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1 Abstract

In recent decades, the warming in the Arctic has been much faster than in the rest of the world,

a phenomenon known as Arctic amplification (AA). Numerous studies report that Arctic is

warming either twice, more than twice, or even three times as fast as the globe on average.

However, the lack of consensus of AA definition precludes its precise quantification. Here we

show, by using several observational datasets which cover the Arctic region and adopting a

simple definition of AA, that during the last 40 years the Arctic has been warming almost

four times faster than the globe as a whole, which is a higher ratio than generally reported

in literature. Furthermore, we compared the observed AA ratio to the ratio simulated by

state-of-the-art climate models, and show that the models largely underestimate the present

AA, a finding that is not very sensitive to the exact definition of AA. The underestimation of

AA by climate models most likely results from their inability to realistically simulate feedback

mechanisms between sea ice melt and atmospheric temperatures. Our results imply that the
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underestimated AA leads to biased projections of climate change both in the Arctic and mid-

latitudes.

2 Main

The faster warming rate in the Arctic compared to the globe as a whole is considered nowadays

a robust fact. The phenomenon, called Arctic or polar amplification (AA), can be seen in both

observations and models (e.g. Holland and Bitz, 2003; Serreze and Francis, 2006; Serreze et al.,

2009; Huang et al., 2017).

Arctic amplification is acting to reduce the meridional temperature gradient in mid-latitudes

and thus can have implications for mid-latitude weather and climate, in particular via the Polar

front jet stream (e.g. Francis and Vavrus, 2012; Cohen et al., 2014; Francis and Vavrus, 2015)

and blocking highs (Luo et al., 2018). However it remains debatable whether or not the effects of

AA have had discernible influence on recent mid-latitude climate trends (Francis, 2017; Vavrus,

2018; Cohen et al., 2020; Dai and Song, 2020; Blackport and Screen, 2020, 2021) and occurrence

of extreme events (Vihma et al., 2020).

While there is no doubt on the enhanced warming in the Arctic with increasing green-

house gases, there seems to be no clear consensus on the relative importance of the feedback

mechanisms leading to AA (Richter-Menge and Druckenmiller, 2020). During the last decade,

multiple factors have been proposed to explain AA: reduced surface albedo due to sea-ice loss

and snow retreat (Screen and Simmonds, 2010; Taylor et al., 2013; Dai et al., 2019), Planck

feedback (Pithan and Mauritsen, 2014), lapse-rate feedback (Stuecker et al., 2018), surface ther-

mal inversion (Bintanja et al., 2011), cloud feedback (Taylor et al., 2013), ocean heat transport

(Beer et al., 2020) and meridional atmospheric moisture transport (Graversen and Burtu, 2016;

Woods and Caballero, 2016; Kim et al., 2017). Furthermore, the reduced pollution in Europe

may have contributed to the Arctic warming during the last decades (Navarro et al., 2016; Kr-

ishnan et al., 2020), and possible reductions of Asian aerosols under a strong mitigation policy
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may increase the future AA (Merikanto et al., 2021).

Also, there is little consensus on the magnitude of AA. Numerous recent studies on AA

report that the Arctic warms either nearly twice (e.g. Yu et al., 2021), about twice (e.g. Walsh,

2014), or more than twice (e.g. Richter-Menge and Druckenmiller, 2020; Jansen et al., 2020) as

fast as the global average. The recent Arctic Monitoring and Assessment Programme (AMAP)

report states the rate of Arctic warming as being three times as fast as the global warming

during the period 1971-2019 (AMAP, 2021).

The difficulty in defining AA is that both the period of interest and the area of Arctic can

be defined in multiple ways. The warming can be calculated using linear trends for the last

30-50 or even longer periods of years. Moreover, the area of Arctic can be defined using the

area poleward of 60◦N, 65◦N or 70◦N latitude thresholds, or definitions not based on latitude

(Davy et al., 2018). Uncertainties arising when calculating AA in observations and models have

also been emphasized (Hind et al., 2016; Davy et al., 2018; Smith et al., 2019).

While there have been improvements in climate models to realistically represent the evolu-

tion of Arctic climate (Davy and Outten, 2020) and sea ice (Stroeve et al., 2012) under global

warming, most models in the latest generation of Coupled Model Intercomparison Project phase

6 (CMIP6) still fail to simulate plausible sensitivity of sea-ice loss to the rise of global tem-

peratures (Notz and Community, 2020). Because the sea ice loss is one of main mechanisms

causing AA, natural follow-up question arising is whether climate models are able to reproduce

the magnitude of the observed AA.

