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Abstract Glioblastoma Multiforme is a brain cancer that still show poor prognosis
for patients despite the active researches for new treatments. In this work the goal is
to model and simulate the evolution of tumour associated angiogenesis and the ther-
apeutic response of the Glioblastoma Multiforme. Multiple phenomena are modelled
in order to t different biological pathways, such as, the cellular cycle, apoptosis,
hypoxia or angiogenesis. This results in a nonlinear system with 4 equations and 4
unknowns: the density of tumour cells, tBe concentration, the density of endothe-

lial cells and the vascular endothelial growth factor concentration. This system is
solved numerically on a 2D-slice of Magnetic Resonance Imaging, using a nonlinear
control volume nite element scheme on a mesh tting the geometry of the brain and
the tumour of a patient. We show that this implicit volume nite element numeri-

cal scheme is positive and we give energy estimates on the discrete solution to ensure
convergence. The numerical scheme is implicit in time. Numerical simulations of this
scheme have been done using the different standard treatments: surgery, chemother-
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apy and radiotherapy, in order to understand the behaviour of tumour in response to

treatments.
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1 Introduction

Glioblastoma Multiforme (GBM) is the deadliest and most frequent brain tumour.
Despite the research of new treatments, patients still show poor prognosis in the long

run.  only 5% of
Usually, patients undergo
emergency surgery (if
the surgery is possi-
ble), then the treatment
consists in radiotherapy
plus concomitant and ad-

juvant Temozolomide (TMZ)

therapy (Stupp et al,
2005). More ef cient ther-
apies remain a major
preoccupation to cure
GBM, among them, im-
munotherapies is more
and more a subject of re-
search for gliomas (Lim
etal, 2018; Kamran et al,
2018) and could improve
the current prognosis of
GBM patients.
Mathematics have been
used for developing mod-
els matching the be-
haviour of gliomas tu-

mour cells inrecent years.

patients survive 5 years  post-prognosis.
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Fig. 1: Endothelial cells carry blood vessels providing
nutrients andO, in the brain. Due to tumour growth,
hypoxic tumour cells are induced by a lack®@jf. Hy-

Some models use a spher- poxic cells produce proangiogenic factors, mainly Vas-

ical tumour growth ap-
proach using Partial Dif-

cular Endothelial Growth Factors, that enhance the for-
mation of new blood vessels.

ferential Equations (PDES)

(Papadogiorgaki et al,

2013; Stein et al, 2007; Kim et al, 2009), other models approach it using an elastic-
ity (Subramanian et al, 2019) or using evolutionary game theoretical model (Basanta
et al, 2011).
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When a patient gets diagnosed with GBM, tumour cells have already achieved enough
tumour promotion mechanisms in order to evade the immune system and to prolif-
erate in the brain. In that sense, we chose to model the GBM growth based on the
process of tumour associated angiogenesis.

Angiogenesis is the ensemble of phenomenon that allow the formation of new blood
vessels from pre-existing blood vessels. Those physiological processes happen not
only for cancer patients, but tumours have the ability to use angiogenesis in their
favor as a tumour promoter (Kim and Lee, 2009). A simpli cation of the processes
used by tumour cells to induce angiogenesis is proposed in gure 1. Tumour cells
rely on nutrients an@®, for their growth, provided by blood vessels. During tumour
growth, the tumour core lack®, inducing hypoxia in the tumour core. Hypoxia
prevents most tumour cellular activities, acting like a tumour suppressor process.
To ght hypoxia, hypoxic tumour cells produce proangiogenic factors such as, Vas-
cular Endothelial Growth Factors (VEGF) are the main factors produced in GBM.
Proangiogenic factors promote angiogenesis meaning that more blood vessels are
produced, and so more nutrients @glare provided to the tumour cells. Angiogen-
esis mathematical models have already been developed: using PDEs (Vilanova et al,
2017; Mantzaris et al, 2004; Schugart et al, 2008), some adding stochastic parts in the
modeling (Travasso et al, 2011), or working at a mesoscopic scale (Spill et al, 2015).
However in this work, we consider more realistic situation to the tumour associ-
ated angiogenesis model by working on Magnetic Resonance Imaging (MRIs) data
based on a real patient and by modeling the behaviour of GBM growth through the
treatments usually administered to patients. Indeed MRIs are required to certify the
diagnosis of GBM (Villanueva-Meyer et al, 2017), and it is easier nowadays to get
information from MRI as some deep learning techniques can be used to extract med-
ical data (Lundervold and Lundervold, 2019). With tools like CaPTK (Bakas et al,
2017; Pati et al, 2020), it is possible to perform segmentation of GBM tumours based
on MRI. Recent studies show also that information on the tumour cells behaviour
can be acquired with immunohistochemistry data, for example by identifying GBM
subtypes (Orzan et al, 2020) but we will not consider those different subtypes in this
work. Working on MRI is numerically challenging because on real MRI we can not
have constrained mesh to solve our equations on. Finite volume scheme based on
TPFA (Two Point Flux Approximation) can not ensure the positivity of numerical
solutions. It is then needed to use more sophisticated numerical schemes in order to
ensure the positivity of the solutions. Our approach is based on a CVFE (Control Vol-
ume Finite Element) scheme in which nonlinear numerical Gudonov uxes are used
to ensure the positivity.

Using real patient data, it is interesting in the long run to include the treatments in
the model to be able to match data and simulations. Currently patients with GBM
are treated using surgery, chemotherapy with TMZ and radiotherapy, we will only
consider those treatments in our model. Chemotherapy and surgery were rst used in
PDEs model around gliomas in (Tracqui et al, 1995; Woodward et al, 1996) but more
robust models have been developed: on chemotherapy with hypoxic cells (Hinow
et al, 2009), on surgery and radiotherapy with an haptotaxis model (Enderling et al,
2010) and even on immunotherapy in gliomas (Banerjee et al, 2015). Choosing to
model those treatments will allow us to compare their impact on the GBM growth
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through the recovery of a patient, and so, analyse their advantages and drawbacks on
the tumour cells.

2 The anisotropic degenerate nonlinear angiogenesis model

Let W be an open bounded polygonal and connected sub&tafidT; > 0 a xed

nite time. We denoteQy, = W ]0; Tf[andSt, = TW ]0; T¢[. Wrepresents the area

in the brain where the tumour is developing, here it is obtained from a slice of an pre-
surgery axial MRI of a patienff W is then the border of the brain around the skull
and the ventricles if they are on the MRI (it depends on the location of the tumour).
We propose in this work a new model on angiogenesis inspired by works as in (En-
derling et al, 2010) and (Hinow et al, 2009), involving reaction-advection-diffusion
equations around tumour cells and nutrients. In order to exhibit angiogenesis, two
guantity are added into our model: endothelial cells that rel€asa the brain and
VEGF (Vascular Endothelial Growth Factor) that are produced by hypoxic tumour
cells as a help message that enhance the formation of new endothelial cells. The be-
haviour of tumour cells during their spread and treatments is chosen to be described
by the set of equations

Tu N (Li(9(aWNu  c1(u)Nc)) = rih(c) fur (U) biu Tea(t;u);  (1a)
fic N (DoNc)= aue boc guc (1b)
fiue N (L3(¥)(a(ue)Nue c3(Ue)NV)) = r3fy (Ue) bsUe; (1c)
v N (DsNv) = azg(Q)u  bav  quuev. (1d)

We associated with (1a)-(1d) homogeneous zero- ux boundary conditions

(LiauNu  Li(ci(u)Ne) A= 0; (2a)
D,Nc A= 0; (2b)
(La(x)a(ug)Nue L3z(x)c3(ug)Nv) A= 0; (2¢)
D4Nv A= 0: (2d)

These conditions model the no exchange between the brain and the rest of the body.
For each quantity, we associated an initial conditiongiven by

w(x;t = 0) = wp(X);8x2 W, W= U;C; Ug, V. )

In the model (1a)-(1d)y is the ratio between the number of tumour cells pef

and the maximum tissue capacilyax (U is normalized between 0 and 1)js the
concentration irD, in mmol cm 2, ue is the ratio between the number of endothelial
cells percn? and the maximum tissue capacityax (Ue is normalized between 0 and

