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Abstract
Background Malaria surveillance is critical for monitoring changes in malaria morbidity over time.
National Malaria Control Programmes often rely on surrogate measures of malaria incidence, including
the test positivity rate (TPR) and total laboratory con�rmed cases of malaria (TCM), to monitor trends in
malaria morbidity. However, there are limited data on the accuracy of TPR and TCM for predicting
temporal changes in malaria incidence, especially in high burden settings.

Methods This study leveraged data from 5 malaria reference centres (MRCs) located in high burden
settings over a 15-month period from November 2018 through January 2020 as part of an enhanced
health facility-based surveillance system established in Uganda. Individual level data were collected from
all outpatients including demographics, laboratory test results, and village of residence. Estimates of
malaria incidence were derived from catchment areas around the MRCs. Temporal relationships between
monthly aggregate measures of TPR and TCM relative to estimates of malaria incidence were examined
using linear and exponential regression models.

Results A total of 149,739 outpatient visits to the 5 MRCs were recorded. Overall, malaria was suspected
in 73.4% of visits, 99.1% of patients with suspected malaria received a diagnostic test, and 69.7% of
those tested for malaria were positive. Temporal correlations between monthly measures of TPR and
malaria incidence using linear and exponential regression models were relatively poor, with small
changes in TPR frequently associated with large changes in malaria incidence. Linear regression models
of temporal changes in TCM provided the most parsimonious and accurate predictor of changes in
malaria incidence, with adjusted R2 values ranging from 0.81 to 0.98 across the 5 MRCs. However, the
slope of the regression lines indicating the change in malaria incidence per unit change in TCM varied
from 0.57 to 2.13 across the 5 MRCs, and when combining data across all 5 sites, the R2 value reduced to
0.38.

Conclusions In high malaria burden areas of Uganda, site-speci�c temporal changes in TCM had a strong
linear relationship with malaria incidence and were a more useful metric than TPR. However, caution
should be taken when comparing changes in TCM across sites.

Background
Malaria surveillance is considered a core intervention and critical for the purposes of monitoring and
evaluation [1–3]. However, for many countries in sub-Saharan Africa, malaria surveillance systems are
limited in their ability to accurately monitor trends in malaria morbidity. The most widely available source
of routine malaria surveillance data come from national health management information systems
(HMIS). HMIS data typically includes aggregate numbers of patients tested for malaria and diagnosed
with malaria. The “gold standard” metric for malaria morbidity is malaria incidence, de�ned as the
number of cases of laboratory con�rmed malaria per unit time divided by the size of the population at
risk [4]. Although the quality of HMIS data has improved over the last decade in most countries in sub-
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Saharan Africa due to expanded diagnostics and a reliance on laboratory con�rmed cases of malaria, it
is not possible to routinely estimate malaria incidence because of lack of information on where patients
reside and unde�ned catchment populations around the health facilities. Therefore, the monitoring of
temporal and geographic trends in malaria morbidity using HMIS data typically relies on surrogate
measures of malaria incidence such as the test positivity rate (TPR) or total laboratory con�rmed cases
of malaria (TCM).

The TPR is de�ned as the number of laboratory con�rmed cases of malaria per 100 patients tested for
malaria. Advantages of the TPR include that it is relatively easy to measure and is not dependent on the
numbers of patients coming to a health facility or undergoing diagnostic testing, assuming that there is
no differential bias in who accesses care or undergoes testing at the facility. However, temporal trends in
the TPR may be susceptible to bias due to changes in diagnostic testing, health care-seeking behaviour,
and the incidence of non-malarial febrile illnesses [5]. In addition, TPR has a non-linear relationship with
malaria incidence and in high endemic settings, small changes in TPR can be associated with large
changes in malaria incidence [6,7]. More still, TPR is a proportion, commonly used as a qualitative
measure as it is di�cult to translate changes in TPR into meaningful quantitative measures needed to
allocate resources and assess impact. TCM simply represents the numerator of the TPR and is also
relatively easy to measure [8]. Unlike the TPR, the TCM is not constrained between 0 and 100. However,
this metric lacks a clear denominator and is highly dependent on diagnostic practices at a health facility,
changes in the catchment area or catchment population, and any factors that may impact care-seeking
behaviours, such as poor weather, drug stock-outs, access to other health facilities, or community-based
programmes [9,10].