The primary motivation of this study comes from the lack of consistent definition and thus

consensus on the magnitude of AA in the literature. Also, as AA is not constant in time, the

estimates referred to in previous studies are potentially outdated. Our objective is to move

towards a more consistent definition of AA, quantify its magnitude by utilizing most recent

observational datasets covering the Arctic region, and assess the ability of climate models to

reproduce AA.
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3 Observed and simulated Arctic amplification

We begin by showing the evolution of global mean and Arctic mean temperatures during 1900-

2019 (Fig. 1) by considering the four observational datasets: GISTEMP, BEST, CW and ERA5

(see Methods). Compared to the global temperatures (Fig 1, light colors), the temperature

variations in the Arctic (Fig 1, dark colors) have been much more amplified. The multi-decadal

variations can be divided into three distinct periods: first, a rise of temperatures in 1900-1940

(often called as early twentieth-century warming, e.g. Hegerl et al., 2018); secondly, a decrease

of temperatures in 1940-1980 (referred as mid-twentieth-century cooling, e.g. Haustein et al.,

2019); and finally, the recent warming period since around 1980.

Figure 1: Annual mean temperature anomalies in the Arctic and globally during 1900-2019
derived from the various observational datasets (see the legend). Temperature anomalies have
been calculated relative to the 1981-2010 period. Shown are also the linear temperature trends
for 1980-2019.
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The warming in the Arctic since the 1980s has been particularly strong, and the different

datasets are in a close agreement with each other. The agreement between observational data

sets and ERA5 is likewise good when land and ocean areas are considered separately (Figs.

S1 and S2), although the differences over the ocean are somewhat larger during the pre-1979

period. Due to the good agreement in the 1980-2019 period, we next consider the average of

these four datasets as an observational estimate.

The observations indicate that, during 1980-2019, a large fraction of the Arctic Ocean

is warming faster than 0.75◦C decade−1 (Fig. 2a), with a clear warming maximum in the

Eurasian sector of the Arctic Ocean, near Svalbard and Novaya Zemlya. In this region, the

temperature trend over 1980-2019 exceeds 1.25◦C decade−1 (Fig. 2a). Another fast-warming

region is the area north of the Bering Strait, with a warming trend of 1◦C decade−1. In contrast,

large continental regions in western Siberia and North America do not manifest statistically

significant trends in temperatures; however these regions are located in mid-latitudes and are

only indirectly affected by AA. The spatial patterns of temperature trends are broadly consistent

across the individual observational datasets (Fig. S3), with GISTEMP showing somewhat less

pronounced warming maxima near Svalbard and Bering Strait (Fig. S3a) presumably due to

different interpolation method than in BEST and CW.
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Figure 2: Annual mean temperature trends (upper row) and Arctic amplification (bottom
row) for the period 1980-2019 derived from observations (a,e), CMIP5 multi-model mean (b,f),
CMIP6 multi-model mean (c,g), and MPI-GE mean (d,h). Dashed line depicts the Arctic
Circle (66.5◦N latitude). In the upper row, areas without a statistically significant change are
masked out. The modelled trends and AA values are combinations of historical simulations
(1980-2005 for CMIP5 and MPI-GE, and 1980-2014 for CMIP6) and future projections forced
by the RCP8.5 scenario for CMIP5 and MPI-GE, and SSP2-4.5 for CMIP6.

Regarding the simulated temperature trends, CMIP5 models (Fig. 2b) indicate weaker
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warming over the Arctic Ocean compared to observations (Fig. 2a). For example, the CMIP5-

simulated warming rate near the Svalbard region is less than 1◦C decade−1 while the observa-

tions show more than 1.25◦C warming per decade.

In the multi-model mean of CMIP6 (Fig. 2c), the magnitude of the warming in the Arctic

Ocean is slightly higher than in the CMIP5 models and thus closer to the observations, albeit

the localized warming maxima near Svalbard and Bering Strait are certainly underestimated

in both model generations. In contrast, the warming outside of the Arctic has in reality been

slower than what the CMIP5 and CMIP6 models imply, in particular in western Siberia and

the North American continent. MPI-GE (Fig. 2d) indicates slower warming especially in the

central Arctic ocean compared to observations (Fig. 2a). In the other parts of the Arctic as

well, the warming in MPI-GE mean is clearly underestimated.