1) andv is the concentration in Vascular Endothelial Growth Factor (VEGR)irol

cm 2. The sum of the two cellular populationgis = u+ ue. The functionsa( ), ¢ ()

and fy; () are the cell-density dependant coef cients for diffusion, chemotaxis and
growth rate respectively( ) is theO,-dependant VEGF production by tumour cells
function andh( ) is aO,-dependant threshold allowing mitosis for tumour cells under
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normoxic conditionsl 1(X) andL 3(x) are the medium-dependant diffusion tensor for
tumour cells and endothelial cells respectively. The diffusion of cells depends on the
white matter, the grey matter and the post-surgical ddgandD, are the isotropic
diffusion tensors associated wi and VEGF respectively.; is the growth rate of
tumour cells,a; is the production rate oD, by endothelial cellst 3 is the growth
rate of endothelial cells anal, is the production rate of VEGF by tumour celts,
andbs are the apoptosis rates of tumour cells and endothelial cells respedtively,
andb, are the degradation rates©@$ and VEGF respectivelyy is the consumption
rate of O, by tumour cells andy is the consumption rate of VEGF by endothelial
cells. The mafireat( ; ) represents the loss of tumour cells due to treatments.

We give the main assumptions of the model (1a)-(3):

(Al) The cell-density diffusion functioa: R! R" is a continuous function such
thata(y) > 0;8y 2]0; 1] anda(y) = 0;8y 2 Rn]0; 1].

(A2) The cell-density chemotaxis functiany, : R! R*;m= 1;3 is a continuous
function such thaty(y) > 0;8y 2]0; 1] andcm(y) = 0;8y 2 Rn]0; 1]. Further-
more, we assume there exists a functigh2 C(R;R*);m= 1;3, such that

Mh(y) = g, 5y+8Y 2]0; 1[ andmin(y) = 08y 2 Rn]0; 1]

(A3) The diffusion tensokt (y); m= 1;3 is a bounded, uniformly positive de nite
tensor oW, that is there exists 3OV L wP > 0 with

0<Lp™iyi®  (Lm(y)¥iY) LafiviZim= 1;3;8y2 RPnfog:
(A4) All coef cients from (1a)-(1d) are positive
ri;bi;azboip;rs;bsasbsg O
(A5) The functionf,, (y) 2 C(R;R") is

fur (V)= (1 ur)" Loy(y); 4)
wherex" = X4,
(A6) The initial functions are in.2(W) and follow these inequalities

Up; Co;Ugy; Vo 0; a.e. inWandup;ug,  1; a.e. inW:

(A7) g() is a piecewise function that allows the production of VEGF by tumour cells
only if the tumour cells are in an hypoxic environment #(d is the Heaviside
step function around the hypoxia threshold

9Y) = Ylcecgonpd ) NY) = HeypoW) = Ligype+¥[(Y):

Cnecro IS the threshold under which cells start to necrosea@pgh is the thresh-
old under which cells lack dD, to be able to function normally.

(A8) The treatment mafieat : R* R! R* is positive, piecewise in time and
in space. In this work the available treatments are surgery, chemotherapy and
radiotherapy. The maeat( ; ) models chemotherapy and radiotherapy and
can be reconstructed Blyreat(t;y) = Tehemdt;y) + Tradio(t;y). Moreover8t 2
R";8y2 R :Tirea(t;y) = 0.
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2.1 Weak Solution

In order to ensure positivity of the solution in its discrete form we use the following
set of functions de ned oR

A
_ i O Y _ V. ds,
h(v) = max0; min(0;Vv)); p(v) = L hE (5)
Zvh(v)p(v): 0;8v %Vp B
A V)= . a()ds  x(v) = . a(s)ds (6)

for the same ideas as in (Cascand Guichard, 2016; Caxet al, 2017; Foucher
et al, 2018).

De nition (Weak Solution): Under assumptions (Al1)-(A8), we say that the set of
measurable functionsifc,ue,V) is a weak solution of (1a)-(3) if

0 u(t;x);ue(t; )  Lic(t;x¥);v(t;x) O fora.e. inQr,;
x(u) 2 L([0; T;];HY(W)); and8j i 2 D(W [0;T;[):i = 1;:::;4)) one has

ZZ A
ufij 1dxdt ug(X)j ddx
W

zz

P —— - o
+ QT( a(uL1(X)Nx(u) Li(X)c1(u)Nc) Nj pdxdt (7)
"zz
= or (rih(c) fu; (u)  biu  Tirear(t; u))j 1dxdt
Y4 ! z 7z
cflij 2dxdt co(x)j dx+ D,Nc Nj »dxdt
f W Qr
2z 8)
= (a2ue boc  guO)j 2dxdf
77 z f
UeTj zdxdt Uy (X)j Sdx
w
7z 'p
+ T( a(Ue)L3(X)Nx(ug) L3z(X)c3(Ue)NV) Nj sdxdt (9)
QT 77
= (rafur(ue) bsue)j sdxdt
Qry
7z z 7z
VIkj 4dxdt  vo(x)j Jdx+ D4Nv Nj 4dxdt
W
i 7z < (10)

= (aag(c)u  bav  guuev)j 2dxdt
QTt
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3 The nonlinear CVFE scheme for system

The discretization of (1a)-(1d) is chosen following the work of (Foucher et al, 2018),
it uses two types of approximations: a conforming FE approximation for diffusion
terms, namely second terms in system (1a)-(1d), and a decentered nite volume for
haptotaxis terms, namely the third terms in equation (1a) and (1c). The nite element
approximation is done over a primal triangular mesh and the nite volume approxi-
mation is done over a dual barycentric mesh.

Let T be a conforming triangulation of the domai, we denote byl the set of
vertices and the set of edgesim . hy = ?;g'%lth is the size of the triangulatioh ,

whereh; is the diameter of the triangléandqgy = P;‘%th% is the regularity of the

mesh, where ; diameter of the incircle of the triangle For every verteX 2 J , we
denote byxk its coordinateskx the set of edges having the vertéxas an extremity
andTk the set of triangles that have K as a vertex. If two verti€eendL are joined
by an edge then we denote this edgeshy.

For every verteX 2 J, we associate its dual elememt constructed by connecting
the barycenters of the triangles Tk with the barycenters of the edgeskg, the
2-dimensional Lebesgue measurengf is mx. We denote by the dual-mesh and
H 1 theP:- nite element space olV de ned by

Ht =ff 2CoW):f;;2 Py(R);8J2 T g:

We associatél t with its canonical basiéF k)23 . Furthermore, we consider the
discrete control volume spacg; onW de ned by

cy = ff :W! F_{measurabl;efjwK is constant8K 2 J g:

In this paper, we choose a uniform time discretization with a time dtep %
whereN is a nonnegative integer and we &gt ndt, for alln2 JO;N + 1K

For a given(Wy)k2J :n2J0.N+ 1k there exists a unique nite element reconstruction
Wy .g¢ and a unique constant piecewise reconstructigng; such that

wr ()= Wh = & WRFK(; 82 W;8t2 (tn 1;tal;
K2J

Wi at(6X) = Wi 8x2 wk;8t 2 (th 1;tn];

W= U, C; Ug,; V.

