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Abstract Glioblastoma Multiforme is a brain cancer that still show poor prognosis
for patients despite the active researches for new treatments. In this work the goal is
to model and simulate the evolution of tumour associated angiogenesis and the ther-
apeutic response of the Glioblastoma Multiforme. Multiple phenomena are modelled
in order to �t different biological pathways, such as, the cellular cycle, apoptosis,
hypoxia or angiogenesis. This results in a nonlinear system with 4 equations and 4
unknowns: the density of tumour cells, theO2 concentration, the density of endothe-
lial cells and the vascular endothelial growth factor concentration. This system is
solved numerically on a 2D-slice of Magnetic Resonance Imaging, using a nonlinear
control volume �nite element scheme on a mesh �tting the geometry of the brain and
the tumour of a patient. We show that this implicit volume �nite element numeri-
cal scheme is positive and we give energy estimates on the discrete solution to ensure
convergence. The numerical scheme is implicit in time. Numerical simulations of this
scheme have been done using the different standard treatments: surgery, chemother-
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apy and radiotherapy, in order to understand the behaviour of tumour in response to
treatments.

Keywords Glioblastoma Multiforme� Numerical simulations� Treatments model�
MRI � Finite Volume

Mathematics Subject Classi�cation (2010)92-10� 65M08� 35Q92

1 Introduction

Glioblastoma Multiforme (GBM) is the deadliest and most frequent brain tumour.
Despite the research of new treatments, patients still show poor prognosis in the long
run: only 5% of patients survive 5 years post-prognosis.

Fig. 1: Endothelial cells carry blood vessels providing
nutrients andO2 in the brain. Due to tumour growth,
hypoxic tumour cells are induced by a lack ofO2. Hy-
poxic cells produce proangiogenic factors, mainly Vas-
cular Endothelial Growth Factors, that enhance the for-
mation of new blood vessels.

Usually, patients undergo
emergency surgery (if
the surgery is possi-
ble), then the treatment
consists in radiotherapy
plus concomitant and ad-
juvant Temozolomide (TMZ)
therapy (Stupp et al,
2005). More ef�cient ther-
apies remain a major
preoccupation to cure
GBM, among them, im-
munotherapies is more
and more a subject of re-
search for gliomas (Lim
et al, 2018; Kamran et al,
2018) and could improve
the current prognosis of
GBM patients.
Mathematics have been
used for developing mod-
els matching the be-
haviour of gliomas tu-
mour cells in recent years.
Some models use a spher-
ical tumour growth ap-
proach using Partial Dif-
ferential Equations (PDEs)
(Papadogiorgaki et al,
2013; Stein et al, 2007; Kim et al, 2009), other models approach it using an elastic-
ity (Subramanian et al, 2019) or using evolutionary game theoretical model (Basanta
et al, 2011).
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When a patient gets diagnosed with GBM, tumour cells have already achieved enough
tumour promotion mechanisms in order to evade the immune system and to prolif-
erate in the brain. In that sense, we chose to model the GBM growth based on the
process of tumour associated angiogenesis.
Angiogenesis is the ensemble of phenomenon that allow the formation of new blood
vessels from pre-existing blood vessels. Those physiological processes happen not
only for cancer patients, but tumours have the ability to use angiogenesis in their
favor as a tumour promoter (Kim and Lee, 2009). A simpli�cation of the processes
used by tumour cells to induce angiogenesis is proposed in �gure 1. Tumour cells
rely on nutrients andO2 for their growth, provided by blood vessels. During tumour
growth, the tumour core lacksO2 inducing hypoxia in the tumour core. Hypoxia
prevents most tumour cellular activities, acting like a tumour suppressor process.
To �ght hypoxia, hypoxic tumour cells produce proangiogenic factors such as, Vas-
cular Endothelial Growth Factors (VEGF) are the main factors produced in GBM.
Proangiogenic factors promote angiogenesis meaning that more blood vessels are
produced, and so more nutrients andO2 are provided to the tumour cells. Angiogen-
esis mathematical models have already been developed: using PDEs (Vilanova et al,
2017; Mantzaris et al, 2004; Schugart et al, 2008), some adding stochastic parts in the
modeling (Travasso et al, 2011), or working at a mesoscopic scale (Spill et al, 2015).
However in this work, we consider more realistic situation to the tumour associ-
ated angiogenesis model by working on Magnetic Resonance Imaging (MRIs) data
based on a real patient and by modeling the behaviour of GBM growth through the
treatments usually administered to patients. Indeed MRIs are required to certify the
diagnosis of GBM (Villanueva-Meyer et al, 2017), and it is easier nowadays to get
information from MRI as some deep learning techniques can be used to extract med-
ical data (Lundervold and Lundervold, 2019). With tools like CaPTK (Bakas et al,
2017; Pati et al, 2020), it is possible to perform segmentation of GBM tumours based
on MRI. Recent studies show also that information on the tumour cells behaviour
can be acquired with immunohistochemistry data, for example by identifying GBM
subtypes (Orzan et al, 2020) but we will not consider those different subtypes in this
work. Working on MRI is numerically challenging because on real MRI we can not
have constrained mesh to solve our equations on. Finite volume scheme based on
TPFA (Two Point Flux Approximation) can not ensure the positivity of numerical
solutions. It is then needed to use more sophisticated numerical schemes in order to
ensure the positivity of the solutions. Our approach is based on a CVFE (Control Vol-
ume Finite Element) scheme in which nonlinear numerical Gudonov �uxes are used
to ensure the positivity.
Using real patient data, it is interesting in the long run to include the treatments in
the model to be able to match data and simulations. Currently patients with GBM
are treated using surgery, chemotherapy with TMZ and radiotherapy, we will only
consider those treatments in our model. Chemotherapy and surgery were �rst used in
PDEs model around gliomas in (Tracqui et al, 1995; Woodward et al, 1996) but more
robust models have been developed: on chemotherapy with hypoxic cells (Hinow
et al, 2009), on surgery and radiotherapy with an haptotaxis model (Enderling et al,
2010) and even on immunotherapy in gliomas (Banerjee et al, 2015). Choosing to
model those treatments will allow us to compare their impact on the GBM growth
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through the recovery of a patient, and so, analyse their advantages and drawbacks on
the tumour cells.

2 The anisotropic degenerate nonlinear angiogenesis model

Let W be an open bounded polygonal and connected subset ofR2 andTf > 0 a �xed
�nite time. We denoteQTf = W� ]0;Tf [ andSTf = ¶W� ]0;Tf [. W represents the area
in the brain where the tumour is developing, here it is obtained from a slice of an pre-
surgery axial MRI of a patient.¶W is then the border of the brain around the skull
and the ventricles if they are on the MRI (it depends on the location of the tumour).
We propose in this work a new model on angiogenesis inspired by works as in (En-
derling et al, 2010) and (Hinow et al, 2009), involving reaction-advection-diffusion
equations around tumour cells and nutrients. In order to exhibit angiogenesis, two
quantity are added into our model: endothelial cells that releaseO2 in the brain and
VEGF (Vascular Endothelial Growth Factor) that are produced by hypoxic tumour
cells as a help message that enhance the formation of new endothelial cells. The be-
haviour of tumour cells during their spread and treatments is chosen to be described
by the set of equations

¶tu� Ñ � (L 1(x)(a(u)Ñu� c1(u)Ñc)) = r 1h(c) fuT (u) � b1u� Ttreat(t;u); (1a)

¶tc� Ñ � (D2Ñc) = a2ue � b2c� g2uc; (1b)

¶tue � Ñ � (L 3(x)(a(ue)Ñue � c3(ue)Ñv)) = r 3 fuT (ue) � b3ue; (1c)

¶tv� Ñ � (D4Ñv) = a4g(c)u� b4v� g4uev: (1d)

We associated with (1a)-(1d) homogeneous zero-�ux boundary conditions

(L 1(x)a(u)Ñu� L 1(x)c1(u)Ñc) �~n = 0; (2a)

D2Ñc�~n = 0; (2b)

(L 3(x)a(ue)Ñue � L 3(x)c3(ue)Ñv) �~n = 0; (2c)

D4Ñv�~n = 0: (2d)

These conditions model the no exchange between the brain and the rest of the body.
For each quantity, we associated an initial condition onW given by

w(x;t = 0) = w0(x);8x 2 W;w = u;c;ue;v: (3)

In the model (1a)-(1d),u is the ratio between the number of tumour cells percm2

and the maximum tissue capacityumax (u is normalized between 0 and 1),c is the
concentration inO2 in mmol� cm� 2, ue is the ratio between the number of endothelial
cells percm2 and the maximum tissue capacityumax (ue is normalized between 0 and
1) andv is the concentration in Vascular Endothelial Growth Factor (VEGF) inmmol�
cm� 2. The sum of the two cellular populations isuT = u+ ue. The functionsa(�), c�(�)
and fuT (�) are the cell-density dependant coef�cients for diffusion, chemotaxis and
growth rate respectively.g(�) is theO2-dependant VEGF production by tumour cells
function andh(�) is aO2-dependant threshold allowing mitosis for tumour cells under
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normoxic conditions.L 1(x) andL 3(x) are the medium-dependant diffusion tensor for
tumour cells and endothelial cells respectively. The diffusion of cells depends on the
white matter, the grey matter and the post-surgical area.D2 andD4 are the isotropic
diffusion tensors associated withO2 and VEGF respectively.r 1 is the growth rate of
tumour cells,a2 is the production rate ofO2 by endothelial cells,r 3 is the growth
rate of endothelial cells anda4 is the production rate of VEGF by tumour cells.b1
andb3 are the apoptosis rates of tumour cells and endothelial cells respectively,b2
andb4 are the degradation rates ofO2 and VEGF respectively.g2 is the consumption
rate ofO2 by tumour cells andg4 is the consumption rate of VEGF by endothelial
cells. The mapTtreat(�; �) represents the loss of tumour cells due to treatments.
We give the main assumptions of the model (1a)-(3):

(A1) The cell-density diffusion functiona : R ! R+ is a continuous function such
thata(y) > 0;8y 2]0;1[ anda(y) = 0;8y 2 Rn]0;1[.