When the temperature trends shown in Figs. 2a-d are divided by the average global mean

temperature trend of the dataset at each grid-point, we get the spatial maps of 40-year Arctic

amplification (AA40; Figs. 2e-h). Values higher than one indicate that those regions are

warming faster than the global average, while values below one indicate a slower warming than

the global average. The AA40 maps for individual observational datasets are provided in the

supplementary material (Fig. S4).

During 1980-2019, major portions of the Arctic Ocean were warming at least four times as

fast as the global average (Fig. 2e). The most extreme AA values occur in the sea areas near

Svalbard, which were locally warming more than seven times as fast as the global average in

1980-2019 . The primary reason for such a high amplification ratio is the loss of sea ice, which

has been most pronounced in the Barents Sea (Onarheim and Årthun, 2017). Furthermore, it

has been found that changes in atmospheric circulation have amplified warming in this area

(Wickström et al., 2020; Räisänen, 2021). In general, there are no regions within the Arctic

Circle where AA40 is smaller than two, apart from the northern North Atlantic.

As already suggested by the temperature trends shown in Figs. 2b-d, modelled AA40 values

are largely weaker than observed (Figs. 2e-h). In CMIP5 and CMIP6 simulations, AA40 reaches
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three in the Svalbard and Bering Strait regions (Figs. 2f-g) while in observations these regions

are warming more than five times as fast as the global average (Fig. 2e). In MPI-GE (Fig.

2h), AA40 reaches locally five in Barents sea, but elsewhere in the Arctic the amplification is

underestimated.

We next compare area-averaged trends and AA between observations and models. The

observed multi-dataset ensemble-mean temperature trend in the Arctic is 0.73◦C decade−1 and

for the globe as a whole 0.19◦C decade−1, with small variations between the individual datasets

(Fig. 3a). Using Eq. (1) and the multi-dataset ensemble-mean values for the Arctic and global

mean warming trends, we arrive at AA40 of 3.9 for the period of 1980-2019. The individual

AA40 values range from 3.8 in GISTEMP and ERA5 to 4.1 in BEST (Fig. 3b). Looking at

monthly values, AA40 is strongest in November, reaching a value of 5.4 during 1980-2019 (Fig.

S8).
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Figure 3: a) Observed and modelled annual temperature trends in the 1980-2019 period in the
Arctic (blue) and globally (orange). b) Observed and modelled 40-year Arctic amplification
(AA40) ratio calculated for the 1980-2019 period (blue bars), and the maximum AA40 ratio for
40-year periods ending in any year during 2010-2040 (orange bars). For observational datasets,
the maximum AA40 ratio (orange bars) is calculated for 40-year periods ending in any year
during 2010-2019. The dots represent the central estimate (mean) of the trend (a) or AA40 (b),
and the errorbars show the 90 % confidence intervals. See Methods for more explanation for
the calculation of the uncertainty estimates.

The CMIP5 multi-model mean warming trend for 1980-2019 is 0.61 K decade−1 for the

Arctic and 0.24 K decade−1 for the entire globe (Fig. 3a). The CMIP5 multi-model mean AA40

is 2.5 (Fig. 3b). Thus, while CMIP5 models have underestimated the warming in the Arctic,

they have overestimated the global warming rate, resulting in a 36 % underestimation of the

ongoing Arctic amplification.
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CMIP6 models have simulated the temperature change in the Arctic somewhat more real-

istically than their predecessors. The multi-model mean warming rate in the Arctic is 0.68 K

decade−1 (Fig. 3a), but compared to CMIP5 models, the CMIP6 models exhibit much higher

inter-model spread in the trends (Fig. 3a). In line with the higher warming rate in the Arctic,

the global mean warming rate in CMIP6 models is slightly higher than in CMIP5 models as

well, being 0.25 K decade−1. Due to higher temperature trends both in the Arctic and globally,

the mean AA40 of 2.6 in the CMIP6 models does not differ much from the CMIP5 ensemble

and still underestimates the observed Arctic amplification by 33 % (Fig. 3b). However, due to

the considerably larger spread in the warming rates in the Arctic (Fig. 3a), the AA40 values in

the CMIP6 models feature wider 90 % confidence spread ranging from 1.0 to 3.8.