In Uganda, an enhanced health facility-based malaria surveillance system was established to provide
high quality data at sentinel sites around the country referred to as Malaria Reference Centers (MRCs)
[11]. At these MRCs, individual patient level data is collected and resources are provided to maximize
laboratory testing of all patients with suspected malaria. More recently, data on village of residence has
been captured and catchment areas around the MRCs identi�ed, allowing for the generation of estimates
of malaria incidence. In this study, temporal relationships between TPR and TCM relative to malaria
incidence estimates were examined at �ve MRCs over a 15-month period in areas where the burden of
malaria is high.

Methods
Establishment of health-facility based malaria surveillance system

Data for this study come from the Uganda Malaria Surveillance Project (UMSP). UMSP in collaboration
with the Uganda National Malaria Control Division (NMCD) established a health facility-based malaria
surveillance system at several MRCs beginning in 2006. MRCs are high volume level III/ IV public health
facilities that generally see between 1000-3000 outpatients per month and have functioning laboratories.
At each MRC, individual-level data from standardized HMIS registers for all patients presenting to the
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outpatient departments are entered into an Access database by on-site data o�cers. Primary data
captured comes from the HMIS 031 standardized form (Appendix 1) and includes village of residence,
age, gender, type of malaria test done (rapid diagnostic test (RDT) or microscopy), and malaria diagnostic
test results. The research team supports the sites with training, site support supervision, and buffer stock
of laboratory supplies/consumables. Full-time regional surveillance assistants are based around the
country; each supervising 8-10 MRCs.  Site support supervision is conducted on a regular basis to provide
refresher training and onsite mentorship on malaria case management, malaria microscopy, conduct
data use meetings and provide feedback on performance, and to conduct laboratory external quality
control for malaria microscopy. Core team members are also responsible for generating periodic reports,
communicating with Ministry of Health o�cials and other key stakeholders, and conducting data
analyses.

This study included data from �ve MRCs which met the following criteria: 1) location in a high malaria
burden area where indoor residual spraying of insecticide (IRS) is not being implemented, and 2) less
than 5% missing data from November 2018 through January 2020 for each of the following variables;
age (all patients), village of residence (all patients), and results for malaria diagnostic testing (among
patients with suspected malaria). Suspected malaria was de�ned as all patients referred for malaria
laboratory testing plus all patients not referred for a malaria laboratory test but given a clinical diagnosis
of malaria. These facilities include Lobule health centre III in Koboko District, Opia health centre III in Arua
District, Awach health centre IV in Gulu District, Lalogi health centre IV in Omoro District, and Lumino
health centre III in Busia District (Fig. 1).

Malaria metrics

TPR was de�ned as the proportion of all patients tested for malaria who tested positive. TCM was
de�ned as the number of all patients who tested positive for malaria (numerator of the TPR). To generate
estimates of malaria incidence, catchment areas were identi�ed around the MRCs based on the
assumption that the majority of patients within the catchment area who developed malaria would be
captured by the surveillance system. Catchments areas included the village where the MRC is located and
adjacent villages that met all of the following criteria: 1) did not contain another public health facility, 2)
were in the sub-county where the MRC is located, 3) had a similar incidence of malaria as the village
where the MRC is located, and 4) provided an estimated total catchment area population of at least 1400
persons. Village level population estimates were obtained from the AfriPop database and included a �xed
population growth function [12]. Catchment areas around each MRC included between 1-5 villages
(Appendix 2). Estimates of malaria incidence were de�ned as the total number of laboratory con�rmed
cases of malaria from patients residing within the catchment area (adjusted for missing data on malaria
test results and village of residence) per unit time divided by the population of the catchment area.

Statistical analysis

Data were analysed using Stata version 14.1 (College Station, TX). Cumulative data for the
characteristics of the study populations were summarized over the 15-month observation period
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(November 2018 – January 2020). Data were aggregated by monthly intervals for all analyses of
longitudinal trends. The maximal fold changes were de�ned as the ratio of maximum monthly value
divided by the minimum monthly value for each metric, and used to describe the within site variation in
TPR, TCM and malaria incidence during the observation period. Temporal correlations between TPR and
malaria incidence as well as between TCM and malaria incidence strati�ed by MRC were made using
linear and exponential terms with goodness-of-�t between models compared using Akaike Information
Criteria (AIC). Final models of temporal correlations between TCM and malaria incidence strati�ed by
MRC were made using standard linear regression with model characteristics summarized as the slope
(95% CI) and adjusted R-squared value. Temporal correlations between TCM and malaria incidence for all
5 sites combined were estimated using a linear regression model with a random effect for study site.
Selected analyses were also restricted to only patients under 5 years of age.