The nonlinear CVFE scheme for the discretization of system (1a)-(3) is given by the
following set of equations

VA
W= = we(y)dy8K 2 J; with w= u;C;ueiv; (11)
MK wi
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and8K 2 J;8n2 JO;NK

1174 1
TR W & Lt
SKL2Ex
& LQa et ot = merah( gy (12)

SKL2Ex

+ 1 LNty
mcbiug = Mk Trear(tne 1; UK )5

MK 2
PRCRECH RS BN G CH I Clll)

SkL2Ek (13)
= meaztlit meback ™t @URTeR Y
11 3) «
a(ugikl )+ a '—&Baﬁl(ugkl ug
SkL2Ek
& LQaartopt vy (14)
SkL2Ex

= myr 3fu¥?K1(u2f[<l) Mk bsulic;
Mk Vn+1 V) + o} D(4)h—n+1 Vn+1 Vn+1
a( K K) a Dglhg(p(vi ™) p(v ")
SkL2Ek (15)
- mKa4g(c{l+ 1)UE+1 m((b4vrll+1 g4u2;4l-<1vrll+ 1:
In the above system, we have used a Finite Element approximation for the diffusion
uxes where the stiffness coef cients are given by

Cm_ R N N
Lee = _wkm(® NFk(Q) NF (x)dx m= 13

DY = WDIRF() NF(x)dx i= 24 (o
KL wDiNFk(X) L(X)dx; [ A4
We de ne the intervals
LGt = [min(ugul™ ) maxug” S ul ],
IREH = [min(ugict; ugt ) max(ugic's ugt H)l;
J 2= min(ct L dM Yy max(ey Lt
IR = [min(vg 5 vl ) max(vg SV Y
to build a Godunov approximation fa}*, &L, h; t andhf
8 8
2 Sznlw:%fla(s); if L}(<1L) 0; 2 sr2r|1r2111>§21(s); if L}({O’L) 0;
n+l_ KL gl — KL 17
AL 2 min a(s); ifLéll_)< 0; A 2 min a(s); ileg’_)< 0; n
21 21t
KL KL
8 + DO 8 ¢ D@
2 maxh(s); ifDg O 2 maxh(s); if Dy O
hn+l: 2J |2El 'I’Tn+l: SZJET_l ( )
KL kL

> min h(s); if D <0; > min h(s); DY <o
23 &t 2l
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Those terms are useful to ensure the positivity of the quantities. The funotiard
ny are approximated using an upwind scheme

( 1 1 . 1
i1 ni)(urlyl)_'_ m( )(UE+1); if LIEL)(Cr}Fl CE+1) o;

B 19
L |’n(l)(ur|1+ l)+ nl(,l)(UE+ 1)' if L|£1|_)(C?<+1 CE+1) < 0, ( )
(
PR A (T R A (T T R (VP A B o0

L — 3 3 . 3
m( )(ugil-(l)+ nﬁ)(ugil-_l - f ngl_)(vr}yl VE+1) <0

where the functionﬂf), m(l), nf) andn® are given by
Z z Z z
@)= (ho)Tdy  nP@= () dx  m=13;

8x2 R, x=x" x; x" = max0;x) andx = max0; X):

The description of all variables, coef cients, functions, spaces and mesh components
are sum up in the supplementary tables 5-9.

4 Discrete properties
4.1 Positivity and upper-boundedness of quantities

Proposition 1 (Positivity of tumour cells concentration)Let's suppose thatli 0
(resp. @;K 0) forallK 2 J, then for all n2 J1;N + 1Kthe solution(ug )2y of (12)
(resp.(ugy)kz2a Of (14)) is positive.

Proof We will show the result only fou" but the same steps are followed for showing
the positivity of ui. This proof works by induction om, let's suppose that for a
n2 JO;NKwe haveug 0;8K2J.

Let's uk, = Ut = hr)lwzi?u[\‘;l andsL 2 J;u_ = u™ L. Then by multiplying the equa-

tion of (12) associated t, by uy,, we get

Mg 2 1K 1
7UK? + 7UQ UK? é L}(<L)a{1+Ll(uK? UL)UK?
dt dt o 2,
& LN YU = merah(E ) fgsa (U U,

SKL2E«

2
meluK? + MK Tereat(th+ 1;UK7)UK?; (21)

but according to assumptions (A5) and (A8), the functifpg ) and Teat(t; ) are
extended by zero outside [if, 1], which implies that

fuﬁKl(uK?)uK? = 0 andTireat(tn+ 1; Uk,) U, = O:
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Then, ifL,(<1L) < Owe havea',}"LluK? = 0 due to the fact thad( ) is extended by zero

outside of[0; 1], implying that

1 nt
A LPa w, uwu,= 8 LY alilu, u)ug,:

SKL2Ex SkL2Ex
(uk, u) O due to the de nition ofuk, andL,ﬁ?+ atl 0, sowe have the posi-
tivity of the third term in (21)

3 LWar Yug, u)ug, O: (22)

SKL2Ex
For the fourth term in (21) we have
4 uL
mf (ue)+ P () = m(ue) m@+ (nf(s)"ds

UK~
7K

D () + () = m(ue)  m(0) UUL(nf(s» ds

S0, sincauk, U, we deduce that
ZuL
(M (uk,) + M (u)) g, =+ ug, _(mf(s)*ds o
z'ffL
(M (uk,) + P (u))ug, = ug, (nf(s) ds o

According to the de nitions: L in (17) andnft! Lin (19), we have. (P alt It 1(cr
c™Yu,, 0 whenever the sign df (¢! ¢™1), which gives the positivity of

the fourth term in (21)
+ A LAt oy, o (23)
SKL2Ex

With inequalities (22) and (23), we can then conclude that the left hand side of (21)
is positive. However

Mk 2 Mk 1
7UK') + 7UQ uK’) é Ll((l_)aiTI—_l(uK? UL)UK,)
T T -
1 2
A LaRN T T u, = mebuug, O
SkL2Ek

So all the terms on the left-side of the above inequality are null because they were
non-negative, implying thdﬁ%uK: = 0, giving the result from the proposition. u

Proposition 2 (Boundedness of tumour cells concentration).et's suppose that
0 up 1(resp.0 udy 1) forallK2J, then forall n2 JI;N+ 1Kthe so-
lution (UR) k24 of (12) (resp.(ugk)kzs of (14)) is upper-bounded by.
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Proof We will show the result only foa" but the same steps are followed for showing
thatug upper-bounded. This proof works by induction rlet's suppose that for a
n2 JO;NKwe haveug 1;8K2J.

Letsug» = uptl= mgmﬂ*l and8L 2 J;u_ = u™1. Then by multiplying the equa-

tion of (12) associated witk” by (1 uk?) , we get

Mk . . Mk
al(l ug?) j2+ H(l U1 uk?)

+ & Ldaliue w1 ue)

SkL2Ex

<] 1

& LQarniiert JH we)
SKL2Ex

_ n+1 , )
= mkr 1h(cg )quFKl(UK.)(l Uk?)
mxbiuk?(1  uk?) Mk Tireat(the 1; Uk2)(1 uk?) @ (24)

Using proposition 1, we know thatx> u_. 0;8L 2 J. If L,(<1L) < 0, we have
a{;*Ll(l Uk?) = Oduetothe factthad( ) is set to zero outside ¢®; 1]. So knowing

n+1

thatag, - 0, we have

LPar i1 we) o

then observing thauk> u ) 0, we conclude that the third term in (24) is positive

+ & LR ue w(l we) o (25)
SKL2Ex
The functionfy, () is extended by zero outside of [0,1], implying tHthle(uK?)(l

uk?) = 0.Since(u. uk?) and

9 ue)+ () = m(ue)  m(o) ZUEK?mf(s»*ds
9 ey + () = m(ue) m(0)+ ZUTK?(nf(s» ds
we have
P+ P ue) = @ ) ;f”(nf(s»*ds o

)+ mPU)(L we) =H1 we)  (nf(9) ds o

uL
So whenever the sign af ) (¢! 1)

Lt " Hmil @ we) o
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and, havingat{}*,_1 0, we conclude that the fourth term in (24) is positive
1
8 Ldapiniiiert I we) o (26)
SkL2Ex

With (25), (26) and the positivity Ofireat( ; ), we conclude also that

mg . . m
TIA we) P W ue) + 8 Ldaiue w ue)
SkL2Ex
1
& La et T ue)

SkL2Ek
= mgbiuk?(1 uk?) MK Tereat(tn+ 1; Uk?)(1  uk?) 0:

So all terms on left side of (24) being non-negative, they are null, in particular:
%(1 Uk?) 2= 0,then(1 uk?) = 0, which gives the result of this proposition.
u

Proposition 3 (Positivity of O, and VEGF) Let's suppose thatlc  0(resp.§{  0)
forallK 2 J, then for all n2 JO; N+ 1Kthe solution(cg)k23 of (13) (resp.(Vk)k2J
of (15)) is positive.

Proof We will show the result only foc" but the same steps are followed for showing
the positivity of v'. This proof works by induction om, let's suppose that for a
n2 JO;NKwe havecy 0;8K2J.