How large portion of this spread is due to internal variability and what is the role of model

uncertainty? To assess the role of internal variability in the AA uncertainty, we use the 100-

member MPI-GE, which is the largest available single-model ensemble known to realistically

represent the observed variability (Maher et al., 2019). Individual members of MPI-GE histor-

ical simulations are initialized from different years of the long preindustrial control run; thus

the spread in this ensemble is solely due to internal variability. Compared to the CMIP5 and

CMIP6 multi-model means, MPI-GE simulations show lower warming trend in the Arctic, with

the central estimate being 0.52 K decade−1 for the 1980-2019 period (Fig. 3a). Consistently

with the lower warming rate in the Arctic, the global warming rate in MPI-GE is likewise

weaker and thus closer to observations, being 0.21 K decade−1. As a result, the ensemble mean

AA40 in MPI-GE for 1980-2019 is 2.5, close to both CMIP5 and CMIP6 ensemble means (Fig.

3b). Looking at MPI-GE spread, we find that it explains majority of the total CMIP5 spread,

suggesting that the model uncertainty plays a relatively small role in CMIP5 spread during this

period. However, model diversity is much larger in CMIP6, with MPI-GE explaining only half

of the CMIP6 spread. In particular, a few CMIP6 models simulate AA40 values close to those

observed, suggesting that these models might be able to capture feedbacks associated with AA

well. We analyze the apparently realistic AA values in these models in more detail in the next
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section.

Figure 3b clearly illustrates that, in 1980-2019, both CMIP5 and CMIP6 ensembles fail to

reproduce the observed AA values, as the multi-dataset ensemble-mean of the observational

AA40 ratio falls outside of the 90 % uncertainty range of all climate model simulations studied

here. However, as we only considered one 40-year time period (1980-2019), a natural follow-

up question arising is whether some climate models simulate higher AA at slightly different

climate forcing. To investigate this question, we explore the maximum AA40 ratio for each

climate model simultaneously considering all 40-year periods ending in 2010-2040. This time

window was chosen to avoid the nearly ice-free climate conditions later in the 21st century, the

comparison of which with the currently-observed values would be meaningless. In this exercise,

SSP2.4-5 scenario was used as a continuation for the historical simulations in CMIP6 models,

and RCP8.5 scenario in CMIP5 and MPI-GE models, but the selection of the scenario is not

expected to affect the results since the role of scenario uncertainty is negligible in the first half

of the 21st century (Hawkins and Sutton, 2009; Lehner et al., 2020).

Figure 3b shows that the central estimate of the maximum AA40 in the observations ranges

from 3.9 in GISTEMP to 4.2 in BEST, with the average maximum being 4.0. In all observa-

tional datasets this maximum has occurred during the 1979-2018 period, one year earlier than

our baseline period. The central estimate of maximum AA40 in CMIP6 models is 3.2, with 90

% inter-model spread ranging from 2.6 to 4.3, thus overlapping with the observed amplifica-

tion. This result indicates that some model runs are capable of simulating large AA40 values

comparable to the observed values under slightly different climate forcing, assuming that the

climate forcing is a function of time and is similar across models for the same moment in time.

However, the model capability to simulate a large AA is partly due to the extension of the pe-

riod until 2040, when there is less sea ice. Nevertheless, in most cases models cannot simulate

high AA40 even if we allow for a time gap, and therefore we do have evidence that the model

runs generally underestimate the recent Arctic amplification.

Furthermore, Fig. S5 demonstrates that CMIP6 models tend to underestimate AA under
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a wide range of different Arctic definitions and time windows. The underestimation is the

strongest in the high Arctic (> 70◦N, Fig. S5b) and over the ocean (Fig. S7b).

4 The role of Arctic sea ice loss and the hiatus phase in

global warming in the modelled Arctic amplification

Figure 4: The annual mean temperature trend in the Arctic as a function of Arctic sea ice
area trend in CMIP6 models and observations in 1980-2019 (a), the sensitivity of annual mean
sea-ice area trend to global annual mean surface temperature (GMST) scattered against the
maximum Arctic amplification ratio during 2010-2040 (b). The color of the dots in (b) shows
the ending year of the maximum 40-year AA ratio. The errorbars in (a) and (b) show the 90
% confidence intervals.