Results
Characteristics of the study population

Over the 15 month study period there were a total of 149,739 outpatient visits, ranging from 20,671 to
40,445 visits across the �ve MRCs. Malaria was suspected in 73.4% of all outpatient visits, ranging from
58.7% to 91.9% across the �ve MRCs. Among patients with suspected malaria, 99.1% had a diagnostic
test done and 96.6% of these were tested using a RDT (the remainder being tested using microscopy).
Overall, 69.7% of those tested for malaria were positive, with TPRs ranging from 59.8% to 77.3% across
the �ve MRCs (Table 1). Overall, 50.7% of all patients presenting to the outpatient departments of these
�ve MRCs had a laboratory con�rmed diagnosis of malaria, highlighting the predominant role of malaria
on the burden of disease at these facilities.  When considering only children less than 5 years of age,
testing rates and use of RDTs were similar, however, the proportion of patients with suspected malaria
and TPRs were slightly higher across all �ve MRCs.

Summary data on longitudinal measures of malaria morbidity

Descriptive statistics of monthly aggregate measures of malaria morbidity for each MRC are presented in
Table 2. Between sites, median monthly TPR values ranged from 59.4% in Lumino to 76.4% in Lobule.
Results were similar when median monthly TPR values were restricted to only patients from the
catchment areas. Within sites, monthly TPR values varied from a maximal 1.3-fold change in Lobule to a
2.4-fold change in Opia. Compared to TPR values, there was greater variation in monthly TCM values and
estimates of malaria incidence, both between and within sites.  Between sites, median monthly TCM
values ranged from 700 in Opia to 1,131 in Lobule. Within site monthly TCM values varied from a
maximal 3.0-fold change in Lumino to a 7.8-fold change in Opia. Between sites, median monthly
estimates of malaria incidence ranged from 744 cases per 1000 person years from the catchment area
around Lalogi to 1,689 cases per 1000 person years from the catchment area around Opia. Within site
monthly estimates of malaria incidence varied from a maximal 2.9-fold change in Lobule to an 8.1 fold
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change in Opia. Similar �ndings were seen when data were restricted to only children under 5 years of
age.

Temporal trends and correlations between measures of malaria morbidity

Temporal changes in monthly measures of malaria morbidity over the 15-month observation period for
each MRC are presented in Fig. 2. A consistent temporal pattern was seen in the three metrics of malaria
burden at each MRC, with peaks between April and August 2019 following the annual long rainy season
that occurs in most of the country. Smaller peaks were seen at some sites following the shorter rainy
season that occurs between November and January, with the exception of Lumino which had a large
peak in TCM and malaria incidence in February 2019.  Qualitatively all three metrics tracked relatively
well together over time at all the sites, although monthly changes in TCM tracked better with malaria
incidence compared to monthly changes in TPR.

The assessment of temporal relationships between routinely available metrics of malaria morbidity,
including TPR and TCM, with estimates of malaria incidence in the catchment areas around the MRCs
are provided in Fig. 3.  Linear correlations between TPR and malaria incidence were relatively poor,
especially in Lumino and Lobule. Indeed, small changes in TPR were frequently associated with large
changes in malaria incidence. The use of an exponential model improved model �t at 4 of the 5 sites, but
only marginally. In contrast, linear correlations between TCM and malaria incidence were much stronger
with improved model �t at all the sites when compared to either linear or exponential correlations
between TPR and malaria incidence. Compared to linear correlations, exponential correlations between
TCM and malaria inidence worsened model �t for 3 of the sites and was associated with only modest
improved �t at 2 of the sites. In summary, linear regression models of temporal changes in TCM provided
the most parsimonious and accurate predictor of changes in malaria incidence across the 5 high burden
sites included in this study.