Letsck,= it t= mi?c’,‘f LandsL 2 J;c. = ¢! Then by multiplying the equation

of (13) associated witK» by ¢, we get

Mg 2 Mk 2
ot o,k & D@hRL(p(ok,) (o)) ck,
dt dt SkL2Ek
= mgaquy ey, mech?2 gzu{}*ch: :(27)

n+ 1

Using the results of proposition 1 and 2, we hafg?; Uy 0, implying that

n+1

. 2 +1. 2 .
Mgaglg “Cx, O mgbac, 0 and QuUg C, O

If D < 0 thenh¥} Lc,, = 0. Observing thatfi; 1 0 and that the functiom( ) is
non-decreasing oR, we have(p(ck,) p(c)) 0O, meaning that

& DdngiMp(ee) e,

SKL2Ex
= & (O hEHp(ck) 0 (28
ki) he~(p(ck;)  pleL)) ek, : (28)
SKL2Ex
Then
mK 2 Ik 2
Tt gtk & DNRpek)  pe)ck,
SkL2Ex
_ n+ 1 2 n+1. 2 .
= mkaxlg C¢, MkbaC, U T, O
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The terms on the left-side of (27) being non-negative, we conclude that they are all
null. In particularcK?2 = 0, which completes the proof of the proposition. u

Remark 1 Notice that we could consider a semi-implicit scheme by replacihg ¢
by ¢"in (12), u™ ! by U" in (13) and (15), V" by V' in (14), u** by 4 in (13) and
(15) and the propositions 1,2 and 3 would still hold.

4.2 Algorithm to get the discrete solution (12)-(15)

In this work, we propose an iterative algorithm in order to get the discrete solution
of the implicit numerical scheme (12)-(15). The main idea of this algorithm is to
solve the nonlinear system (12)-(15) with an iterative method that has a simplest
numerical complexity and that converges to the solution of the implicit numerical
scheme. Let's suppose thiity andNvg are inL2(W) and consider a given solution

PT =(UR;CR:Ugk:VR)k2a for a givenn. We look for the solutiorP{‘+l atty+ 1 as

the limit of the following iterative process when! +¥:

Initialisation:wf(O) = W, 8K 2 J,w= u;C;Ug;V.

Form O,

T ddr & Lariurt |

SKkL2Ex
& LaginfiieR o (29)
SkL2Ek
= rrkh(cw)rlfurT”;K(uwl) meleHl Wﬂreat(twliuwl);
e «)r & ORNTRER e ) o)
KL
= mkazulx  mebacd !t guReRt Y
G o A LRRUeR W
KL
& L am iR v (31)
SkL2EBk
= merafun, (UEKY  mebaugkh;
T )+ 8 DRRTIROETY )
SKL2Ek (32)

= measg(CuE  mebavi™  gaugie

Observe that at each iteratiom the system (29)-(32) is non-coupled, its resolution
consists of four independent equations which is easier to solve than (12)-(15).
Lett®™ : X = (&) 7! X = (u;c;ue; V) be the application that for the vector
X = ((0; & le; V) 2 (R )* associates the solutioh= ( u; c; Ug; V) of (29)-(32). Replac-
ing (U™, c™; ul; V™) by X and(u™ 1 c™ Lyl L y™ 1y py X, the iterative method is
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equivalent to

(
Xme1 =tV (Xp);

Xo 2E=f(Wxy,22(R¥")*:0 wy 1land0 xzg: (33)

Note that if the sequende)n converges, theXy, m!I y P{‘*l.

Let's remember that 0 ug;ug, 1landcg;vg OforallK2J andn O, sothe
solutions of the iterative method follow Ou™;ug' 1 andc™,v"™ Oforallm O

due to Proposition 1-3 and Remark 1.

To prove the existence of the solution of (29)-(32) and that the appliceliis well

de ned, we will use the following energy estimates on the iterative method.

Lemma 1 There exists §L 1;07 );C2(D2;qr ) > 0such that:

(D). 1
& JLiEt et u™h? C 4 Ldatut umhn (39)
skL2E skL2E

A iDQIhT YpePrY)  p(e™h)?
skL2E
C; & DEhT U p(y pE™Z (35)
skL2E
Proof This comes from Lemma 3.1-3.3 in (Cascand Guichard, 20160u$ Hk

(resp.(Vig* 1)) follows the same inequality sy 1)k (resp.(ci1)k) with a con-
stantCs(L 3; 0 ) (resp.Ca(Da; ar ). u

Lemma 2 There exists §{D2;qr );Cs(D4; g1 ) such that

a4 DT HpEY  pE™hH) (et g™

skL2E
Cs & D@hIL(pEh  pE™H)(ct d™Y; (36)
skL2E

& IDWIRI (Y M)Vl vl
skL2E
Cs & DWAII(pvI*Y) p™ Iyl vl (37)

skL2E
Proof The proof relies on the fact that

A iDQIhT A pER Y p™H)(eprt ™
SskL2E
_ o ‘(2 mel mt 1 mE 1y 2 (CE” Crljﬁl) .
= a iD(ihgt “(p(c™ ™) p(c™ ) ;
sz ST (R ™)
p(c 1)6 p(c™ 1)
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m+l 1
and that the quantit p(i%i T ‘;L(CTZ ) is nonnegative becaugg ) is non decreasing,
we can then use the same arguments than Lemma 3.1-3.3 inq€and Guichard,
2016) to show that

RS e A GO e Sl
spE o B CCRD I TR

p(c 16 p(c™ 1)
C é D(Z)hn’H-l(p(Cn’H- 1) p(Cm+l))2 (CK ! CL 1)
5 .
sa2E T ST (R ™)
p(cP 16 p(c™ )

The same arguments are used for the inequality in u

Proposition 4 (Existence of a discrete solutionfor n2 JO; NKand8m Othere ex-
ists a solutior(u™ 1;¢™ 1, u™ 1, v™ 1) from equation§29)-(32)with0  u™ 1,y 1
land ™ Lv™l 0

Proof This works by induction om.
Let's consider the applicatioWV = ( Wy; We; Wi; W) : (R¥)#1 (R™F )4 where8K 2
J,forn2 JO;NKand8m O

up o
o = mP e 8 LD w)
SKL2€&x
& LQam e o merah(cR) fup () (38)

SKL2&K
+ meb1yk + Mk Tireat(tme 1; Yk )

WOk = K )+ & DPhT Y p(ye)  piy)
dt
skL2Ek (39)

Mk azugi + Mcbayk + URYK;

m o |
Mk = gk B+ & L& o w)

SKL2Ex
& LQaFR W) (40)
SKL2Ex
mkr afum, (V) + Mkbayk;
m )
Wk = Gk V+ & DIdARH(pv)  p(y))
SkL2Ex (41)

mga4g(cR)UR + mkbayk + qaUgk Yk

Observe that ifw (u™1;c™ Ly 1,y™ 1) = 0 then(u™ 1;c™ L, ul™ 1, v™ 1) is a
solution of (29)-(32).