(A2) The cell-density chemotaxis functioncm : R ! R+ ;m = 1;3 is a continuous
function such thatcm(y) > 0;8y 2]0;1[ andcm(y) = 0;8y 2 Rn]0;1[. Further-
more, we assume there exists a functionmm 2 C(R;R+ );m = 1;3, such that
mm(y) = a(y)

cm(y) ;8y 2]0;1[ andmm(y) = 0;8y 2 Rn]0;1[.
(A3) The diffusion tensorL m(y);m= 1;3 is a bounded, uniformly positive de�nite

tensor onW, that is there existsL down
m ;L up

m > 0 with

0 < L down
m jyj2 � (L m(y)yjy) � L up

m jyj2;m= 1;3;8y 2 R2nf 0g:

(A4) All coef�cients from (1a)-(1d) are positive

r 1;b1;a2;b2;g2; r 3;b3;a4;b4;g4 � 0:

(A5) The functionfuT (y) 2 C(R;R+ ) is

fuT (y) = y(1� uT )+ 1[0;1](y); (4)

wherex+ = x+ jxj
2 .

(A6) The initial functions are inL2(W) and follow these inequalities

u0;c0;ue0;v0 � 0; a.e. inW andu0;ue0 � 1; a.e. inW:

(A7) g(�) is a piecewise function that allows the production of VEGF by tumour cells
only if the tumour cells are in an hypoxic environment andh(�) is the Heaviside
step function around the hypoxia threshold

g(y) = y1[cnecro;chypo](y); h(y) = Hchypo(y) = 1[chypo;+ ¥ [(y):

cnecro is the threshold under which cells start to necrose andchypo is the thresh-
old under which cells lack ofO2 to be able to function normally.

(A8) The treatment mapTtreat : R+ � R ! R+ is positive, piecewise in time and
in space. In this work the available treatments are surgery, chemotherapy and
radiotherapy. The mapTtreat(�; �) models chemotherapy and radiotherapy and
can be reconstructed byTtreat(t;y) = Tchemo(t;y) + Tradio(t;y). Moreover8t 2
R+ ;8y 2 R� : Ttreat(t;y) = 0.
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2.1 Weak Solution

In order to ensure positivity of the solution in its discrete form we use the following
set of functions de�ned onR

h(v) = max(0;min(0;v)) ; p(v) =
Z v

1

ds
h (s)

; (5)

h (v)p(v) = 0;8v � 0;

A (v) =
Z v

0
a(s)ds; x (v) =

Z v

0

p
a(s)ds; (6)

for the same ideas as in (Canc�es and Guichard, 2016; Canc�es et al, 2017; Foucher
et al, 2018).

De�nition (Weak Solution): Under assumptions (A1)-(A8), we say that the set of
measurable functions (u,c,ue,v) is a weak solution of (1a)-(3) if

0 � u(t;x);ue(t;x) � 1;c(t;x);v(t;x) � 0; for a.e. inQTf ;

x (u) 2 L2([0;Tf ];H1(W)) ; and8j i 2 D (W̄� [0;Tf [); i = 1; :::;4)) one has

� �
ZZ

QTf

u¶t j 1dxdt�
Z

W
u0(x)j 0

1dx

+
ZZ

QTf

(
p

a(u)L 1(x)Ñx(u) � L 1(x)c1(u)Ñc) � Ñj 1dxdt

=
ZZ

QTf

(r 1h(c) fuT (u) � b1u� Ttreat(t;u)) j 1dxdt;

(7)

� �
ZZ

QTf

c¶t j 2dxdt�
Z

W
c0(x)j 0

2dx+
ZZ

QTf

D2Ñc� Ñj 2dxdt

=
ZZ

QTf

(a2ue � b2c� g2uc)j 2dxdt;
(8)

� �
ZZ

QTf

ue¶t j 3dxdt�
Z

W
ue0(x)j 0

3dx

+
ZZ

QTf

(
p

a(ue)L 3(x)Ñx(ue) � L 3(x)c3(ue)Ñv) � Ñj 3dxdt

=
ZZ

QTf

(r 3 fuT (ue) � b3ue)j 3dxdt;

(9)

� �
ZZ

QTf

v¶t j 4dxdt�
Z

W
v0(x)j 0

4dx+
ZZ

QTf

D4Ñv� Ñj 4dxdt

=
ZZ

QTf

(a4g(c)u� b4v� g4uev)j 4dxdt:
(10)
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3 The nonlinear CVFE scheme for system

The discretization of (1a)-(1d) is chosen following the work of (Foucher et al, 2018),
it uses two types of approximations: a conforming FE approximation for diffusion
terms, namely second terms in system (1a)-(1d), and a decentered �nite volume for
haptotaxis terms, namely the third terms in equation (1a) and (1c). The �nite element
approximation is done over a primal triangular mesh and the �nite volume approxi-
mation is done over a dual barycentric mesh.
Let T be a conforming triangulation of the domainW, we denote byJ the set of
vertices andE the set of edges inT . hT = max

J2T
hJ is the size of the triangulationT ,

wherehJ is the diameter of the triangleJ andqT = max
I2T

hJ
r J

is the regularity of the

mesh, wherer J diameter of the incircle of the triangleJ. For every vertexK 2 J , we
denote byxK its coordinates,EK the set of edges having the vertexK as an extremity
andTK the set of triangles that have K as a vertex. If two verticesK andL are joined
by an edge then we denote this edge bysKL.
For every vertexK 2 J , we associate its dual elementwK constructed by connecting
the barycenters of the triangles inTK with the barycenters of the edges inEK , the
2-dimensional Lebesgue measure ofwK is mK . We denote byM the dual-mesh and
H T theP1-�nite element space onW de�ned by

H T = f f 2 C0(W̄) : f jJ 2 P1(R);8J 2 T g:

We associateH T with its canonical basis(F K)K2J . Furthermore, we consider the
discrete control volume spacecM onW de�ned by

cM = f f : W ! R̄ measurable; f jwK is constant;8K 2 J g:

In this paper, we choose a uniform time discretization with a time stepdt =
Tf

N+ 1,
whereN is a nonnegative integer and we settn = ndt, for all n 2 J0;N + 1K.
For a given(wn

K)K2J ;n2J0;N+ 1K, there exists a unique �nite element reconstruction
wT ;dt and a unique constant piecewise reconstructionwM ;dt such that

wT ;dt (t;x) = wn
T := å

K2J
wn

KF K(x); 8x 2 W;8t 2 (tn� 1; tn];

wM ;dt (t;x) = wn
K ; 8x 2 wK ;8t 2 (tn� 1; tn];

w = u;c;ue;v:

The nonlinear CVFE scheme for the discretization of system (1a)-(3) is given by the
following set of equations

w0
K =

1
mK

Z

wK

w0(y)dy;8K 2 J ; with w = u;c;ue;v; (11)
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and8K 2 J ;8n 2 J0;NK

�
mK

dt
(un+ 1

K � un
K) + å

sKL2EK

L (1)
KL an+ 1

KL (un+ 1
K � un+ 1

L )

� å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L ) = mKr 1h(cn+ 1

K ) fun+ 1
T;K

(un+ 1
K )

� mKb1un+ 1
K � mKTtreat(tn+ 1;un+ 1

K );

(12)

�
mK

dt
(cn+ 1

K � cn
K) + å

sKL2EK

D(2)
KLh n+ 1

KL (p(cn+ 1
K ) � p(cn+ 1

L ))

= mKa2un+ 1
e;K � mKb2cn+ 1

K � g2un+ 1
K cn+ 1

K ;
(13)

�
mK

dt
(un+ 1

e;K � un
e;K) + å

sKL2EK

L (3)
KL ãn+ 1

KL (un+ 1
e;K � un+ 1

e;L )

� å
sKL2EK

L (3)
KL ãn+ 1

KL m̃n+ 1
KL (vn+ 1

K � vn+ 1
L )

= mKr 3 fun+ 1
T;K

(un+ 1
e;K ) � mKb3un+ 1

e;K ;

(14)

�
mK

dt
(vn+ 1

K � vn
K) + å

sKL2EK

D(4)
KLh̄ n+ 1

KL (p(vn+ 1
K ) � p(vn+ 1

L ))

= mKa4g(cn+ 1
K )un+ 1

K � mKb4vn+ 1
K � g4un+ 1

e;K vn+ 1
K :

(15)

In the above system, we have used a Finite Element approximation for the diffusion
�uxes where the stiffness coef�cients are given by

(
L (m)

KL = �
R

WL m(x) � ÑF K(x) � ÑF L(x)dx m= 1;3;

D(i)
KL = �

R
WDiÑF K(x) � ÑF L(x)dx; i = 2;4:

(16)

We de�ne the intervals

I n+ 1
KL = [ min(un+ 1

K ;un+ 1
L );max(un+ 1

K ;un+ 1
L )];

In+ 1
KL = [ min(un+ 1

e;K ;un+ 1
e;L );max(un+ 1

e;K ;un+ 1
e;L )];