As evidenced previously, the observed Arctic amplification lies outside the uncertainty range

of CMIP5, CMIP6 and MPI-GE ensembles, with most models not capturing the presently

observed AA value even when a period gap is allowed (Fig. 3b). We next address the question

of what are the potential factors behind underestimated AA in climate models. We focus on

CMIP6 models since they show much larger spread than that in CMIP5.
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In the CMIP6 models, the absolute warming rate in the Arctic is strongly coupled with the

SIA trend (Fig. 4a, green dots), with stronger sea ice loss promoting faster warming and vice

versa. Most of the models simulate somewhat weaker sea ice loss than what is observed (red

dot in Fig. 4a) but, consistently with Notz and Community (2020), the observed SIA trend is

not outside of the CMIP6 model spread.

When looking at the sea ice loss during periods of maximum AA normalized by the cor-

responding global warming trend in the models and plotted against maximum AA values, the

picture becomes different (Fig. 4b). Almost all models simulate too weak sea ice loss relative

to their global warming rate, and thus their maximum Arctic amplification ratio in 2010-2040

remains smaller than what is observed (Fig. 4b). However, because SIA loss is not the only

factor causing AA, the causal relationship can be also other way around: too weak Arctic am-

plification in the models can lead to smaller SIA loss for a given amount of global warming. The

issue is further complicated by potential model biases in oceanic forcing on sea ice. The oceanic

heat flux affects SIA but does not have a direct effect on air temperatures over ice-covered parts

of the Arctic Ocean (Koenigk et al., 2020). Only in three models (EC-Earth3, MRI-ESM2-0

and NESM3), the sensitivity of SIA trend to their global warming rate is at same level as in

observations, and these model also produce the high AA ratios.

Another potential factor inducing differences between the modelled and observational AA

ratios is the hiatus phase in global warming that occurred between about 1998 and 2012 (Med-

haug et al., 2017), although in statistical terms, the existence of the hiatus is questionable

(Mudelsee, 2019). Nevertheless, in these years global mean temperature nearly ceased to in-

crease, which acts to reduce the denominator of Eq. (1) for the entire period 1980–2019.

According to Stolpe et al. (2021), an important contributing factor to the hiatus was the low

sea surface temperature in equatorial Pacific Ocean. Nevertheless, the impact of tropical Pa-

cific temperature anomalies did not extend to high northern latitudes where warming continued

unabatedly (Fig. 1), keeping the numerator of Eq. (1) large.

According to Box TS.3, Fig. 1a of IPCC AR5 report (Stocker et al., 2013), in the CMIP5
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model simulations a hiatus is quite a possible albeit infrequent phenomenon. If the hiatus indeed

proves to be an important source for the difference of AA between the model simulations and

observations, one can expect that the observed AA will be reduced in the long term, along with

the reduction of the ratio of forced to unforced climate change. Indeed, AA calculated using

the last 10-15 years is clearly smaller than using longer time windows (Fig. S5).

5 Discussion & conclusions

We present evidence that during the last 40 years the Arctic has been warming nearly 4 times

as fast as the entire globe and caution that referring to Arctic warming as to being twice or even

three times faster than the global warming is a clear underestimation of the situation during

1980-2019. Our results likewise demonstrate that climate models on average underestimate

the Arctic amplification by 33-36 % (Fig. 3b). This is also true for the latest CMIP6 models

despite the fact that some of these models better reproduce the absolute warming rate in the

Arctic. However, those models which show plausible Arctic warming trend simultaneously have

too much global warming. In contrast, those models which simulate reasonable global warming,

generally have too weak Arctic warming. Thus, our results show that most climate models are

unable to simulate a fast-warming Arctic simultaneously with weaker global warming similar

to the observed ”global warming hiatus” (e.g. Medhaug et al., 2017).

The reasons for the underestimation of AA in the climate models are not clear. It is likely

that internal climate variability, e.g. the early 21th century hiatus in global warming contributes

to the observed large AA; however, we show evidence of underestimated AA by models also

when we compare observations with a large ensemble that faithfully accounts for the internal

variability. Our analysis suggest that one potential cause of the underestimated AA is too weak

feedback mechanisms between sea ice melt and atmospheric warming in climate models, which

is reflected in their inability to reproduce the vertical structure of observed Arctic warming

(Cohen et al., 2020). However, it remains unknown which mechanisms are underestimated in
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models. Model uncertainties and deficiencies as well as contrasting results between models have

been reported related to numerous subgrid-scale processes acting in the Arctic (Vihma et al.,

2014) and in large-scale transports affecting AA (Burgard and Notz, 2017).