The aim in the rst step is to prove th&@k 0;8kyk, > k: (W(y);y) 0. So we
develop the expression OV (y);y) = ( Wu(Yu); Yu) + ( We(Ye): Ve) + ( Wie(Yue); Yue) +
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(We(W) s W) Y = (Yui Yei Yue: W) to build inequalities. We have

e} m o m o
Wy)iy)= & Gk & U+ & LDam iy w)?
K2J K2J skL2E
& Lam el Mk y) & mkrah(ed) fup, (KK
skL2E K2J '
+ & mkbiyZ+ & Mk Tireat(tme 1Yk )YK;
K2J K2J
o Mk o M o
W)= & g% & gokw* & DANE P PO W)
K2J K2J skL2E
a meauliyk + & mkbyk + & BUDV;
K2J K2J K2J
o M o M ~
M= & Gk 8 grubok+ & LAk W)’
K2J K2J skL2E
& LOamitio? vk W)

skL2E

a mkrafum, (Y)Y + a mkbayg;

K2J K2J
o MMk o M o
W)iv)= 8 5% 8 vkt & DIURE (P POV Y1)
K2J K2J skL2E
a mcasg(C)udyk + a mkbayi + & Gulkyi:
K2J K2J K2J

With Lemma 1, we know thas, oe L |21,_)a{{*|fl(y;< y)? 0,85, 2E L,E?éﬁ*[l(yK
y)?  Oand with Lemma 2 we has, 2e DG h H(p(vk)  POL)(Yk Y1) O,

Asy 2E Dfﬂﬁﬂ*l(p(yK) p(yL))(yk y.) O because() is non decreasing dRr.
Then we haveé8l > 0

o

a Lﬁ)a&*tlﬁﬂ[*l(cﬁ c(yk  Y)

skL2E
IZ 2 m+ 1 1/~m my\ 2 1 2 2
- a (Leagy "nkr (e ) oz & (YY)
SkL2E skL2E
|2 2 m myy 2 2 2.
- a (LkLaxrymxr(ck ) lﬁ(#E)kyk,
SkL2E
and

A LOa iR vk W)

SkL2E
| 2 [o] ~| ~ 1 o
> a (ng?a&tlﬁﬁtl(vw Van))z o2 a (k w)?
skL2E skL2E
12 o @ = 2 2 2.
> a (Lglayrmyr (W V) ﬁ(#E)kykZ-

SkL2E
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So, we have those inequalities

Wa)ive)  Clkyukd  Ckyuke €3 (42)
(We(yo)ive)  C7kyckd  CS7kycke; (43)
(Wee (V)i Vi) CPkyukd  C5Pkyuka €3 (44)
(Wy)iv)  Ckyukd  Ckyoke; (45)

with the following expression for the constants, choodinguch that 2 > Z%I'f,mt

and denotingrilown= Ir<T12|51 M M maxm = my

mdown up
cl = M- 2(|#2E )s o, ct? = %(#J )+ myr ey (K) > 0;
| 2 o 1
cl = > a (L;(<|_)aL¥(R)WL¥(R)(C? c)?> 0;
skL2E
m
mdo n ma)‘(CK)
clo = '\d"t >0, CP= miP (# )( KZJdt +as) > 0
miown  o(E my
cle) = '\d"t (I 2) >0, C\= TM(#J )+ My rafiv g (#3) > O;
(ue)_|2 ) 3) 5 = ynooym 2 -
G~ = 5 a (Lel@x @My r(k VD> 0;
skL2E
prdown ma)(V'fQ)
)= —=>0 &)= mPE)(Fp—+ay)>0

It induces that

Wy min(Cy;Ci?;c{cl ks
max(C" ;Céc) ;Cé“e) ;Cév))kykz Cé”) Cé“e) :

So there existk> 0 from Which8kyk§ k: (W(y);y) > 0.
Suppose that there isz@ R* ™ : W (2) = 0, in that case we can de ne the applica-

tionS :y2 B (0;k) 7! kkvwvggk 2 B (0;K). S is continuous due t@/, so according

to the Brouwer xed point theorem there exists a xed pojraf'S onB (0;K):

W(Y)
G (46)

)7:

Taking the norm ofyfrom (46), we gekyk = k> 0 but taking the inner product of

(46) with y we get :kyk? = k(m&{) 0. Thus there exista with W(z2) = 0. So

there exists a solutiogu™ %;c™ 1, ul™ 1, v™ 1) to (29)-(32). u
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5 Modeling Treatments

Surgery, chemotherapy and radiotherapy are the treatments commonly used against
GBM, all of them can be modeled in (1a)-(1d). Surgery is performed in emergency
as soon as GBM is diagnosed. However some patients can not undergo surgery due
to the non-accessibility of the tumour, in that case only a biopsy is done. If surgery is
performed, the tumour core is removed but resection goes the largest possible without
damaging healthy tissues.
In our model, we suppose that surgery is performed at a timetsfgphat can be
either the initial timetp or a random time-stefy;n 2 JI;N + 1K If tsyrg = th;n 2
J1;N+ 1Kthen8m2 J1;n 1K u™ is calculated according to (12)-(15) a8 2
J ;W= U;C; U,V

(

w1 if x¢ 2 surgical arep

W(tsurg;XK): _K. K . g
0; if xx 2 surgical area

Finally 8m2 Jn+ 1;N+ 1K u™ is calculated according to (12)-(15) with the new

initial conditionswg = W(tsyrf; ); W= U;C;Ug; V.

If tsurg= to then we solve (12)-(15) with the new initial condition§"%, w= u; ¢; Ug; v

WUrg = wo; if X 2 surgical area
0 0; if xx 2 surgical area

Chemotherapy is the use of a drug designed against a tumour cell population. The
drug commonly used in GBM is TMZ at a daily dose of 75 m§/(Stupp et al,
2005). The chemotherapy part of treatments is modeled by

Tehemdt; U) = Ke(t) Denelt; (47)

wherekg(t) = 1 if and only if the chemotherapy is effective at the time t &nge is

the dose administered by the drug.

The problem of chemotherapy is the possible existence of tumour-resistant cells that
are not affected by the drug. Those cells can still proliferate in the tumour site causing
relapses for the patient. For this work, we do not consider these sub-type of cancer
cells and suppose that all tumour cells are affected by the drug. However, we know
that the use of chemotherapy enhances the performances of radiotherapy because the
drug makes the tumour cells more sensitive to radiations (Stupp et al, 2005).
Radiotherapy occurs for almost all cancer treatments because the use of radiotherapy
depends mainly on the location of the tumour and its spatial spread and not on the
cancer type. Indeed radiotherapy works by sending a dose of radiations at a local
position (the tumour location), those radiations cause micro-breaks into the DNA of
irradiated cells, normal cells can repair those DNA breaks but tumour cells often
can not causing their death. Radiotherapies can cause side effects if normal cells are
altered by the radiations, explaining why each cancer type has a speci ¢ guideline to
dose the quantity of radiations allowed.

With GBM, radiotherapy is done by administering the dose of radiations in small
fractions. The number of fractions and the cumulative dose depend on the patient
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health, for example its age or its WHO performance status (ANOCEF, 2018). The
ef ciency of radiotherapy depends on a lot of parameters: the number of fractions per
dayNsrac, the dose administerddl,q, the duration of irradiatioh, the time between
irradiationDt, the DNA damaged rat@and sensitivity parameteas b. In France, it

is recommended to perform radiotherapy 5 days a week for 6 weeks with 30 fractions
of 2Gg per day(ANOCEF, 2018).

Because, multiple small fractions are delivered with GBM, we model radiotherapy
based on (Nilsson et al, 1990)

Tradio(t; U) = kchem((t)kr(t)Refo]-f X2 irradiated areg(x); (48)
wherek; (t) = 1 if and only if the radiotherapy is effective at the time t and
cosimt) 1

(mD)?2
t 1+ t
graa(mt = 2( Ty,
| = exg( m(t+ DY)
| mi? e
mi | )2

Reff = aNfracDrad + beracDrZad(grad(mt)"' 2( )N ()

(i ) = 2(

):

We use the terrk.hemdt) to model the enhance ef ciency of radiotherapy if chemother-
apy is applied concomitant with radiotherapy. So if chemotherapy is not administered
at the time, we setknemdt) to 1 and if radiotherapy and chemotherapy are concomi-
tanttherkshemdt) = i > 1,i isthe ef ciency rate improvement of using radiotherapy
with chemotherapy.

6 Methods

We use MRIs from the patient C316 in the CPTAC-GBM database (TCIA, 2018).
This patient is a 60 year-old male (BMI of 28.81 and BSA of 2.8ydiagnosed with

a Glioblastoma of 8 cm in his parietal lobe who died of Glioblastoma 77 days after
diagnosis.

There are different types of MRI that can be used to extract information like shown
in gure 2: a T1 highlights the white matter in white while grey matter is not high-
lighted, a T1-Gado separates well the tumour core and edema from the brain, T2 and
FLAIR show the enhancing tumour area.

From those MRI, we build the triangular me$h on which our model takes place.