J n+ 1
KL = [ min(cn+ 1

K ;cn+ 1
L );max(cn+ 1

K ;cn+ 1
L )];

J n+ 1
KL = [ min(vn+ 1

K ;vn+ 1
L );max(vn+ 1

K ;vn+ 1
L )];

to build a Godunov approximation foran+ 1
KL , ãn+ 1

KL , h n+ 1
KL andh̄ n+ 1

KL

an+ 1
KL =

8
><

>:

max
s2I n+ 1

KL

a(s); if L (1)
KL � 0;

min
s2I n+ 1

KL

a(s); if L (1)
KL < 0;

; ãn+ 1
KL =

8
><

>:

max
s2 In+ 1

KL

a(s); if L (3)
KL � 0;

min
s2 In+ 1

KL

a(s); if L (3)
KL < 0;

(17)

h n+ 1
KL =

8
><

>:

max
s2J n+ 1

KL

h(s); if D(2)
KL � 0;

min
s2J n+ 1

KL

h(s); if D(2)
KL < 0;

; h̄ n+ 1
KL =

8
><

>:

max
s2J n+ 1

KL

h(s); if D(4)
KL � 0;

min
s2J n+ 1

KL

h(s); if D(4)
KL < 0:

(18)
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Those terms are useful to ensure the positivity of the quantities. The functionsm1 and
m3 are approximated using an upwind scheme

mn+ 1
KL =

(
m(1)

# (un+ 1
K ) + m(1)

" (un+ 1
L ); if L (1)

KL (cn+ 1
K � cn+ 1

L ) � 0;

m(1)
" (un+ 1

K ) + m(1)
# (un+ 1

L ); if L (1)
KL (cn+ 1

K � cn+ 1
L ) < 0;

(19)

m̃n+ 1
KL =

(
m(3)

# (un+ 1
e;K ) + m(3)

" (un+ 1
e;L ); if L (3)

KL (vn+ 1
K � vn+ 1

L ) � 0;

m(3)
" (un+ 1

e;K ) + m(3)
# (un+ 1

e;L ); if L (3)
KL (vn+ 1

K � vn+ 1
L ) < 0;

(20)

where the functionsm(1)
# , m(1)

" , m(3)
# andm(3)

" are given by

m(m)
" (z) =

Z z

0
(m0

m(y))+ dy m(m)
# (z) = �

Z z

0
(m0

m(y)) � dy; m= 1;3;

8x 2 R; x = x+ � x� ; x+ = max(0;x) andx� = max(0; � x):

The description of all variables, coef�cients, functions, spaces and mesh components
are sum up in the supplementary tables 5-9.

4 Discrete properties

4.1 Positivity and upper-boundedness of quantities

Proposition 1 (Positivity of tumour cells concentration)Let's suppose that u0K � 0
(resp. u0e;K � 0) for all K 2 J , then for all n2 J1;N+ 1Kthe solution(un

K)K2J of (12)
(resp.(un

e;K)K2J of (14)) is positive.

Proof We will show the result only forun but the same steps are followed for showing
the positivity of un

e. This proof works by induction onn, let's suppose that for a
n 2 J0;NKwe haveun

K � 0;8K 2 J .
Let's uK? = un+ 1

K?
= min

M2J
un+ 1

M and8L 2 J ;uL = un+ 1
L . Then by multiplying the equa-

tion of (12) associated toK? by � u�
K?

, we get

mK

dt
u� 2

K?
+

mK

dt
un

Ku�
K?

� å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)u�
K?

+ å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L )u�

K?
= � mKr 1h(cn+ 1

K ) fun+ 1
T;K

(uK?)u�
K?

� mKb1u� 2

K?
+ mKTtreat(tn+ 1;uK?)u�

K?
; (21)

but according to assumptions (A5) and (A8), the functionsfuT (�) andTtreat(t; �) are
extended by zero outside of[0;1], which implies that

fun+ 1
T;K

(uK?)u�
K?

= 0 andTtreat(tn+ 1;uK?)u�
K?

= 0:
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Then, ifL (1)
KL < 0 we havean+ 1

KL u�
K?

= 0 due to the fact thata(�) is extended by zero
outside of[0;1], implying that

� å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)u�
K?

= � å
sKL2EK

L (1)+

KL an+ 1
KL (uK? � uL)u�

K?
:

(uK? � uL) � 0 due to the de�nition ofuK? andL (1)+

KL an+ 1
KL � 0, so we have the posi-

tivity of the third term in (21)

� å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)u�
K?

� 0: (22)

For the fourth term in (21) we have

m(1)
# (uK?) + m(1)

" (uL) = m1(uK?) � m1(0)+
Z uL

uK?

(m0
1(s))+ ds;

m(1)
" (uK?) + m(1)

# (uL) = m1(uK?) � m1(0) �
Z uL

uK?

(m0
1(s)) � ds;

so, sinceuK? � uL, we deduce that

(m(1)
# (uK?) + m(1)

" (uL))u�
K?

= + u�
K?

Z uL

uK?

(m0
1(s))+ ds� 0;

(m(1)
" (uK?) + m(1)

# (uL))u�
K?

= � u�
K?

Z uL

uK?

(m0
1(s)) � ds� 0:

According to the de�nitionsan+ 1
KL in (17) andmn+ 1

KL in (19), we haveL (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K �

cn+ 1
L )u�

K?
� 0 whenever the sign ofL (1)

KL (cn+ 1
K � cn+ 1

L ), which gives the positivity of
the fourth term in (21)

+ å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L )u�

K?
� 0: (23)

With inequalities (22) and (23), we can then conclude that the left hand side of (21)
is positive. However

mK

dt
u� 2

K?
+

mK

dt
un

Ku�
K?

� å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)u�
K?

+ å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L )u�

K?
= � mKb1u� 2

K?
� 0;

So all the terms on the left-side of the above inequality are null because they were
non-negative, implying thatmK

dt u� 2

K?
= 0, giving the result from the proposition. ut

Proposition 2 (Boundedness of tumour cells concentration)Let's suppose that
0 � u0

K � 1 (resp.0 � u0
e;K � 1) for all K 2 J , then for all n2 J1;N + 1Kthe so-

lution (un
K)K2J of (12) (resp.(un

e;K)K2J of (14)) is upper-bounded by1.
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Proof We will show the result only forun but the same steps are followed for showing
thatun

e upper-bounded. This proof works by induction onn, let's suppose that for a
n 2 J0;NKwe haveun

K � 1;8K 2 J .
Let's uK? = un+ 1

K = max
H2J

un+ 1
H and8L 2 J ;uL = un+ 1

L . Then by multiplying the equa-

tion of (12) associated withK? by (1� uK?)� , we get

mK

dt
j(1� uK?)� j2 +

mK

dt
(1� un

K)(1� uK?)�

+ å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)(1� uK?)�

� å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L )(1� uK?)�

= mKr 1h(cn+ 1
K ) fun+ 1

T;K
(uK?)(1� uK?)�

� mKb1uK?(1� uK?)� � mKTtreat(tn+ 1;uK?)(1� uK?)� : (24)

Using proposition 1, we know thatuK? � uL � 0;8L 2 J . If L (1)
KL < 0, we have

an+ 1
KL (1� uK?)� = 0 due to the fact thata(�) is set to zero outside of[0;1]. So knowing

thatan+ 1
KL � 0, we have

L (1)
KL an+ 1

KL (1� uK?)� � 0;

then observing that(uK? � uL) � 0, we conclude that the third term in (24) is positive

+ å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)(1� uK?)� � 0: (25)

The functionfuT (�) is extended by zero outside of [0,1], implying thatfun+ 1
T;K

(uK?)(1�

uK?)� = 0. Since(uL � uK?) and

m(1)
# (uK?) + m(1)

" (uL) = m1(uK?) � m1(0) �
Z uK?

uL

(m0
1(s))+ ds;

m(1)
" (uK?) + m(1)

# (uL) = m1(uK?) � m1(0)+
Z uK?

uL

(m0
1(s)) � ds;

we have

(m(1)
# (uK?) + m(1)

" (uL))( 1� uK?)� = � (1� uK?)�
Z uK?

uL

(m0
1(s))+ ds� 0;

(m(1)
" (uK?) + m(1)

# (uL))( 1� uK?)� = +( 1� uK?)�
Z uK?

uL

(m0
1(s)) � ds� 0:

So whenever the sign ofL (1)
KL (cn+ 1

K � cn+ 1
L )

L (1)
KL (cn+ 1

K � cn+ 1
L )mn+ 1

KL (1� uK?)� � 0;
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and, havingan+ 1
KL � 0, we conclude that the fourth term in (24) is positive

� å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L )(1� uK?)� � 0: (26)

With (25), (26) and the positivity ofTtreat(�; �), we conclude also that

mK

dt
j(1� uK?)� j2+

mK

dt
(1� un

K)(1� uK?)� + å
sKL2EK

L (1)
KL an+ 1

KL (uK? � uL)(1� uK?)�

� å
sKL2EK

L (1)
KL an+ 1

KL mn+ 1
KL (cn+ 1

K � cn+ 1
L )(1� uK?)�

= � mKb1uK?(1� uK?)� � mKTtreat(tn+ 1;uK?)(1� uK?)� � 0:

So all terms on left side of (24) being non-negative, they are null, in particular:
mK
dt (1� uK?)� 2

= 0, then(1� uK?)� = 0, which gives the result of this proposition.
ut

Proposition 3 (Positivity ofO2 and VEGF) Let's suppose that c0K � 0 (resp. v0K � 0)
for all K 2 J , then for all n2 J0;N+ 1Kthe solution(cn

K)K2J of (13) (resp.(vn
K)K2J

of (15)) is positive.