To further quantify the relationships between temporal changes in TCM and malaria incidence, the slope
and adjusted R2 values for linear regression models for each site and all sites combined are presented in
Table 3. Overall, TCM was an excellent predictor of malaria incidence for the individual sites with
adjusted R2 values ranging from 0.81 to 0.98. Findings were similar when restricting the analysis to only
children less than 5 years of age, although at one site (Lobule) the adjusted  R2 value was only 0.68. In
contrast, when combining data across all 5 sites, the R2 value reduced to 0.38 when considering all
patients and 0.35 when only considering children less than 5 years of age (Table 3, Fig. 4). Furthermore,
the slope of the regression lines indicating the change in malaria incidence per unit change in TCM varied
across the sites. For example in Lobule a doubling in TCM was indicative of a 57% increase in malaria
incidence (slope = 0.57), while in Opia and doubling in TCM was indicative of a 213% increase in malaria
incidence (slope = 2.13). When considering only children under 5 years of age, the relative changes in
malaria incidence per unit change in TCM were even greater with slopes ranging from 2.78 to 13.4 across
the 5 sites.
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Discussion
This study used data routinely collected at health facilities to generate two common metrics of malaria
morbidity, TPR and TCM, and compared temporal relationships between these metrics with direct
estimates of malaria incidence in 5 high burden areas of Uganda.  In this setting, changes in TPR were
poor predictors of changes in malaria incidence, with small changes in TPR often associated with large
changes in malaria incidence. In contrast, site speci�c changes in TCM exhibited a strong linear
relationship with changes in malaria incidence, suggesting this metric could provide a useful indicator of
relative changes in malaria morbidity over time within sites. However, relationships between absolute
changes in TCM and absolute changes in malaria incidence varied from site to site, limiting the ability to
directly translate changes in TCM to changes in malaria incidence.

Malaria surveillance is essential to monitor trends over time and space and evaluate the impact of control
interventions. In settings in which transmission remains relatively high, surveillance activities focused on
measures of malaria morbidity provide the most useful data for analysis of trends, strati�cation, and
planning of resource allocation [2,13,14]. In most high endemic countries, routine health information
systems involving health facilities provide the only practical, continuous, and systematic source of data
on malaria morbidity. However, the utility of routine data from health facilities may be limited by
incomplete or inaccurate reporting, lack of diagnostic testing in patients with suspected malaria, and poor
quality laboratory diagnostics.  Despite these challenges, an increased emphasis on laboratory-based
con�rmation of malaria and widespread availability of RDTs has improved the quality and utility of
routine health facility-based data [11,15–17].

A strength of the current study was the use of high quality data from an enhanced malaria surveillance
system at sentinel sites with a strong emphasis placed on complete reporting and laboratory
con�rmation for the diagnosis of malaria. Indeed, the fact that over 99% of patients with suspected
malaria underwent diagnostic testing and over 96% of those tested had an RDT greatly reduced the
potential for bias due to variations in these factors. Another strength of this study was the availability of
estimates of malaria incidence from catchment areas around the health facilities. Malaria incidence
provides the most direct measure of malaria burden and allows one to quantify cases over time relative
to the size of the population at risk. The most accurate method of estimating malaria incidence involves
prospective cohort studies, where all cases of malaria are captured from a de�ned study population
[5,18–20]. However, cohort studies require considerable resources and are rarely undertaken as part of
routine surveillance programmes. In this study, a practical and low-cost method was used to estimate
malaria incidence by improving the capture of routine data on the village of residence among patients
presenting to the health facilities, mapping catchment areas around the facilities, and estimating the
population of these catchment areas. Indeed, although village of residence is included on the HMIS 031
standardized form, under routine circumstances this is rarely �lled out and when it is �lled out, fraught
with inaccuracies and no way of linking this information to any meaningful population level data. Indeed,
one of the key (and pain-staking) aspects of the “enhanced” surveillance system used in this study was
training the staff at the MRCs to accurately �ll out the village of residence, creating a novel coding
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system for entering this into an electronic database, and creating maps and shape�les that would allow
the linking of malaria cases to catchment areas and estimating the populations of these catchment
areas. Generating direct estimates of malaria incidence provided a means of assessing the accuracy of
surrogate measures of malaria morbidity, including TPR and TCM, in predicting changes over time.