We use the software AutoCAD (version 0.161.0.0 AutoCAD 2018.1.2 Update) to
place, manually, vertex on the outside of the brain, of the tumour core, of the edema
and of the enhancing tumour. We attribute edges to those vertex and use the software
Triangle (version 1.6) (J.R., 1996; Shewchuk, 2002) to get the triangul@tiofhe

primal and dual mesh obtained are represented in the gure 3a. Parameters of the
primal meshl are given in table 1. With the information readable in the MRIs of the
gure 2, we can extract manually data in the brain: the white/grey matter locations
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Prop T2 TRF X:-166.47 X: -149.92
Y: 333.81 Y- 86.85

WW:2923 . WW:4525
WL:1461 ... i i WL:2262

X: -159.68 Ax Flair iFSE H
Y: 396.29

WW:3343
WL:1671

Fig. 2: Extract of four axial MRIs from the patient C3L6 in (TCIA, 2018). Those
MRIs are the four basis MRI sequences required for Glioblastoma diagnosis. Those
sequences are a T2 on the top left, a T1 weighted (or T1 with gadolinium) on the top
right, a T1 on the bottom left and a T2 weighted (or FLAIR) on the bottom right.

and the tumour segmentation. The segmentation of the brain is represented in the
gure 3b in which we have in different shades of blue, the locations of grey matter
(in dark blue) and the white matter (in light blue) and the whole tumour which is
divided into three parts: the tumour core with hypoxic cells in green, the edema in
yellow and the enhancing tumour in red. We suppose before surgery that the diffusion
in the whole tumour behaves like the white matter.

To solve the numerical scheme (12)-(15) we follow the same guidelines than the
discrete properties. From each time ¢fgp 0 we use the number sequengg 1 =

t (M (X)) with the semi-implicit numerical scheme (29)-(32).

We consider tham: 1 = (u™1;c™ 1 ul* 1;v™* 1) when the relative error follows

kw™ 1 whk,

s < tollmplicit; with w= u;c;ue;v (49)

with tollmplicit = 10 2 being a numerical threshold. To Ny 1 from X, we solve
(29)-(32) using Newton's method with 18! as the error of convergence. Observe
that choosing to solve the semi-implicit scheme (29)-(32) instead of the coupled sys-
tem (12)-(15) allows to solve four smaller systems rather than one system four times
wider.

Finally we use a conjugate gradient method ending with a numerical thrasthGlcdient
of 10 13 to solve each step of the Newton method.



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 21

»

\ a
WE SR T Y
A s S N SN
N VAT | B & Y
s RS CRKREON
TR q SR IRg Sy,
e s SRS S Wy ey VYA
SR e T S s & e
e TSR R\ oy A NAPavZ st
e R P VA VOS] ST
A RS, .t BT )
AN LSRN Nzl K >
e s e SRS
LA SR B A RS GVANETGS” »
A R o Aot T SV S
Bt S N Y
jm 4
EA AR R N p3
R =
g iee =
Ly = P2
S 5 s P1

VAV

it
iy A avi
L

ray-
A

(a) primal and dual mesh (b) segmentation of the brain

Fig. 3: (@) Primal mesfT (in black) and dual mesM (in red) corresponding to

the MRIs in gure2. (b) Segmentation of the brain on the primal mé&slaccording

to gure 2: the grey matter in dark blue, the white matter in light blue, the tumour
core in green, the edema in yellow and the enhancing tumour irPied?2 andP3

are three points used for investigating the tumor cell concentration in the area of the
tumour.

Table 1: Parameters from the primal and dual meshes including the number of vertex,
triangles, edges, interior vertex, the minimum and the maximum aré on

vertex triangles edges interior vertex Ker'mm &nﬁxnk

1083 1963 3022 423 67 106 191 10*4

7 Numerical simulations

We choose to model the diffusion and chemotaxis with the following functions ac-
cording to assumptions (A1) and (A2)

a(y) = y(1 y)1py(y);
ci(y)= 11(y(1 ¥))*1q(y);l 1= L:0cn? day ' mmol *(Anderson 2005;
ca(y)= 13(Y(1 ¥)*1q(y); 3= 225 10%n? day ! nmol *:

Even though a more detailed anisotropic expression has been developed for the diffu-
sion in the white matter (K.J.Paintera and T.Hillen, 2013), we choose here an easier
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Table 2: Values of the coef cients used in (1a)-(1d) common in all numerical simula-

tions
Coef cients Values Units Descriptions References
ry 27 101 day ! tumour cell growth rate (Curtin et al, 2020)
by 1.7 101 day ! tumour cell apoptosis rate  (Lai and Friedman,
2020)
ar 100 mmol day ! O, production rate by en- this work
dothelial cells
by 375 10?2 day ! O, degradation rate (Anderson, 2005)
® 6 day ! O, consumption rate by this work
tumour cells
rs 49 103 day ! endothelial cell growth this work
rate
b3 31 103 day ! endothelial cell apoptosis this work
rate
ay 340 mmol day !  VEGF production rate by this work
tumour cells
by 156 day ! VEGF degradation rate (Curtin et al, 2020)
o1} 1:4 day ! VEGF consumption by (Curtin et al, 2020)
endothelial cells
Unmax 2:39 1C° cells cm 2 maximum tissue capacity ~ (Curtin et al, 2020)
dgm 27 104 cn? day ! diffusion rate of cells in (Curtin et al, 2020)
grey matter
Awm 5dgm cn? day ! diffusion rate of cells in (Jbabdi et al, 2005)
white matter
dps 50dgm cn? day ! diffusion rate of cells in this work
the post-surgical area
dy 8:6 cn? day ! diffusion rate ofO, this work
ds 86 101 cn? day ! diffusion rate of VEGF this work
Chypo 75 mmol cm 2 threshold under which this work
cells are in hypoxia
Cnecro 50 mmol cm 2 threshold under which this work

cells necrose

expression in order to don't use Diffusion Tensor Imaging (DTI) data. The diffusion
in the white matter is then set to be 5 times faster than in the grey matter, and in the
post-surgical area, we set the diffusion to be 50 times faster than in the grey matter:

g dwm If Xis in the white matter
L1(X) = di(X) é 2 ; with di(X) S dgm if Xis in the grey matter

" dps if xisin the post-surgical area
10 .
01"
L3(x)= 1:8 10 2 L(x) as proposed iCurtinet at 2020);

Do = do
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_q 10,
D4 = d4 01"
The different coef cients in (1a)-(1d) following the assumption (A4) are given in
table 2.

Following the timeline of a patient with GBM (ANOCEF, 2018), we set the treat-
ments as followed:

— Surgery is performed on the rst day of simulation, that surgery removes every
cells and proteins in the necrotic, enhancing and whole tumour area as segmented
in the gure 3b.

— Radiotherapy and chemotherapy start both on tiedaly and last for a period of
6 weeks.

— Chemotherapy is administered everyday of the treatment schedulg(tye
111456 (1) andkehemdt) = i 1[1456(t)-

— Radiotherapy is administered periodically 5 days in a row with 2 days off, so
ke(t) = 11419° 2126 ° 2833 ° (3540 ° 14247 jag54 (1) -

— Radiotherapy is administered locally where the surgery was performed and also
in the 3cm area bordering the whole tumour area. This bordering area is computed
manually.

Experiments in (Stupp et al, 2005) found a 33% increase in median survival com-
paring radiotherapy only and radiotherapy with TMZ but there is no study using
chemotherapy only on patients.is chosen to b(% even though the value is overes-
timated.

The value of all parameters related to treatments are summarized in table 3. Most of
them come from the work of (Powathil et al, 2007) with the current state of treatments
in (ANOCEF, 2018).

Six simulations have been done to solve (1a)-(3), depending on the treatments admin-
istered to the patient: with or without surgery, chemotherapy and radiotherapy only
(experiments 1 to 4) and then the concomitant use of chemotherapy and radiotherapy
with or without surgery (experiments 5 and 6). The simulations' settings are given in
table 4 using the coef cients from table 2 and table 3.