Proof We will show the result only forcn but the same steps are followed for showing
the positivity of vn. This proof works by induction onn, let's suppose that for a
n 2 J0;NKwe havecn

K � 0;8K 2 J .
Let's cK? = cn+ 1

K = min
H2J

cn+ 1
H and8L 2 J ;cL = cn+ 1

L . Then by multiplying the equation

of (13) associated withK? by � c�
K?

, we get

mK

dt
c� 2

K?
+

mK

dt
c�

K?
cn

K � å
sKL2EK

D(2)
KLh n+ 1

KL (p(cK?) � p(cL))c�
K?

= � mKa2un+ 1
e c�

K?
� mKb2c� 2

K?
� g2un+ 1

K c� 2

K?
: (27)

Using the results of proposition 1 and 2, we haveun+ 1
e ;un+ 1

K � 0, implying that

� mKa2un+ 1
e c�

K?
� 0; � mKb2c� 2

K?
� 0 and � g2un+ 1

K c� 2

K?
� 0:

If D(2)
KL < 0 thenh n+ 1

KL c�
K?

= 0. Observing thatmn+ 1
KL � 0 and that the functionp(�) is

non-decreasing onR, we have(p(cK?) � p(cL)) � 0, meaning that

� å
sKL2EK

D(2)
KLh n+ 1

KL (p(cK?) � p(cL))c�
K?

= � å
sKL2EK

(D(2)
KL)+ h n+ 1

KL (p(cK?) � p(cL))c�
K?

� 0: (28)

Then
mK

dt
c� 2

K?
+

mK

dt
c�

K?
cn

K � å
sKL2EK

D(2)
KLh n+ 1

KL (p(cK?) � p(cL))c�
K?

= � mKa2un+ 1
e c�

K?
� mKb2c� 2

K?
� g2un+ 1

K c� 2

K?
� 0:
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The terms on the left-side of (27) being non-negative, we conclude that they are all
null. In particularc� 2

K?
= 0, which completes the proof of the proposition. ut

Remark 1 Notice that we could consider a semi-implicit scheme by replacing cn+ 1

by cn in (12), un+ 1 by un in (13) and(15), vn+ 1 by vn in (14), un+ 1
e by un

e in (13) and
(15)and the propositions 1,2 and 3 would still hold.

4.2 Algorithm to get the discrete solution (12)-(15)

In this work, we propose an iterative algorithm in order to get the discrete solution
of the implicit numerical scheme (12)-(15). The main idea of this algorithm is to
solve the nonlinear system (12)-(15) with an iterative method that has a simplest
numerical complexity and that converges to the solution of the implicit numerical
scheme. Let's suppose thatÑc0 andÑv0 are inL2(W) and consider a given solution
P n

T = ( un
K ;cn

K ;un
e;K ;vn

K)K2J for a givenn. We look for the solutionP n+ 1
T at tn+ 1 as

the limit of the following iterative process whenm! + ¥ :

Initialisation:w(0)
K = wn

K , 8K 2 J , w = u;c;ue;v.

Form� 0,

�
mK

dt
(um+ 1

K � u(0)
K ) + å

sKL2EK

L (1)
KL am+ 1

KL (um+ 1
K � um+ 1

L )

� å
sKL2EK

L (1)
KL am+ 1

KL mm+ 1
KL (cm

K � cm
L )

= mKh(cm
K)r 1 fum

T;K
(um+ 1

K ) � mKb1um+ 1
K � mKTtreat(tm+ 1;um+ 1

K );

(29)

�
mK

dt
(cm+ 1

K � c(0)
K ) + å

sKL2EK

D(2)
KLh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))

= mKa2um
e;K � mKb2cm+ 1

K � g2um
Kcm+ 1

K ;
(30)

�
mK

dt
(um+ 1

e;K � u(0)
e;K) + å

sKL2EK

L (3)
KL ãm+ 1

KL (um+ 1
e;K � um+ 1

e;L )

� å
sKL2EK

L (3)
KL ãm+ 1

KL m̃m+ 1
KL (vm

K � vm
L )

= mKr 3 fum
T;K

(um+ 1
e;K ) � mKb3um+ 1

e;K ;

(31)

�
mK

dt
(vm+ 1

K � v(0)
K ) + å

sKL2EK

D(4)
KLh̄ m+ 1

KL (p(vm+ 1
K ) � p(vm+ 1

L ))

= mKa4g(cm
K)um

K � mKb4vm+ 1
K � g4um

e;Kvm+ 1
K :

(32)

Observe that at each iterationm, the system (29)-(32) is non-coupled, its resolution
consists of four independent equations which is easier to solve than (12)-(15).
Let t (n) : X̃ = ( ũ; c̃; ũe; ṽ) 7! X = ( u;c;ue;v) be the application that for the vector
X̃ = ( ũ; c̃; ũe; ṽ) 2 (R#J )4 associates the solutionX = ( u;c;ue;v) of (29)-(32). Replac-
ing (um;cm;um

e ;vm) by X̃ and(um+ 1;cm+ 1;um+ 1
e ;vm+ 1) by X, the iterative method is
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equivalent to
(

Xm+ 1 = t (n)(Xm);
X0 2 E = f (w;x;y;z) 2 (R#J )4 : 0 � w;y � 1 and 0� x;zg:

(33)

Note that if the sequence(Xm)m converges, thenXm !
m! ¥

P n+ 1
T .

Let's remember that 0� un
K ;un

e;K � 1 andcn
K ;vn

K � 0 for all K 2 J andn � 0, so the
solutions of the iterative method follow 0� um;um

e � 1 andcm;vm � 0 for all m � 0
due to Proposition 1-3 and Remark 1.
To prove the existence of the solution of (29)-(32) and that the applicationt (n) is well
de�ned, we will use the following energy estimates on the iterative method.

Lemma 1 There exists C1(L 1;qT );C2(D2;qT ) > 0 such that:

å
sKL2E

jL (1)
KL jam+ 1

KL (um+ 1
K � um+ 1

L )2 � C1 å
sKL2E

L (1)
KL am+ 1

KL (um+ 1
K � um+ 1

L )2; (34)

å
sKL2E

jD(2)
KLjh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))2

� C2 å
sKL2E

D(2)
KLh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))2: (35)

Proof This comes from Lemma 3.1-3.3 in (Canc�es and Guichard, 2016).(um+ 1
eK

)K

(resp.(vm+ 1
K )K) follows the same inequality as(um+ 1

K )K (resp.(cm+ 1
K )K) with a con-

stantC3(L 3;qT ) (resp.C4(D4;qT )). ut

Lemma 2 There exists C5(D2;qT );C6(D4;qT ) such that

å
sKL2E

jD(2)
KLjh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))( cm+ 1
K � cm+ 1

L )

� C5 å
sKL2E

D(2)
KLh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))( cm+ 1
K � cm+ 1

L ); (36)

å
sKL2E

jD(4)
KLjh̄ m+ 1

KL (p(vm+ 1
K ) � p(vm+ 1

L ))( vm+ 1
K � vm+ 1

L )

� C6 å
sKL2E

D(4)
KLh̄ m+ 1

KL (p(vm+ 1
K ) � p(vm+ 1

L ))( vm+ 1
K � vm+ 1

L ): (37)

Proof The proof relies on the fact that

å
sKL2E

jD(2)
KLjh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))( cm+ 1
K � cm+ 1

L )

= å
sKL2E

p(cm+ 1
K )6= p(cm+ 1

L )

jD(2)
KLjh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))2 (cm+ 1
K � cm+ 1

L )

(p(cm+ 1
K ) � p(cm+ 1

L ))
;



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 15

and that the quantity (cm+ 1
K � cm+ 1

L )

(p(cm+ 1
K )� p(cm+ 1

L ))
is nonnegative becausep(�) is non decreasing,

we can then use the same arguments than Lemma 3.1-3.3 in (Canc�es and Guichard,
2016) to show that

å
sKL2E

p(cm+ 1
K )6= p(cm+ 1

L )

jD(2)
KLjh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))2 (cm+ 1
K � cm+ 1

L )

(p(cm+ 1
K ) � p(cm+ 1

L ))

� C5 å
sKL2E

p(cm+ 1
K )6= p(cm+ 1

L )

D(2)
KLh m+ 1

KL (p(cm+ 1
K ) � p(cm+ 1

L ))2 (cm+ 1
K � cm+ 1

L )

(p(cm+ 1
K ) � p(cm+ 1

L ))
:

The same arguments are used for the inequality inv. ut

Proposition 4 (Existence of a discrete solution)For n2 J0;NKand8m� 0 there ex-
ists a solution(um+ 1;cm+ 1;um+ 1

e ;vm+ 1) from equations(29)-(32)with0� um+ 1;um+ 1
e �

1 and cm+ 1;vm+ 1 � 0

Proof This works by induction onm.
Let's consider the application:W = ( Wu;Wc;Wue;Wv) : (R#J )4 ! (R#J )4 where8K 2
J , for n 2 J0;NKand8m� 0

� (Wu(y))K = mK
yK � un

K

dt
+ å

sKL2eK

L (1)
KL am+ 1

KL (yK � yL)

� å
sKL2eK

L (1)
KL am+ 1

KL mm+ 1
KL (cm

K � cm
L ) � mKr 1h(cm

K) fum
T;K

(yK)

+ mKb1yK + mKTtreat(tm+ 1;yK);

