before balancing is shown 

in Figure 7. As can be seen from the diagram, the rotor 

reaches resonance at the first bending frequency. After 

crossing the first-order critical speed, the vibration 

increases and the rotor gradually approaches the 

second-order resonance region. Due to the limitation of 

the position of the counterweight plane, through equation 

(25), the amplitude and phase of the counterweight 

required to balance the first-order bending which can be 

calculated by balancing methodology are: 23932.625gmm 

/ 77.8449 degree. 

 

Figure 7 (a)  Diagram of bearing vibration (before balancing) 

 

 

Figure 7 (b)  Diagram of bearing vibration (after balancing) 

 

Table 3 

Peak value of bearing vibration(um/deg) 

 Bearing 1 Bearing 2 

Before balancing  189.9/-113.28 233.7/66.65 

after balancing  100.9 /-99.15 120.5/80.03 

 

From table 3, we can draw that after the single-plane 

modal balancing, the vibration of the bearing at the 

first-order bending frequency is reduced from the initial 

189/233.7 to 100.9/120.5, which is reduced by about 50%. 

The effect of dynamic balance is remarkable, and by 

measuring the vibration at the support, the equation of the 

eccentricity curve after balancing can be obtained. 

 

5 Conclusions 
 

The finite element substructure method combined with the 

m-degree polynomial curve is proposed to establish the 

discrete unbalanced model of the rotor system in the 

present study and the relationship between the vibration at 

the bearing locations and the polynomial curve coefficients, 

the mass unbalance and the counterweight modal 

components is analyzed. A polynomial curve of degree 5 is 

adopted to simulate the distributed unbalance of the hollow 

rotor in cantilever state and the modal method to 

dynamically balance the rotor. The effectiveness of the 

discrete dynamic balancing method and the validity of the 

model are verified by simulation. The vibration at the 

bearing locations decreased to about 50% by adding the 

counterweight obtained from the procedure. The developed 

programs of discrete dynamic balancing in this paper based 

on finite element and modal balance theory can be used for 

on-site dynamic balance analysis of large flexible rotors. 
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