TPR, de�ned as the number of laboratory con�rmed cases per 100 suspected cases examined, has been
used to de�ne levels of endemicity, identify high burden areas, and evaluate the impact of control
interventions [21–25]. However, TPR is subject to bias due to changes in the incidence of non-malaria
fevers and has a complex, non-linear relationship with malaria incidence[5,7]. In addition, given that this
metric is expressed as a proportion, it is commonly used as a qualitative measure as it is di�cult to
translate changes in TPR into meaningful quantitative measures needed to allocate resources and
assess impact. In this study from 5 highly endemic areas of Uganda, temporal changes in TPR correlated
poorly with changes in malaria incidence, with small changes associated with large changes in incidence.
This is not surprising as when the burden of malaria is very high, TPRs can become nearly “saturated”
well before malaria incidence has peaked. In a study from 15 villages in Western Uganda, the relationship
between village level estimates of TPR and malaria incidence was best represented by an exponential
model[6]. In this study, the correlation between TPR and malaria incidence was poor at low transmission
levels, with large changes in TPR associated with minimal changes in malaria incidence. The correlation
improved among villages with higher transmission intensity where the TPRs ranged from 10-50%. 
However, this study did not address the other end of the spectrum when transmission intensity becomes
very high and TPRs exceed 50%, as was observed in a majority of the time points for all 5 sites included
in this report. Taken together, these data suggest that in Uganda TPR and malaria incidence have a non-
linear relationship and correlate poorly when transmission is either relatively low or relatively high. In
contrast to these data from Uganda, in a study from Yunnan Province of China annual estimates of TPR
and malaria incidence had a strong linear relationship with an adjusted R2 value of 0.85 [26]. In this
study, malaria burden changed dramatically with annual TPRs declining from a high of 13% to less than
1% and malaria incidence declining from a high of 648 to 23 cases per 100,000 person years.

TCM, de�ned as the total laboratory con�rmed cases of malaria per unit time, has also been used as a
surrogate measure of malaria incidence. TCM is simple to measure, and unlike TPR, is quantitatively easy
to interpret and not constrained by an upper limit. However, TCM is directly dependent on access to care
and diagnositc testing and therefore highly susceptible to bias by these factors. For example, in a study
from the Democratic Republic of the Congo evaluating trends in reported malaria cases between 2005
and 2014, a sharp increase in con�rmed cases after 2010 was presumed to be due to the introduction
and scale up in RDTs rather than a true increase in the incidence of malaria[27]. The study presented in
this report bene�ted from an enhanced surveillance system where almost all patients with suspected
malaria underwent diagnostic testing using an RDT. Indeed, in this study with limited potential source of
bias acruing from access to care and diagnositc testing, temporal changes in TCM tracked much better
with changes in malaria incidence compared to temporal changes in TPR. In addition, site-speci�c
temporal changes in TCM had a strong linear relationship with malaria incidence, meaning that within an
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individual health facility relative changes in TCM and malaria incidence were proportionate (e.g. a 75%
increase in TCM would be associated with 3 times the increase in malaria incidence compared to a 25%
increase in TCM). However, because the slopes of the linear relationships between TCM and malaria
incidence varied from site to site, changes in TCM could not be directly translated into changes in malaria
incidence (i.e. a 50% in TCM did not necessarily correspond with a 50% increase in malaria incidence).
This is not surprising given that TCM is highly dependent on the number of patients who access a health
facility, which can vary from site to site.

This study had several limitations. First, estimates of malaria incidence came from catchment areas
around each MRC and could have been associated with inaccuracies in the numerator (cases of malaria
per unit time) and/or the denominator (population at risk). It was assumed that all cases of malaria
within the catchment areas were captured at their respective health facilities, which could have led to an
underestimation of the true incidence of malaria. Population denominators came from publicly available
datasets which utilized available census data and satellite imagery for mapping settlements [28]. Errors
in population estimates could have led to either an overestimation or underestimation of the true
incidence of malaria. However, it is likely that potential bias in estimating malaria incidence was non-
differential with respect to calendar time and, therefore, should not have had a signi�cant impact on the
analyses performed. Second, measurements of TPR and TCM were derived from all patients who
presented to the MRCs while estimates of malaria incidence were derived only from the subset of patients
who resided in the catchment areas around the MRCs. Differences between patients who did and did not
reside in the catchment areas could have in�uenced the study �ndings, although in a previous study from
Uganda adjustment for area of residence did not in�uence temporal trends in TPR [29]. Third, this study
was conducted at health facilities that were part of an enhanced malaria surveillance network where
support was provided to maximize the use of laboratory testing and prevent stock-outs of essential
commodities. Thus, care should be taken when generalizing results to other settings were the reporting of
laboratory con�rmed malaria may be affected by poor malaria case management. Finally, this study only
included data from areas of Uganda with high transmission intensity and should not be generalized to
lower transmission settings.