Further, we suggest that the inability of climate models to simulate realistic AA may have

implications for future climate projections. Specifically, the tug of war between AA and tropical

warming over the future changes in storm tracks (Shaw et al., 2016; Peings et al., 2019) projected

by climate models may be biased towards the forcing by tropical warming, implicating that

both projected storm track changes and associated regional climate changes may be biased. Our

results call for more detailed investigation of mechanisms behind AA and their representation

in climate models.

6 Methods

6.1 Observational data

For the near-surface temperature, we used the following datasets: NASA’s Goddard Institute for

Space Studies Surface Temperature version 4 (GISTEMP; Lenssen et al., 2019), Berkeley Earth

temperature dataset (BEST; Rohde and Hausfather, 2020), and Cowtan & Way temperature

dataset version 2.0 (CW; Cowtan andWay, 2014). In these datasets, near-surface temperature is

based on a combination of 2-m temperature observations over land and sea surface temperature

(SST) observations over the ocean.

GISTEMP, BEST and CW were chosen for this study because they interpolate the tem-

peratures into data-sparse regions, which are especially abundant in the Arctic. GISTEMP

spatially extrapolates temperatures into unmeasured regions using a 1200-km radius of influ-

ence for the stations, while BEST and CW employ kriging-based spatial interpolation. In all

these datasets, areas of sea ice are treated as if they were land, and SST observations are used

only in the grid points which are ice free all year. Thus, temperatures in both terrestrial and

marine Arctic are mostly based on terrestrial station observations.
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In addition to the three observational datasets, we used ERA5 reanalysis (Hersbach et al.,

2020), which has been produced by the European Centre for Medium-Range Weather Forecasts.

We used monthly mean 2-m temperature fields in the native, 0.25◦ (31 km) horizontal resolution.

The first release of ERA5 covers the years from 1979 to present, but a preliminary extension

for 1950-1978 was recently released. We used the whole time series, from 1950 to 2019. All the

observational temperature datasets used are listed in Table S1.

For Arctic sea ice area (SIA), we used the University of Hamburg Sea Ice Area product

(Doerr et al., 2021), which contains time series of the monthly SIA in the Northern Hemisphere

by several producers. To get a robust observational estimate, we used the average of the

following five products: OSI SAF (Lavergne et al., 2019), NASA-Team (Cavalieri et al., 1997),

Comiso-Bootstrap (Comiso et al., 1997), HadISST2 (Titchner and Rayner, 2014) and Walsh

dataset version 2 (Walsh et al., 2017).

6.2 Climate model data

We compared the observed temperatures to three different climate model ensembles, which

are listed in Table S2. These ensembles are 35 CMIP5 models (Taylor et al., 2012), 32 CMIP6

models (Eyring et al., 2016) and the 100-member Max-Planck Institute Grand Ensemble (MPI-

GE) (Maher et al., 2019). All three climate model datasets contained historical simulations

(1850-2005 for CMIP5 and MPI-GE, and 1850-2014 for CMIP6) and future projections forced

by the RCP8.5 scenario for CMIP5 and MPI-GE, and SSP2-4.5 and SSP5-8.5 scenarios for

CMIP6 (Table S2). For CMIP6, the monthly averaged data for 2-meter temperature and

sea ice concentration were used; for CMIP5 and MPI-GE, only 2-meter temperatures were

considered. Sea ice concentration data were only available from 25 CMIP6 models. Also, there

is no data from SSP2-4.5 scenario data for CMIP6 TaiESM1 model. The list of all the used

CMIP5 and CMIP6 models can be found from the supplement tables S3 and S4.
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6.3 Defining the Arctic amplification

We follow the recommendation of Smith et al. (2019), and define Arctic amplification (AA) as

the ratio of Arctic warming to global-mean warming:

AA =
dT/dtA
dT/dtG

(1)

where dT/dtA and dT/dtG are the slopes of linear trends of near-surface temperature, calcu-

lated using a least-squares fitting for the annual mean values for the Arctic and global domain.