(38)

� (Wc(y))K =
mK

dt
(yK � cn

K) + å
sKL2EK

D(2)
KLh m+ 1

KL (p(yK) � p(yL))

� mKa2um
e;K + mKb2yK + g2um

KyK ;
(39)

� (Wue(y))K =
mK

dt
(yK � un

e;K) + å
sKL2EK

L (3)
KL ãm+ 1

KL (yK � yL)

� å
sKL2EK

L (3)
KL ãm+ 1

KL m̃m+ 1
KL (vm

K � vm
L )

� mKr 3 fum
T;K

(yK) + mKb3yK ;

(40)

� (Wv(y))K =
mK

dt
(yK � vn

K) + å
sKL2EK

D(4)
KLh̄ m+ 1

KL (p(yK) � p(yL))

� mKa4g(cm
K)um

K + mKb4yK + g4um
e;KyK :

(41)

Observe that ifW(um+ 1;cm+ 1;um+ 1
e ;vm+ 1) = 0 then(um+ 1;cm+ 1;um+ 1

e ;vm+ 1) is a
solution of (29)-(32).
The aim in the �rst step is to prove that9k � 0;8kyk2 > k : (W(y);y) � 0. So we
develop the expression of(W(y);y) = ( Wu(yu);yu)+( Wc(yc);yc)+( Wue(yue);yue)+
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(Wv(yv);yv);y = ( yu;yc;yue;yv) to build inequalities. We have

� (Wu(y);y) = å
K2J

mK

dt
y2

K � å
K2J

mK

dt
un

KyK + å
sKL2E

L (1)
KL am+ 1

KL (yK � yL)2

� å
sKL2E

L (1)
KL am+ 1

KL mm+ 1
KL (cm

K � cm
L )(yK � yL) � å

K2J
mKr 1h(cm

K) fum
T;K

(yK)yK

+ å
K2J

mKb1y2
K + å

K2J
mKTtreat(tm+ 1;yK)yK ;

� (Wc(y);y) = å
K2J

mK

dt
y2

K � å
K2J

mK

dt
cn

KyK + å
sKL2E

D(2)
KLh m+ 1

KL (p(yK) � p(yL))( yK � yL)

� å
K2J

mKa2um
e;KyK + å

K2J
mKb2y2

K + å
K2J

g2um
Ky2

K ;

� (Wue(y);y) = å
K2J

mK

dt
y2

K � å
K2J

mK

dt
un

e;KyK + å
sKL2E

L (3)
KL ãm+ 1

KL (yK � yL)2

� å
sKL2E

L (3)
KL ãm+ 1

KL m̃n+ 1
KL (vm

K � vm
L )(yK � yL)

� å
K2J

mKr 3 fum
T;K

(yK)yK + å
K2J

mKb3y2
K ;

� (Wv(y);y) = å
K2J

mK

dt
y2

K � å
K2J

mK

dt
vn

KyK + å
sKL2E

D(4)
KLh̄ m+ 1

KL (p(yK) � p(yL))( yK � yL)

� å
K2J

mKa4g(cm
K)um

KyK + å
K2J

mKb4y2
K + å

K2J
g4um

e;Ky2
K :

With Lemma 1, we know thatå sKL2E L (1)
KL am+ 1

KL (yK � yL)2 � 0,å sKL2E L (3)
KL ãm+ 1

KL (yK �

yL)2 � 0 and with Lemma 2 we haveå sKL2E D(2)
KLh m+ 1

KL (p(yK) � p(yL))( yK � yL) � 0,

å sKL2E D(4)
KLh̄ m+ 1

KL (p(yK) � p(yL))( yK � yL) � 0 becausep(�) is non decreasing onR.
Then we have8l > 0

� å
sKL2E

L (1)
KL am+ 1

KL mm+ 1
KL (cm

K � cm
L )(yK � yL)

� �
l 2

2 å
sKL2E

(L KLam+ 1
KL mm+ 1

KL (cm
K � cm

L ))2 �
1

2l 2 å
sKL2E

(yK � yL)2

�
l 2

2 å
sKL2E

(L KLaL¥ (R)mL¥ (R)(c
m
K � cm

L ))2 �
2

l 2 (#E)kyk2
2;

and

� å
sKL2E

L (3)
KL ãm+ 1

KL m̃m+ 1
KL (vm

K � vm
L )(yK � yL)

� �
l 2

2 å
sKL2E

(L (3)
KL ãm+ 1

KL m̃m+ 1
KL (vm

K � vm
L ))2 �

1
2l 2 å

sKL2E
(yK � yL)2

� �
l 2

2 å
sKL2E

(L (3)
KL ãL¥ (R)m̃L¥ (R)(v

m
K � vm

L ))2 �
2

l 2 (#E)kyk2
2:
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So, we have those inequalities

(Wu(yu);yu) � C(u)
1 kyuk2

2 � C(u)
2 kyuk2 � C(u)

3 ; (42)

(Wc(yc);yc) � C(c)
1 kyck2

2 � C(c)
2 kyck2; (43)

(Wue(yue);yue) � C(ue)
1 kyuek

2
2 � C(ue)

2 kyuek2 � C(ue)
3 ; (44)

(Wv(yv);yv) � C(v)
1 kyvk2

2 � C(v)
2 kyvk2; (45)

with the following expression for the constants, choosingl such thatl 2 > 2(#E)dt
mdown

M

and denotingmdown
M = min

K2J
mK � mK � max

K2J
mK = mup

M

C(u)
1 =

mdown
M

dt
�

2(#E)
l 2 > 0; C(u)

2 =
mup

M

dt
(#J )+ mup

M r 1 fL¥ (R)(#J ) > 0;

C(u)
3 =

l 2

2 å
sKL2E

(L (1)
KL aL¥ (R)mL¥ (R)(c

m
K � cm

L ))2 > 0;

C(c)
1 =

mdown
M

dt
> 0; C(c)

2 = mup
M (#J )(

max
K2J

(cm
K)

dt
+ a2) > 0;

C(ue)
1 =

mdown
M

dt
�

2(#E)
l 2 > 0; C(ue)

2 =
mup

M

dt
(#J )+ mup

M r 3 fL¥ (R)(#J ) > 0;

C(ue)
3 =

l 2

2 å
sKL2E

(L (3)
KL ãL¥ (R)m̃L¥ (R)(v

m
K � vm

L ))2 > 0;

C(v)
1 =

mdown
M

dt
> 0; C(v)

2 = mup
M (#J )(

max
K2J

(vm
K)

dt
+ a4) > 0:

It induces that

(W(y);y) � min(C(u)
1 ;C(c)

1 ;C(ue)
1 ;C(v)

1 )kyk2
2

� max(C(u)
2 ;C(c)

2 ;C(ue)
2 ;C(v)

2 )kyk2 � C(u)
3 � C(ue)

3 :

So there existsk > 0 from which8kyk2
2 � k : (W(y);y) > 0.

Suppose that there is noz2 R4� #J : W(z) = 0, in that case we can de�ne the applica-
tion S : y2 B (0;k) 7! � k W(y)

kW(y)k 2 B (0;k). S is continuous due toW, so according
to the Brouwer �xed point theorem there exists a �xed point ˜y of S onB (0;k):

ỹ = � k
W(ỹ)

kW(ỹ)k
(46)

Taking the norm of ˜y from (46), we getkỹk = k > 0 but taking the inner product of
(46) with ỹ we get :kỹk2 = � k (W(ỹ);ỹ)

kW(ỹ)k � 0. Thus there existsz with W(z) = 0. So

there exists a solution(um+ 1;cm+ 1;um+ 1
e ;vm+ 1) to (29)-(32). ut
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5 Modeling Treatments

Surgery, chemotherapy and radiotherapy are the treatments commonly used against
GBM, all of them can be modeled in (1a)-(1d). Surgery is performed in emergency
as soon as GBM is diagnosed. However some patients can not undergo surgery due
to the non-accessibility of the tumour, in that case only a biopsy is done. If surgery is
performed, the tumour core is removed but resection goes the largest possible without
damaging healthy tissues.
In our model, we suppose that surgery is performed at a time-steptsurg that can be
either the initial timet0 or a random time-steptn;n 2 J1;N + 1K. If tsurg = tn;n 2
J1;N + 1Kthen8m 2 J1;n � 1K, um is calculated according to (12)-(15) and8K 2
J ;w = u;c;ue;v

w(tsurg;xK) =

(
wn� 1

K ; if xK =2 surgical area;
0; if xK 2 surgical area:

Finally 8m 2 Jn+ 1;N + 1K, um is calculated according to (12)-(15) with the new
initial conditionsw0 = w(tsur f; �);w = u;c;ue;v.
If tsurg= t0 then we solve (12)-(15) with the new initial conditionswsurg

0 , w= u;c;ue;v

wsurg
0 =

(
w0; if xK =2 surgical area;
0; if xK 2 surgical area:

Chemotherapy is the use of a drug designed against a tumour cell population. The
drug commonly used in GBM is TMZ at a daily dose of 75 mg/m2 (Stupp et al,
2005). The chemotherapy part of treatments is modeled by