Conclusion
Conducting high quality malaria surveillance in high transmission settings is critical, as these areas
disproportionately contribute to malaria morbidity and should be prioritized for control interventions. High
burden areas represent a unique challege as large changes in disease incidence may go unnoticed or
underappreciated. In this study, a relatively novel approach was used to estimate malaria incidence using
routinely collected data and identifying catchment areas around health facilities. Temporal changes in
TPR correlated poorly with changes in malaria incidence and did not provide a very useful metric for
monitoring trends in disease burden. In contrast, TCM in a setting where laboratory testing for malaria
was almost universal was strongly predictive of relative changes in malaria incidence over time at
individual health facilities. However, TCM alone cannot be used to estimate malaria incidence or quantify
changes in malaria incidence. There should be a continued emphasis on improving the quality of health
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facility-based malaria surveillance and maximizing the utility of these data through improved metrics and
an understanding of their characteristics.
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Tables
1. Characteristics of the study population from November 2018 through January 2020
e
up

Characteristic MRC
Awach Lalogi Opia Lumino Lobule

ges Total visits to outpatient
departments

40,445 38,549 20,671 26,343 23,731

Visits with malaria suspected
(% total visits)

23,739
(58.7)

24,273
(63.0)

17,432
(84.3)

22,669
(86.1)

21,819
(91.9)

RDT or microscopy done (%
suspected)

22,828
(96.2)

24,246
(99.9)

17,420
(99.9)

22,577
(99.6)

21,818
(100)

Tested using RDT (% tested) 21,815
(95.6)

23,458
(96.7)

17,407
(99.9)

21,829
(96.7)

20,694
(94.8)

Positive malaria test (%
tested)

16,872
(73.9)

16,521
(68.1)

12,170
(69.9)

13,510
(59.8)

16,867
(77.3)

< 5
rs

Total visits to outpatient
departments

7,561 8,140 3,717 5,917 5,300

Visits with malaria suspected
(% total visits)

5,222
(69.1)

5,778
(71.0)

3,214
(86.5)

5,503
(93.0)

5,090
(96.0)

RDT or microscopy done (%
suspected)

5,002
(95.8)

5,772
(99.9)

3,214
(100.0)

5,476
(99.5)

5,089
(100)

Tested using RDT (% tested) 4,777
(95.5)

5,510
(95.5)

3,212
(99.9)

5,133
(93.7)

4,339
(85.3)

Positive malaria test (%
tested)

3,858
(77.1)

4,428
(76.7)

2,265
(70.5)

4,058
(74.1)

4,263
(83.8)

2. Summary data on longitudinal measures of malaria morbidity
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Monthly metrics, median
(range)

MRC
Awach Lalogi Opia Lumino Lobule

Test positivity rate (TPR) all
patients

69.2%
(60.5-
87.0%)

67.0%
(40.8-
83.2%)

63.0%
(35.6-
85.9%)

59.4%
(51.9-
70.7%)

76.4%
(67.1-
84.1%)

Test positivity rate (TPR) from
catchment area

73.3%
(61.3-
86.9%)

69.1%
(40.7-
86.4%)

68.4%
(40.8-
87.9%)

62.0%
(50.2-
73.2%)

76.3%
(71.1-
88.1%)

Total laboratory confirmed
cases of malaria (TCM)

994 (612-
1,951)

1,030 (349-
2,465)

700 (210-
1,633)

776 (570-
1,724)

1,131 (534-
1,695)

Estimated cases of malaria from
catchment area

594 (398-
1,194)

370 (118-
913)

307 (90-
711)

124 (90-
353)

178 (111-
327)

Proportion of TCM from
catchment area

63.4%
(56.2-
70.9%)

39.2%
(30.4-
44.5%)

43.2%
(34.3-
52.5%)