The trends were calculated for different time periods (see Fig. S5a), but the last 40 years

(1980-2019, hereafter referred to AA40) was chosen as the primary period of interest, because

(i) it captures most of the recent warming period (Fig. 1), and (ii) the reanalysis products, such

as ERA5, are known to be more reliable during this period because satellite remote sensing

data on atmospheric variables and sea ice concentration have become largely available since

1979 (e.g. Fujiwara et al., 2017).

While different areal definitions for the Arctic exist, we use the area encircled by the Arctic

Circle (66.5◦-90◦N) as the primary definition of the Arctic. We argue that this is the area that

most scientists consider as the Arctic (NSIDC, 2020), and it is one of the definitions used by

AMAP (AMAP, 2009). The fourth assessment report (AR4) of the Intergovernmental Panel

on Climate Change (IPCC) defined the Arctic as the region poleward from 65.0◦N (Trenberth

et al., 2007), and AR5 used 67.5◦N (Collins et al., 2013). For a sensitivity assessment, dT/dtA

was also calculated using different definitions for the southern boundary of the Arctic, ranging

from 55◦N to 80◦N (Fig. S5).

6.4 Statistical analysis

For observations, we give the uncertainty ranges in dT/dtA and dT/dtG as the 90 % statistical

uncertainty range. For CMIP5 and CMIP6 simulations, the uncertainty ranges reflect the 90 %

confidence interval (5th-95th percentile range) derived from multi-model ensemble. For MPI-
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GE simulations, we use the 90 % confidence interval (5th-95th percentile range) derived from

the ensemble members. The statistical significance of the observed trends was estimated at 95

% level (P<0.05) using nonparametric Mann-Kendall test (Kendall, 1948; Mann, 1945) with

pyMannKendall python package (Hussain and Mahmud, 2019).

The uncertainty range in observed AA40 ratios reflects 90 % confidence intervals which were

estimated using the bootstrap method (Efron, 1992). For CMIP5 and CMIP6 simulations, the

corresponding uncertainty range is the 90 % confidence interval derived from the multi-model

ensemble, and for MPI-GE, derived from the ensemble members. The AA40 ratios in climate

models were first calculated separately for each model/member and then averaged across them

(i.e. as mean ratios, not a ratio of means), thus following the recommendation by Smith et al.

(2019).

The uncertainty range in observed SIA trend correspond to the 90 % statistical uncertainty

range derived from the regression coefficients of the trends.

7 Data availability

Gistemp data are available from https://data.giss.nasa.gov/gistemp/, Berkeley Earth data from

http://berkeleyearth.org/data/, Cowtan & Way data from

https://www-users.york.ac.uk/∼kdc3/papers/coverage2013/series.html, and ERA5 data from

https://cds.climate.copernicus.eu. CMIP5 and CMIP6 data are available from Earth System

Grid Federation (ESGF) archive at https://esgf-node.llnl.gov/projects/cmip5/ and https://esgf-

data.dkrz.de/search/cmip6-dkrz/, respectively. MPI-GE data is available under licence from

https://mpimet.mpg.de/en/grand-ensemble/.
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8 Code availability

Python- and R-language scripts used for this analysis are available from Github:

https://github.com/mikarant/arctic-amplification
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T., Notz, D., Weiss, J., et al. (2014). Advances in understanding and parameterization of

small-scale physical processes in the marine Arctic climate system: a review. Atmospheric

Chemistry and Physics, 14(17):9403–9450.

Walsh, J. E. (2014). Intensified warming of the Arctic: Causes and impacts on middle latitudes.

Global and Planetary Change, 117:52–63.

Walsh, J. E., Fetterer, F., Scott Stewart, J., and Chapman, W. L. (2017). A database for

depicting Arctic sea ice variations back to 1850. Geographical Review, 107(1):89–107.

Wickström, S., Jonassen, M., Vihma, T., and Uotila, P. (2020). Trends in cyclones in the

high-latitude north atlantic during 1979–2016. Quarterly Journal of the Royal Meteorological

Society, 146(727):762–779.

Woods, C. and Caballero, R. (2016). The role of moist intrusions in winter Arctic warming and

sea ice decline. Journal of Climate, 29(12):4473–4485.

Yu, L., Zhong, S., Vihma, T., and Sun, B. (2021). Attribution of late summer early autumn

Arctic sea ice decline in recent decades. npj Climate and Atmospheric Science, 4(3).

28



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Arcticwarmingsupportinginformation.pdf

https://assets.researchsquare.com/files/rs-654081/v1/84be48cd028d771c31b43e24.pdf