Tchemo(t;u) = kc(t)Dcheu; (47)

wherekc(t) = 1 if and only if the chemotherapy is effective at the time t andDche is
the dose administered by the drug.
The problem of chemotherapy is the possible existence of tumour-resistant cells that
are not affected by the drug. Those cells can still proliferate in the tumour site causing
relapses for the patient. For this work, we do not consider these sub-type of cancer
cells and suppose that all tumour cells are affected by the drug. However, we know
that the use of chemotherapy enhances the performances of radiotherapy because the
drug makes the tumour cells more sensitive to radiations (Stupp et al, 2005).
Radiotherapy occurs for almost all cancer treatments because the use of radiotherapy
depends mainly on the location of the tumour and its spatial spread and not on the
cancer type. Indeed radiotherapy works by sending a dose of radiations at a local
position (the tumour location), those radiations cause micro-breaks into the DNA of
irradiated cells, normal cells can repair those DNA breaks but tumour cells often
can not causing their death. Radiotherapies can cause side effects if normal cells are
altered by the radiations, explaining why each cancer type has a speci�c guideline to
dose the quantity of radiations allowed.
With GBM, radiotherapy is done by administering the dose of radiations in small
fractions. The number of fractions and the cumulative dose depend on the patient
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health, for example its age or its WHO performance status (ANOCEF, 2018). The
ef�ciency of radiotherapy depends on a lot of parameters: the number of fractions per
dayNf rac, the dose administeredDrad, the duration of irradiationt , the time between
irradiationDt , the DNA damaged ratemand sensitivity parametersa ;b . In France, it
is recommended to perform radiotherapy 5 days a week for 6 weeks with 30 fractions
of 2Gg per day(ANOCEF, 2018).
Because, multiple small fractions are delivered with GBM, we model radiotherapy
based on (Nilsson et al, 1990)

Tradio(t;u) = kchemo(t)kr (t)Re f fu1f x2 irradiated areag(x); (48)

wherekr (t) = 1 if and only if the radiotherapy is effective at the time t and

Re f f = a Nf racDrad + bNf racD2
rad(grad(mt)+ 2(

cosh(mt) � 1
(mt)2 )hNf rac(j )) ;

grad(mt) = 2(
mt � 1+ exp(� mt)

(mt)2 );

j = exp(� m(t + Dt )) ;

hm(j ) = 2(
mj � mj 2 � j + j m+ 1

m(1� j )2 ):

We use the termkchemo(t) to model the enhance ef�ciency of radiotherapy if chemother-
apy is applied concomitant with radiotherapy. So if chemotherapy is not administered
at the timet, we setkchemo(t) to 1 and if radiotherapy and chemotherapy are concomi-
tant thenkchemo(t) = ¡ > 1,¡ is the ef�ciency rate improvement of using radiotherapy
with chemotherapy.

6 Methods

We use MRIs from the patient C3L16 in the CPTAC-GBM database (TCIA, 2018).
This patient is a 60 year-old male (BMI of 28.81 and BSA of 2.07m2) diagnosed with
a Glioblastoma of 4:3 cm in his parietal lobe who died of Glioblastoma 77 days after
diagnosis.
There are different types of MRI that can be used to extract information like shown
in �gure 2: a T1 highlights the white matter in white while grey matter is not high-
lighted, a T1-Gado separates well the tumour core and edema from the brain, T2 and
FLAIR show the enhancing tumour area.
From those MRI, we build the triangular meshT on which our model takes place.
We use the software AutoCAD (version O.161.0.0 AutoCAD 2018.1.2 Update) to
place, manually, vertex on the outside of the brain, of the tumour core, of the edema
and of the enhancing tumour. We attribute edges to those vertex and use the software
Triangle (version 1.6) (J.R., 1996; Shewchuk, 2002) to get the triangulationT . The
primal and dual mesh obtained are represented in the �gure 3a. Parameters of the
primal meshT are given in table 1. With the information readable in the MRIs of the
�gure 2, we can extract manually data in the brain: the white/grey matter locations
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Fig. 2: Extract of four axial MRIs from the patient C3L16 in (TCIA, 2018). Those
MRIs are the four basis MRI sequences required for Glioblastoma diagnosis. Those
sequences are a T2 on the top left, a T1 weighted (or T1 with gadolinium) on the top
right, a T1 on the bottom left and a T2 weighted (or FLAIR) on the bottom right.

and the tumour segmentation. The segmentation of the brain is represented in the
�gure 3b in which we have in different shades of blue, the locations of grey matter
(in dark blue) and the white matter (in light blue) and the whole tumour which is
divided into three parts: the tumour core with hypoxic cells in green, the edema in
yellow and the enhancing tumour in red. We suppose before surgery that the diffusion
in the whole tumour behaves like the white matter.
To solve the numerical scheme (12)-(15) we follow the same guidelines than the
discrete properties. From each time steptn;n � 0 we use the number sequenceXm+ 1 =
t (n)(Xm) with the semi-implicit numerical scheme (29)-(32).
We consider thatXm+ 1 = ( un+ 1;cn+ 1;un+ 1

e ;vn+ 1) when the relative error follows

kwm+ 1 � wmk2

kwmk2
< tolImplicit; with w = u;c;ue;v (49)

with tolImplicit = 10� 3 being a numerical threshold. To �ndXm+ 1 from Xm we solve
(29)-(32) using Newton's method with 10� 11 as the error of convergence. Observe
that choosing to solve the semi-implicit scheme (29)-(32) instead of the coupled sys-
tem (12)-(15) allows to solve four smaller systems rather than one system four times
wider.
Finally we use a conjugate gradient method ending with a numerical thresholdtolGradient
of 10� 13 to solve each step of the Newton method.
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(a) primal and dual mesh (b) segmentation of the brain

Fig. 3: (a) Primal meshT (in black) and dual meshM (in red) corresponding to
the MRIs in �gure2. (b) Segmentation of the brain on the primal meshT according
to �gure 2: the grey matter in dark blue, the white matter in light blue, the tumour
core in green, the edema in yellow and the enhancing tumour in red.P1, P2 andP3
are three points used for investigating the tumor cell concentration in the area of the
tumour.

Table 1: Parameters from the primal and dual meshes including the number of vertex,
triangles, edges, interior vertex, the minimum and the maximum area onM .

vertex triangles edges interior vertex min
K2J

mK max
K2J

mK

1083 1963 3022 423 6:47� 10� 6 1:91� 10� 4

7 Numerical simulations

We choose to model the diffusion and chemotaxis with the following functions ac-
cording to assumptions (A1) and (A2)

a(y) = y(1� y)1[0;1](y);

c1(y) = l 1(y(1� y))21[0;1](y); l 1 = 1:0 cm2 � day� 1 � mmol� 1(Anderson; 2005);

c3(y) = l 3(y(1� y))21[0;1](y); l 3 = 2:25� 104cm2 � day� 1 � mmol� 1:

Even though a more detailed anisotropic expression has been developed for the diffu-
sion in the white matter (K.J.Paintera and T.Hillen, 2013), we choose here an easier
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Table 2: Values of the coef�cients used in (1a)-(1d) common in all numerical simula-
tions

Coef�cients Values Units Descriptions References

r 1 2:7� 10� 1 day� 1 tumour cell growth rate (Curtin et al, 2020)

b1 1:7� 10� 1 day� 1 tumour cell apoptosis rate (Lai and Friedman,
2020)

a2 100 mmol� day� 1 O2 production rate by en-
dothelial cells

this work

b2 3:75� 10� 2 day� 1 O2 degradation rate (Anderson, 2005)

g2 6 day� 1 O2 consumption rate by
tumour cells

this work

r 3 4:9� 10� 3 day� 1 endothelial cell growth
rate

this work

b3 3:1� 10� 3 day� 1 endothelial cell apoptosis
rate

this work

a4 340 mmol� day� 1 VEGF production rate by
tumour cells

this work

b4 15:6 day� 1 VEGF degradation rate (Curtin et al, 2020)

g4 1:4 day� 1 VEGF consumption by
endothelial cells

(Curtin et al, 2020)

umax 2:39� 108 cells�cm� 2 maximum tissue capacity (Curtin et al, 2020)

dgm 2:7� 10� 4 cm2 � day� 1 diffusion rate of cells in
grey matter

(Curtin et al, 2020)

dwm 5dgm cm2 � day� 1 diffusion rate of cells in
white matter

(Jbabdi et al, 2005)

dps 50dgm cm2 � day� 1 diffusion rate of cells in
the post-surgical area

this work

d2 8:6 cm2 � day� 1 diffusion rate ofO2 this work

d4 8:6� 10� 1 cm2 � day� 1 diffusion rate of VEGF this work

chypo 75 mmol� cm� 2 threshold under which
cells are in hypoxia

this work

cnecro 50 mmol� cm� 2 threshold under which
cells necrose

this work

expression in order to don't use Diffusion Tensor Imaging (DTI) data. The diffusion
in the white matter is then set to be 5 times faster than in the grey matter, and in the
post-surgical area, we set the diffusion to be 50 times faster than in the grey matter:

L 1(x) = d1(x)
�
1 0
0 1

�
; with d1(x)

8
><

>:

dwm if x is in the white matter;
dgm if x is in the grey matter;
dps if x is in the post-surgical area;

D2 = d2

�
1 0
0 1

�
;

L 3(x) = 1:8� 10� 2 � L 1(x) as proposed in(Curtinet al; 2020);
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D4 = d4

�
1 0
0 1

�
:

The different coef�cients in (1a)-(1d) following the assumption (A4) are given in
table 2.
Following the timeline of a patient with GBM (ANOCEF, 2018), we set the treat-
ments as followed:

– Surgery is performed on the �rst day of simulation, that surgery removes every
cells and proteins in the necrotic, enhancing and whole tumour area as segmented
in the �gure 3b.

– Radiotherapy and chemotherapy start both on the 14th day and last for a period of
6 weeks.