16.0%
(12.9-
20.5%)

18.0%
(13.2-
20.8%)

Estimated population of
catchment area

5,239
(5,134-
5,347)

5,919
(5801-
6041)

2,170
(2,126-
2,214)

1,487
(1,457-
1,517)

2,871
(2,814-
2,930)

Malaria incidence (MI) from
catchment area*

1,357 (921-
2,726)

744 (244-
1,846)

1,689 (489-
3,946)

1,010 (721-
2,879)

761 (473-
1,351)

Maximal fold change in TPR (all
patients)

1.4 2.0 2.4 1.4 1.3

Maximal fold change in TCM
(all patients)

3.2 7.1 7.8 3.0 3.2

Maximal fold change in MI
(catchment area only)

3.0 7.6 8.1 4.0 2.9

Test positivity rate (TPR) all
patients

72.0%
(57.6-
90.7%)

75.1%
(43.8-
89.9%)

65.5%
(32.4-
91.3%)

72.2%
(62.7-
85.9%)

83.1%
(70.7-
89.3%)

Test positivity rate (TPR) from
catchment area

74.0%
(55.3-
88.2%)

77.6%
(40.0-
90.9%)

69.5%
(26.5-
90.0%)

67.9%
(54.5-
83.8%)

83.7%
(67.2-
91.1%)

Total laboratory confirmed
cases of malaria (TCM) 

230 (129-
449)

254 (98-
730)

129 (39-
332)

256 (156-
544)

284 (159-
422)

Estimated cases of malaria from
catchment area

139 (80-
291)

97 (31-270) 64 (13-156) 34 (19-108) 51 (29-74)

Proportion of TCM from
catchment area

61.1%
(47.6-
65.4%)

42.9%
(30.8-
51.0%)

45.1%
(32.5-
60.6%)

13.6%
(10.2-
19.8%)

19.8%
(13.8-
24.6%)

Estimated population of
catchment area

975 (956-
995)

1,102
(1,080-
1,124)

404 (396-
412)

277 (271-
283)

535 (524-
546)

Malaria incidence (MI) from
catchment area*

1,681 (976-
3,559)

1,047 (340-
2,931)

1,905 (390-
4,660)

1,448 (838-
4,718)

1,161 (659-
1,642)

Maximal fold change in TPR (all
patients)

1.6 2.1 2.8 1.4 1.3

Maximal fold change in TCM
(all patients)

3.5 7.4 8.5 3.5 2.7

Maximal fold change in MI
(catchment area only)

3.6 8.6 11.9 5.6 2.5
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er 1000 person years

Table 3. Linear regression models of Total laboratory confirmed cases of malaria as
predictors of malaria incidence

MRC All ages Age < 5 years
Slope (95% CI) a Adjusted R2 Slope (95% CI) a Adjusted R2

Awach 1.29 (1.19-1.39) 0.98 7.03 (6.17-7.88) 0.96
Lalogi 0.75 (0.68-0.82) 0.98 3.99 (3.45-4.52) 0.95
Opia 2.13 (1.86-2.39) 0.95 13.4 (11.9-14.8) 0.97
Lumino 1.68 (1.32-2.04) 0.88 9.41 (7.89-10.9) 0.93
Lobule 0.57 (0.41-0.73) 0.81 2.78 (1.71-3.86) 0.68
All sites combined b 1.27 (0.78-1.75) 0.38 5.27 (3.42-7.13) 0.35

a Change in incidence of malaria per 1000 person years / change in total laboratory confirmed
cases of malaria

b Random effects model (R2 unadjusted in models using random effects) 

Figures
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Figure 1

Map of Uganda showing the study districts and malaria reference centers.
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Figure 2

Temporal changes in monthly measures of malaria morbidity over the 15 month observation period for
each MRC: TPR (green line), TCM (blue line), and malaria incidence (red line).
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Figure 3

Linear (red line) and exponential (green line) models of the relationships between a) TPR vs. malaria
incidence, and b) TCM and malaria incidence for each MRC. Blue dots represent observed values. AIC=
Akaike Information Criteria.
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Figure 4

Linear (red line) model of the relationship between TCM and malaria incidence for all 5 MRCs combined
strati�ed by a) patients of all ages, and b) only patients < 5 years of age. Colored dots represent observed
values strati�ed by MRC.
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