For the initial conditions, we set the valuesugfandug, from the MRIs of the patient
given in gure 2. According to the location on the MRIs of the tumour core and
edema, we saip to 12 10* cells cm 2 in the tumour core and to:5 107 cells

cm 2in the edema. In the enhancing tumour area, we set the tumour cells population
withug(X) = 1:4 10fexp( 4:jx Xdj) cells cm 2, wherex; represents the position

of the tumour's center, and outside of those areas weigstd 0. According to the
location of the grey and white matter, we sg} to be 717 10’ cells cm 2 in

the grey matter and to:29 10° cells cm 2 in the white matter. The initial spatial
distribution of tumour and endothelial cells are shown in the gure 4.

As O, and VEGF concentrations cannot be seen on MRIs required for Glioblastoma
diagnosis, such as those presented in the gure 2, we have attributed their initial
concentrations by solving 13 and 15 using the previous expressioms afd Ug,

but without the partial temporal term. The computed initial concentratigdyiand

VEGF are shown in the gure 5, they are not perfectly tted with their expected
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Table 3: Parameters around the treatments

Parameters  Values Units  Descriptions References
a % 10 2 Ggl sensitivity parameter (Powathil et al, 2007;
ANOCEF, 2018)
b 27 103 Gg2  sensitivity parameter (Powathil et al, 2007;
ANOCEF, 2018)
Nfrac 30 number of fractions per (ANOCEF, 2018)
day
t 58 10 ° day ! duration of irradiation this work
Dt 29 104 day ! time between irradiations  this work
m 1104 day ! DNA damage rate (Powathil et al, 2007)
i % efciency rate of radio- (Stupp et al, 2005)
therapy with TMZ
Dche 1:96 10 2 day ! death rate of tumour cells (Powathil et al, 2007)
due to chemotherapy
Drad 2 Gy dose administered per ra- (ANOCEF, 2018)
diation

Table 4: Recap on the treatments used in the simulations

Simulations  Surgery  Chemotherapy (TMZ) Radiotherapy

1 no no no
2 yes no no
3 no yes no
4 no no yes
5 no yes yes
6 yes yes yes
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Fig. 4: (a) The initial number of tumour cells pem? (up). (b) The initial number of
endothelial cells pecn? (ue,) on the right.
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Fig. 5: (a) The initial concentration @, in mmol:cm 2 (co). The initial concentra-
tion of VEGF in mmol:cm 2 (vo) on the right.

spatial distributions, which would be smoother around the tumour area, but their be-
haviour is welly done during the rst steps of the simulation.

Indeed, during the simulations, tl& concentration oscillates asymptotically be-
tween 74 and 104mol cm ? and VEGF is produced punctually by the hypoxic
tumour cells. Without any treatment the tumour keeps growing inside the brain, in-
ducing the growth of the hypoxic tumour core, the edema and the enhancing tumour
area. Moreover without treatment new endothelial cells are produced to supply the
growing hypoxic tumour core, who is lacking @ to keep proliferating. In order to
follow up the impact of treatments on the tumour behaviour, we have displayed in g-
ure 6 the total number of tumour cells through time. We also display in gures 7,8 and
9 the number of tumour cells pent at three points in the brain, namelyRit, P2 and
P3.P1lis located in the tumour corB2 in the edema an@3 in the enhancing tumour
area as shown in the gure 3b. You can nd a video of the 6 simulations related in
table 4 following this linkhttps://www.youtube.com/watch?v=vJKkMJ5bNoWA.
Depending on the treatments, the tumour growth exhibits different behaviour. Indeed
using surgery (simulation 2 and 6) on day 1 allows to decrease intensely the number
of tumour cells in the brain, it remains only tumour cells in areas where no evidence
of existence were detectable on the different MRIs. However removing the majority
of tumour cells does not stop the growth of the tumour because of the cells that have
not been affected by the surgery, and no induced angiogenesis is required by them to
keep growing because the brain does not lacpainymore. This is why in gure

6 the trajectory of the surgery only curve starts with a big drop on day 1 but comes
back to the no treatment curve later on. Surgery is not enough to stop the spread of
the tumour growth but it stops locally the spread as there is no tumour cell remaining
at P1 andP2 after the surgery, which is why in the gure 7 and 8 the curves where
surgery was used are not display®3 is in the surgical area too but also on the
boundary of the enhancing tumour area, so some tumour cellP8e@main after
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Fig. 6: Number of the total tumour cells in the brain through time for different treat-
ment schedules. If performed, surgery is done on the rst day, chemotherapy (TMZ)
is administered from day 14 to day 56 and radiotherapy is administered 5 days out of
7 from day 14 to day 54. The curves "No treatment” and "TMZ” are really close and
dif cult to distinguish at this scale.

the surgery which explains why in the gure 9, there are still tumour cells located at
P3 after the surgery.

The use of chemotherapy only with TMZ does not affect the global behaviour of the
tumour growth due to the low death rate of tumour cell induced by chemotherapy. In
the gure 6, the trajectory of the chemotherapy only curve is almost perfectly identi-
cal to the one with no treatment. Locally the use of TMZ only decreases the number
of tumour cells, but that decrease shrinks the hypoxic tumour core area, which means
that more tumour cells can replicate themselves than before. Depending on their loca-
tion, tumour cells can either be in a slightly higher number than without any treatment
as atP2 or in a slightly fewer number as &1 andP3. Those observations explain
why no treatment on patients with Glioblastoma rely only on chemotherapy, as this
treatment is not suf cient to cure Glioblastoma.

However radiotherapy affects a lot the behaviour of the tumour growth, its use de-
creases drastically the number of tumour cells in the irradiated area as shown in the
gure 6-9. The death rate of tumour cells due to radiotherapy are also enhanced when
combined with the chemotherapy as it was exhibited in (Stupp et al, 2005). The ef -
ciency of radiotherapy explains why it is always used, to treat Glioblastoma. In our
model, we can see in the gure 6 that the use of radiotherapy and chemotherapy gives
better results around the'8@ay than the use of surgery, radiotherapy and chemother-
apy. This observation can be explained due to the fact that in our model, the use of
surgery enhances the proliferation of the remaining tumour cell, because there are no
more hypoxic tumour cells, and migrate further into the brain escaping the irradiated
area. Yet you can observe that on the long run that there are less tumour cells in the



Simulating the behaviour of Glioblastoma Multiforme based on patient MRI during treatments 27

Fig. 7: Number of the tumour cells pen? atP1 through time for different treatment
schedules. The location &1 (the tumour core) is shown in the gure 3b. If per-
formed, surgery is done on the rst day, chemotherapy (TMZ) is administered from
day 14 to day 56 and radiotherapy is administered 5 days out of 7 from day 14 to day
54. Treatments using surgery are not displayed because no tumour cell remain after
surgery aPl.

brain when using surgery, TMZ and radiotherapy than TMZ and radiotherapy which
implies a longer survival time when using all treatments.

8 Discussion

In all the simulations after the delivery of all the treatments, the tumour starts pro-
liferating again until being slowed by the hypoxic tumour core. However the main
criteria related to a patient death due to Glioblastoma is the total area occupied by
tumour cells, so if tumour cells remain in the brain after the use of treatments then
their proliferation induce the relapse of the patient and usually its death.

It must be remembered that all results presented in this work rely on the behaviour
of our model, and so, cannot take every effects that would change impact the tu-
mour growth. Indeed, in our model, if we wanted to enhance the death rate of tumour
cells due to radiotherapy, we would increase the irradiation dose. However a higher
dosage would impact the healthy cells in the brain that would not be able to repair
their DNA-breaks as before. Also surgery in our model seems to amplify the spread
of the remaining tumour cells. It would then be better to only use radiotherapy with
chemotherapy as evidenced in the gure 6 but if surgery is not performed then there
is a necrotic tumour core in the brain that could have negative impacts on the sur-
rounding healthy tissues. For example @edelivery would decrease for the healthy
tissues in favor of supplying the hypoxic tumour cells. Also we decided in this work to
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Fig. 8: Number of the tumour cells per? atP2 through time for different treatment
schedules. The location &2 (the edema) is shown in the gure 3b. If performed,
surgery is done on the rst day, chemotherapy (TMZ) is administered from day 14 to
day 56 and radiotherapy is administered 5 days out of 7 from day 14 to day 54. Treat-
ments using surgery are not displayed because no tumour cell remain after surgery at
P2.

consider only one population of tumour cells that react the same way to treatments.
However some tumour cells can have random mutations that protect them against
Temozolomide and radiotherapy. Those cells are not impacted by the treatments, ex-
cept surgery, and are free to proliferate in the brain. It would then be necessary to
consider two sub-populations of tumour cells according to the presence or not of the
mutation that would not follow the exact same equation as (1a).