– Chemotherapy is administered everyday of the treatment schedule, sokc(t) =
1[14;56](t) andkchemo(t) = ¡ � 1[14;56](t).

– Radiotherapy is administered periodically 5 days in a row with 2 days off, so
kr (t) = 1[14;19]

S
[21;26]

S
[28;33]

S
[35;40]

S
[42;47]

S
[49;54](t).

– Radiotherapy is administered locally where the surgery was performed and also
in the 3cm area bordering the whole tumour area. This bordering area is computed
manually.

Experiments in (Stupp et al, 2005) found a 33% increase in median survival com-
paring radiotherapy only and radiotherapy with TMZ but there is no study using
chemotherapy only on patients.¡ is chosen to be43 even though the value is overes-
timated.
The value of all parameters related to treatments are summarized in table 3. Most of
them come from the work of (Powathil et al, 2007) with the current state of treatments
in (ANOCEF, 2018).
Six simulations have been done to solve (1a)-(3), depending on the treatments admin-
istered to the patient: with or without surgery, chemotherapy and radiotherapy only
(experiments 1 to 4) and then the concomitant use of chemotherapy and radiotherapy
with or without surgery (experiments 5 and 6). The simulations' settings are given in
table 4 using the coef�cients from table 2 and table 3.
For the initial conditions, we set the values ofu0 andue0 from the MRIs of the patient
given in �gure 2. According to the location on the MRIs of the tumour core and
edema, we setu0 to 12� 104 cells �cm� 2 in the tumour core and to 5:5� 107 cells
�cm� 2 in the edema. In the enhancing tumour area, we set the tumour cells population
with u0(x) = 1:4� 108exp(� 4

45jx� xcj) cells�cm� 2, wherexc represents the position
of the tumour's center, and outside of those areas we setu0 to 0. According to the
location of the grey and white matter, we setue0 to be 7:17� 107 cells �cm� 2 in
the grey matter and to 2:39� 105 cells �cm� 2 in the white matter. The initial spatial
distribution of tumour and endothelial cells are shown in the �gure 4.
As O2 and VEGF concentrations cannot be seen on MRIs required for Glioblastoma
diagnosis, such as those presented in the �gure 2, we have attributed their initial
concentrations by solving 13 and 15 using the previous expressions ofu0 andue0

but without the partial temporal term. The computed initial concentration inO2 and
VEGF are shown in the �gure 5, they are not perfectly �tted with their expected
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Table 3: Parameters around the treatments

Parameters Values Units Descriptions References

a 2:7
30 � 10� 2 G� 1

g sensitivity parameter (Powathil et al, 2007;
ANOCEF, 2018)

b 2:7
30 � 10� 3 G� 2

g sensitivity parameter (Powathil et al, 2007;
ANOCEF, 2018)

Nf rac 30 number of fractions per
day

(ANOCEF, 2018)

t 5:8� 10� 5 day� 1 duration of irradiation this work

Dt 2:9� 10� 4 day� 1 time between irradiations this work

m 11:04 day� 1 DNA damage rate (Powathil et al, 2007)

¡ 4
3 ef�ciency rate of radio-

therapy with TMZ
(Stupp et al, 2005)

Dche 1:96� 10� 2 day� 1 death rate of tumour cells
due to chemotherapy

(Powathil et al, 2007)

Drad 2 Gg dose administered per ra-
diation

(ANOCEF, 2018)

Table 4: Recap on the treatments used in the simulations

Simulations Surgery Chemotherapy (TMZ) Radiotherapy

1 no no no
2 yes no no
3 no yes no
4 no no yes
5 no yes yes
6 yes yes yes

(a) tumour cells (b) endothelial cells

Fig. 4: (a) The initial number of tumour cells percm2 (u0). (b) The initial number of
endothelial cells percm2 (ue0) on the right.
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(a)O2 concentration (b) VEGF concentration

Fig. 5: (a) The initial concentration ofO2 in mmol:cm� 2 (c0). The initial concentra-
tion of VEGF in mmol:cm� 2 (v0) on the right.

spatial distributions, which would be smoother around the tumour area, but their be-
haviour is welly done during the �rst steps of the simulation.
Indeed, during the simulations, theO2 concentration oscillates asymptotically be-
tween 74 and 104mmol � cm� 2 and VEGF is produced punctually by the hypoxic
tumour cells. Without any treatment the tumour keeps growing inside the brain, in-
ducing the growth of the hypoxic tumour core, the edema and the enhancing tumour
area. Moreover without treatment new endothelial cells are produced to supply the
growing hypoxic tumour core, who is lacking ofO2 to keep proliferating. In order to
follow up the impact of treatments on the tumour behaviour, we have displayed in �g-
ure 6 the total number of tumour cells through time. We also display in �gures 7,8 and
9 the number of tumour cells percm2 at three points in the brain, namely atP1,P2 and
P3.P1 is located in the tumour core,P2 in the edema andP3 in the enhancing tumour
area as shown in the �gure 3b. You can �nd a video of the 6 simulations related in
table 4 following this linkhttps://www.youtube.com/watch?v=vJkMJ5bNoWA.
Depending on the treatments, the tumour growth exhibits different behaviour. Indeed
using surgery (simulation 2 and 6) on day 1 allows to decrease intensely the number
of tumour cells in the brain, it remains only tumour cells in areas where no evidence
of existence were detectable on the different MRIs. However removing the majority
of tumour cells does not stop the growth of the tumour because of the cells that have
not been affected by the surgery, and no induced angiogenesis is required by them to
keep growing because the brain does not lack ofO2 anymore. This is why in �gure
6 the trajectory of the surgery only curve starts with a big drop on day 1 but comes
back to the no treatment curve later on. Surgery is not enough to stop the spread of
the tumour growth but it stops locally the spread as there is no tumour cell remaining
at P1 andP2 after the surgery, which is why in the �gure 7 and 8 the curves where
surgery was used are not displayed.P3 is in the surgical area too but also on the
boundary of the enhancing tumour area, so some tumour cells nearP3 remain after
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Fig. 6: Number of the total tumour cells in the brain through time for different treat-
ment schedules. If performed, surgery is done on the �rst day, chemotherapy (TMZ)
is administered from day 14 to day 56 and radiotherapy is administered 5 days out of
7 from day 14 to day 54. The curves ”No treatment” and ”TMZ” are really close and
dif�cult to distinguish at this scale.

the surgery which explains why in the �gure 9, there are still tumour cells located at
P3 after the surgery.

The use of chemotherapy only with TMZ does not affect the global behaviour of the
tumour growth due to the low death rate of tumour cell induced by chemotherapy. In
the �gure 6, the trajectory of the chemotherapy only curve is almost perfectly identi-
cal to the one with no treatment. Locally the use of TMZ only decreases the number
of tumour cells, but that decrease shrinks the hypoxic tumour core area, which means
that more tumour cells can replicate themselves than before. Depending on their loca-
tion, tumour cells can either be in a slightly higher number than without any treatment
as atP2 or in a slightly fewer number as atP1 andP3. Those observations explain
why no treatment on patients with Glioblastoma rely only on chemotherapy, as this
treatment is not suf�cient to cure Glioblastoma.

However radiotherapy affects a lot the behaviour of the tumour growth, its use de-
creases drastically the number of tumour cells in the irradiated area as shown in the
�gure 6-9. The death rate of tumour cells due to radiotherapy are also enhanced when
combined with the chemotherapy as it was exhibited in (Stupp et al, 2005). The ef�-
ciency of radiotherapy explains why it is always used, to treat Glioblastoma. In our
model, we can see in the �gure 6 that the use of radiotherapy and chemotherapy gives
better results around the 50th day than the use of surgery, radiotherapy and chemother-
apy. This observation can be explained due to the fact that in our model, the use of
surgery enhances the proliferation of the remaining tumour cell, because there are no
more hypoxic tumour cells, and migrate further into the brain escaping the irradiated
area. Yet you can observe that on the long run that there are less tumour cells in the
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Fig. 7: Number of the tumour cells percm2 atP1 through time for different treatment
schedules. The location ofP1 (the tumour core) is shown in the �gure 3b. If per-
formed, surgery is done on the �rst day, chemotherapy (TMZ) is administered from
day 14 to day 56 and radiotherapy is administered 5 days out of 7 from day 14 to day
54. Treatments using surgery are not displayed because no tumour cell remain after
surgery atP1.

brain when using surgery, TMZ and radiotherapy than TMZ and radiotherapy which
implies a longer survival time when using all treatments.

8 Discussion

In all the simulations after the delivery of all the treatments, the tumour starts pro-
liferating again until being slowed by the hypoxic tumour core. However the main
criteria related to a patient death due to Glioblastoma is the total area occupied by
tumour cells, so if tumour cells remain in the brain after the use of treatments then
their proliferation induce the relapse of the patient and usually its death.
It must be remembered that all results presented in this work rely on the behaviour
of our model, and so, cannot take every effects that would change impact the tu-
mour growth. Indeed, in our model, if we wanted to enhance the death rate of tumour
cells due to radiotherapy, we would increase the irradiation dose. However a higher
dosage would impact the healthy cells in the brain that would not be able to repair
their DNA-breaks as before. Also surgery in our model seems to amplify the spread
of the remaining tumour cells. It would then be better to only use radiotherapy with
chemotherapy as evidenced in the �gure 6 but if surgery is not performed then there
is a necrotic tumour core in the brain that could have negative impacts on the sur-
rounding healthy tissues. For example theO2 delivery would decrease for the healthy
tissues in favor of supplying the hypoxic tumour cells. Also we decided in this work to
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Fig. 8: Number of the tumour cells percm2 atP2 through time for different treatment
schedules. The location ofP2 (the edema) is shown in the �gure 3b. If performed,
surgery is done on the �rst day, chemotherapy (TMZ) is administered from day 14 to
day 56 and radiotherapy is administered 5 days out of 7 from day 14 to day 54. Treat-
ments using surgery are not displayed because no tumour cell remain after surgery at
P2.

consider only one population of tumour cells that react the same way to treatments.
However some tumour cells can have random mutations that protect them against
Temozolomide and radiotherapy. Those cells are not impacted by the treatments, ex-
cept surgery, and are free to proliferate in the brain. It would then be necessary to
consider two sub-populations of tumour cells according to the presence or not of the
mutation that would not follow the exact same equation as (1a).
In this work we have shown that our model (1a)-(3) can perform simulations based
on patient's MRIs and so, try to �t the growth of the Glioblastoma for that patient.
Modifying the value of the different coef�cients in (1a)-(1d) is the only way in our
model to exhibit different growth behaviour like having a higher tumour prolifera-
tion, having a faster VEGF production or having a higher tumour diffusion rate. This
approach works when the coef�cients in (1a)-(1d) are known and well identi�ed on
a patient. Nowadays, a lot of information can be retrieved from the patient diagno-
sis: using immunohistochemistry-based algorithm (Orzan et al, 2020), analysing the
extracellular vesicles situated in the glioblastoma micro-environment (Simon et al,
2020) or by determining the glioblastoma subtypes based on the OMS description
(Louis et al, 2016). However those information are not linked explicitly to the differ-
ent coef�cients, and so, the coef�cients have to be extrapolated from the information
and then adapted to �t the growth of the patient tumour.
A solution to �nd the coef�cients of a patient could be to set some coef�cients as
unknowns and write the system (1a)-(3) as an optimization problem based on the
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Fig. 9: Number of the tumour cells percm2 atP3 through time for different treatment
schedules. The location ofP3 (the enhancing tumour body) is shown in the �gure 3b.
If performed, surgery is done on the �rst day, chemotherapy (TMZ) is administered
from day 14 to day 56 and radiotherapy is administered 5 days out of 7 from day 14
to day 54.

knowledge of the solution at different time steps. However this method shows weak-
nesses as there are more unknowns than equations which implies the need of more
data that are not available from the diagnosis so we can not do simulations or pre-
dictions after the diagnosis. To solve this problem, we could not set the coef�cients
as unknowns but as temporal functions and use Kalman �lter as in (Rochoux et al,
2018) to �t the model to the patient through time. This method allows to have a unique
model that will adapt to each patient during the simulations.
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Table 5: Description of all variables used in this paper

variables descriptions

u concentration in tumour cells divided by the maximum cell concentration allowed in
tissues

c concentration inO2 in mmol � cm� 2

ue concentration in endothelial cells divided by the maximum cell concentration allowed
in tissues

v concentration in Vascular Endothelial Growth Factor inmmol � cm� 2

uT total concentration of cell populations divided by the maximum cell concentration
allowed in tissues, it is the sum ofu andue

un
K numerical approximation ofu at the vertexxK and the timetn

cn
K numerical approximation ofc at the vertexxK and the timetn

un
e;K numerical approximation ofue at the vertexxK and the timetn

vn
K numerical approximation ofv at the vertexxK and the timetn

un
T;K numerical approximation ofuT at the vertexxK and the timetn

L (1)
KL numerical approximation of the diffusion �uxL 1(x)~n on the edgesKL

L (3)
KL numerical approximation of the diffusion �uxL 3(x)~n on the edgesKL

D(2)
KL numerical approximation of the diffusion �uxD2~n on the edgesKL

D(4)
KL numerical approximation of the diffusion �uxD4~n on the edgesKL

an
KL numerical approximation of the cell-dependant diffusiona(u) on the edgesKL

mn
KL numerical approximation of the cell-dependant chemotaxism1(u) on the edgesKL

h n
KL numerical approximation ofh (c) on the edgesKL

ãn
KL numerical approximation of the cell-dependant diffusiona(ue) on the edgesKL

m̃n
KL numerical approximation of the cell-dependant chemotaxism3(ue) on the edgesKL

h̄ n
KL numerical approximation ofh (v) on the edgesKL
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Table 6: Description of all coef�cients used in this paper

Coef�cients Descriptions Units

Tf �nal time used in simulations day

r 1 growth rate of tumour cells day� 1

b1 apoptosis rate of tumour cells day� 1

a2 production rate ofO2 by endothelial cells mmol� day� 1

b2 degradation rate ofO2 day� 1

g2 consumption rate ofO2 by tumour cells day� 1

r 3 growth rate of endothelial cells day� 1

b3 apoptosis rate of endothelial cells day� 1

a4 production rate of VEGF by endothelial cells mmol� day� 1

b4 degradation rate of VEGF day� 1

g4 consumption rate of VEGF by endothelial cells day� 1

D2 isotropic diffusion matrix ofO2 in the brain (cm2� day� 1)2� 2

D4 isotropic diffusion matrix of VEGF in the brain (cm2� day� 1)2� 2

chypo threshold under which cells are hypoxic mmol � cm� 2

cnecro threshold under which cells necrose mmol � cm� 2

umax maximum tissue capacity cells�cm� 2

hT size of the triangulationT cm2

qT regularity of the triangulationT

dt time step used in simulations day

tn nth discrete time step value day

Dche death rate of tumour cells induced by chemotherapy day� 1

Re f f death rate of tumour cells induced by radiotherapy day� 1

Nf rac number of radiotherapy fractions administered in a day

Drad dosage per fraction Gg

t irradiation time for a fraction min

Dt time between consecutive irradiations min

m DNA damaged rate min� 1

a sensitivity parameter day� 1 � G� 1
g

b sensitivity parameter day� 1 � G� 2
g

j

dwm diffusion rate of cells in white matter cm2� day� 1

dgm diffusion rate of cells in grey matter cm2� day� 1

dps diffusion rate of cells in the post surgical area cm2� day� 1

dp diffusion rate ofO2 and VEGF in the brain cm2� day� 1

tolImplicit threshold to stop the computation usingt (n) (�)

tolNewton threshold to stop the Newton algorithm

tolGradient threshold to stop the conjugate gradient algorithm

¡ ef�ciency rate between radiotherapy only and radiotherapy with
chemotherapy

l 1 chemotaxis coef�cients of tumour cells cm2 � mmol� 1� day� 1

l 3 chemotaxis coef�cients of endothelial cells cm2 � mmol� 1� day� 1
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Table 7: Description of all functions used in this paper

functions descriptions

L 1(�) medium-dependent diffusion matrix of tumour cells

L 3(�) medium-dependent diffusion matrix of endothelial cells

a(�) cell-dependant diffusion function of cells

c1(�) cell-dependent chemotaxis function of tumour cells

c3(�) cell-dependent chemotaxis function of endothelial cells

m1(�) ratio function betweenc1(�) anda(�)

m3(�) ratio function betweenc3(�) anda(�)

f�(�) cells-dependent reproduction functions of tumour and endothelial cells

Ttreat(�; �) time and cell-dependent treatment map

Tchemo(�; �) time and cell-dependent treatment map modeling chemotherapy

Tradio(�; �) time and cell-dependent treatment map modeling radiotherapy

g(�) O2-dependent function used for VEGF production under hypoxia

h(�) O2-dependent function used for tumour cells mitosis

~n unit normal vector on a boundary

u0 initial tumour cells concentration in the brain

c0 initial O2 concentration in the brain

ue0 initial endothelial cells concentration in the brain

v0 initial VEGF concentration in the brain

h (�) function used to ensure positivity ofO2 and VEGF concentration

p(�) function used to ensure positivity ofO2 and VEGF concentration

A (�) primitive function ofa(�)

x (�) primitive function of
p

a(�)

(F )I canonical basis ofH T

m" primitive function of(m0(�))+

m# primitive function of� (m0(�)) �

W(�) functional where the kernel gives the solution of the main system

t (n) (�) sequence of functions used to �nd a solution of an implicit scheme from a semi-
implicit scheme

kc(�) time-dependent function equal to 1 when chemotherapy is administered

kr (�) time-dependent function equal to 1 when radiotherapy is performed

kchemo(�) time-dependent function equal to¡ when chemotherapy and radiotherapy are both
used

grad(�) function used for modeling radiotherapy

hn(�) function used for modeling radiotherapy
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Table 8: Description of all spaces used in this paper

Spaces descriptions

W working space based on a 2D-slice of brain delimited by the skull

¶W border ofW

T conforming triangulation onW

E set of edges fromT

u set of vertices fromT

EK subset ofE of K as a vertex

TK set of triangles havingK as a vertex

M dual mesh constructed fromT

H T theP1(R) �nite element space

cM the discrete control volumes space

I n+ 1
KL interval of values betweenun+ 1

K andun+ 1
L

In+ 1
KL interval of values betweencn+ 1

K andcn+ 1
L

J n+ 1
KL interval of values betweenun+ 1

e;K andun+ 1
e;L

J n+ 1
KL interval of values betweenvn+ 1

K andvn+ 1
L

E set of vectors used for proof

Table 9: Description of all mesh components used in this paper

Mesh components descriptions

ht the diameter of the trianglet

r t the diameter of the incircle of the trianglet

xK the coordinates of the vertexK

sKL the edge joining the vertexK andL

wK the dual element constructed around the vertexK

mK the 2-dimensional Lebesgue measure ofwK