In this work we have shown that our model (1a)-(3) can perform simulations based
on patient's MRIs and so, try to t the growth of the Glioblastoma for that patient.
Modifying the value of the different coef cients in (1a)-(1d) is the only way in our
model to exhibit different growth behaviour like having a higher tumour prolifera-
tion, having a faster VEGF production or having a higher tumour diffusion rate. This
approach works when the coef cients in (1a)-(1d) are known and well identi ed on
a patient. Nowadays, a lot of information can be retrieved from the patient diagno-
sis: using immunohistochemistry-based algorithm (Orzan et al, 2020), analysing the
extracellular vesicles situated in the glioblastoma micro-environment (Simon et al,
2020) or by determining the glioblastoma subtypes based on the OMS description
(Louis et al, 2016). However those information are not linked explicitly to the differ-
ent coef cients, and so, the coef cients have to be extrapolated from the information
and then adapted to t the growth of the patient tumour.

A solution to nd the coef cients of a patient could be to set some coef cients as
unknowns and write the system (1a)-(3) as an optimization problem based on the
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Fig. 9: Number of the tumour cells pen? at P3 through time for different treatment
schedules. The location 88 (the enhancing tumour body) is shown in the gure 3b.

If performed, surgery is done on the rst day, chemotherapy (TMZ) is administered
from day 14 to day 56 and radiotherapy is administered 5 days out of 7 from day 14
to day 54.

knowledge of the solution at different time steps. However this method shows weak-
nesses as there are more unknowns than equations which implies the need of more
data that are not available from the diagnosis so we can not do simulations or pre-
dictions after the diagnosis. To solve this problem, we could not set the coef cients
as unknowns but as temporal functions and use Kalman Iter as in (Rochoux et al,
2018) to tthe model to the patient through time. This method allows to have a unique
model that will adapt to each patient during the simulations.
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Table 5: Description of all variables used in this paper

variables descriptions

u concentration in tumour cells divided by the maximum cell concentration allowed in
tissues

c concentration ir0, in nmol cm 2

Ue concentration in endothelial cells divided by the maximum cell concentration allowed
in tissues

\Y concentration in Vascular Endothelial Growth Factonimol cm 2

ur total concentration of cell populations divided by the maximum cell concentration
allowed in tissues, it is the sum ofandue

ug numerical approximation af at the vertexx and the timey,

CR numerical approximation af at the vertexy and the time,

ug:K numerical approximation afe at the vertexy and the time;,

8 numerical approximation of at the vertex and the time,

UQ;K numerical approximation afy at the vertexy and the timey,

L ﬁ) numerical approximation of the diffusion ul;(x)n on the edge g

L }(<3|_) numerical approximation of the diffusion uk3(x)n on the edgek

foﬂ numerical approximation of the diffusion ul,n on the edgeg

D(K‘? numerical approximation of the diffusion ulsn on the edge k.

ag, numerical approximation of the cell-dependant diffusagn) on the edge

e, numerical approximation of the cell-dependant chemotax{s) on the edgek

heL numerical approximation df (c) on the edgek

Eve numerical approximation of the cell-dependant diffusigue) on the edge

i numerical approximation of the cell-dependant chemotax{se) on the edge x|

AN
KL

numerical approximation df (v) on the edge g
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Table 6: Description of all coef cients used in this paper

Coefcients Descriptions Units
Ts nal time used in simulations day
rq growth rate of tumour cells day
b1 apoptosis rate of tumour cells day
ar production rate 00, by endothelial cells mmol day !
by degradation rate b, day !
® consumption rate dd, by tumour cells day!
ra growth rate of endothelial cells day
b3 apoptosis rate of endothelial cells ddy
ay production rate of VEGF by endothelial cells mmol day !
bs degradation rate of VEGF day !
o1 consumption rate of VEGF by endothelial cells day
D, isotropic diffusion matrix oD, in the brain (crm day 1)2 2
D4 isotropic diffusion matrix of VEGF in the brain (émday 1)? 2
Chypo threshold under which cells are hypoxic mmol cm 2
Cnecro threshold under which cells necrose mmol cm 2
Umax maximum tissue capacity cells cm 2
hr size of the triangulatiof® crm?
ar regularity of the triangulatiof
dt time step used in simulations day
th nth discrete time step value day
Dche death rate of tumour cells induced by chemotherapy day
Rett death rate of tumour cells induced by radiotherapy day
Nfrac number of radiotherapy fractions administered in a day
Drad dosage per fraction Gy
t irradiation time for a fraction min
Dt time between consecutive irradiations min
DNA damaged rate min 1
sensitivity parameter day ! G4*
b sensitivity parameter day ! G42
j
Awm diffusion rate of cells in white matter ¢inday !
dgm diffusion rate of cells in grey matter dnday !
dps diffusion rate of cells in the post surgical area “cmay !
dp diffusion rate ofO, and VEGF in the brain chday !
tolimplicit  threshold to stop the computation usirid ()
toINewton threshold to stop the Newton algorithm
tolGradient threshold to stop the conjugate gradient algorithm

i

I'1
I'3

ef ciency rate between radiotherapy only and radiotherapy with

chemotherapy
chemotaxis coef cients of tumour cells
chemotaxis coef cients of endothelial cells

émmmol 1 day !

émmmol ! day !
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Table 7: Description of all functions used in this paper

functions descriptions

Li() medium-dependent diffusion matrix of tumour cells

L3() medium-dependent diffusion matrix of endothelial cells

a() cell-dependant diffusion function of cells

ci() cell-dependent chemotaxis function of tumour cells

c3() cell-dependent chemotaxis function of endothelial cells

m() ratio function betweer () anda( )

my( ) ratio function betweers( ) anda( )

f() cells-dependent reproduction functions of tumour and endothelial cells

Tireat( ;) time and cell-dependent treatment map

Tehemd ;) time and cell-dependent treatment map modeling chemotherapy

Tradio( ;) time and cell-dependent treatment map modeling radiotherapy

a() 0,-dependent function used for VEGF production under hypoxia

h() 0O,-dependent function used for tumour cells mitosis

A unit normal vector on a boundary

U initial tumour cells concentration in the brain

Co initial O, concentration in the brain

Ug, initial endothelial cells concentration in the brain

Vo initial VEGF concentration in the brain

h() function used to ensure positivity 6 and VEGF concentration

p() function used to ensure positivity €, and VEGF concentration

A() primitive function ofa( )

x() primitive function ofp a()

(F)h canonical basis dfl 1

m primitive function of(mf( ))*

m primitive function of (nf())

W() functional where the kernel gives the solution of the main system

t(M() sequence of functions used to nd a solution of an implicit scheme from a semi-
implicit scheme

ke() time-dependent function equal to 1 when chemotherapy is administered

ke () time-dependent function equal to 1 when radiotherapy is performed

kehemd ) time-dependent function equal towhen chemotherapy and radiotherapy are both
used

Orad() function used for modeling radiotherapy

bn()

function used for modeling radiotherapy
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Table 8: Description of all spaces used in this paper

Spaces descriptions

w working space based on a 2D-slice of brain delimited by the skull
1w border ofw

T conforming triangulation okV

E set of edges front

u set of vertices fronT

Ex subset oE of K as a vertex

Tk set of triangles havini as a vertex

M dual mesh constructed frofin

Hr theP1(R) nite element space

Cm the discrete control volumes space
Lot interval of values betweeny" * andul™ !
(i interval of values betweetf;" ! andc™* !
J ot interval of values betweeufl} " andug; *
amt interval of values betweerfi"  andv™!
E set of vectors used for proof

Table 9: Description of all mesh components used in this paper

Mesh components descriptions

hy the diameter of the triangte

I the diameter of the incircle of the triangle

XK the coordinates of the vertdk

SKL the edge joining the vertek andL

Wk the dual element constructed around the vektex

mg the 2-dimensional Lebesgue measurevef




