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Abstract 36 

The coincidence of floods in the mainstream and its tributaries may lead to a large flooding in the 37 

downstream confluence area, and the flood coincidence risk analysis is very important for flood prevention 38 

and disaster reduction. In this study, the multiple regression model was used to establish the functional 39 

relationship among flood magnitudes in the mainstream and its tributaries. The mixed von Mises distribution 40 

and Pearson Type III distribution were selected to fit the probability distribution of the annual maximum 41 

flood occurrence dates and magnitudes, respectively. The joint distributions of the annual maximum flood 42 

occurrence dates and magnitudes were established using copula function. Fuhe River in the Poyang Lake 43 

region was selected as a study case. The joint probability, co-occurrence probability and conditional 44 

probability of flood magnitudes were calculated and compared with the simulated results of the observed 45 

data. The results show that the selected marginal and joint distributions perform well in simulating the 46 

observed flood data. The coincidence probabilities of flood occurrence dates in the upper mainstream and 47 

its tributaries mainly occur from May to early July. Among the three coincidence probability calculation 48 

methods, the conditional probability is the most consistent with the flood coincidence risk in the mainstream 49 

and its tributaries, which is more reliable and rational in practice. The results reflect the actual flood 50 

coincidence situation in the Fuhe River basin and can provide technique support for flood control decision-51 

making. 52 

Keywords: Flood coincidence; Copula function; Conditional probability; Comparative study; Fuhe River 53 
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1 Introduction 60 

Nowadays, flood problems have become more and more prominent, which account for a large part of all-61 

natural hazards in the world (KvočKa et al. 2016). In addition to causing severe disasters to agriculture, 62 

floods can also bring loss to the industry, life and property (de Bruijn et al. 2015; Thieken et al. 2015). 63 

Affected by human activities, climate change, environmental degradation and El Niño, extreme hydrological 64 

events occur frequently worldwide (Hirabayashi et al. 2013; Alfieri et al. 2016; Zhang et al. 2016). Against 65 

this background, the frequency and intensity of floods continue to increase, and the resulting losses are also 66 

growing (Ceola et al. 2014; Daksiya et al. 2020). Generally, large floods are caused by the combination of 67 

floods in the mainstream and its tributaries (Ganguli and Reddy 2013). When floods occur simultaneously, 68 

the flood peaks and the flood volumes will superimpose into large floods, threating the safety of the 69 

downstream river (Chen et al. 2012; Wang 2016). Therefore, it is of great significance to study the flood 70 

coincidence laws in the mainstream and its tributaries, which can not only provide a theoretical basis for the 71 

formulation of flood control and dispatching plans in the basin, but also offer a reference for the construction 72 

of flood control facilities in the downstream.  73 

For the analysis of flood coincidence, the traditional method is to statistically analyze flood coincidence 74 

events occurred based on the synchronized flood data over the years, so as to calculate the corresponding 75 

coincidence probabilities. However, the traditional hydrological statistical analysis method only focuses on 76 

historical data, and cannot quantitatively estimate the coincidence probabilities and return periods of design 77 

floods at specific frequencies. As cascade reservoirs continue to be built and put into operation, flood 78 

coincidence analysis is particularly important in joint flood control and dispatching work, but the traditional 79 

method cannot provide sufficient information. In fact, the essence of flood coincidence is a multivariable 80 

frequency combination event, which can be studied by the multivariable hydrological analysis method (Feng 81 

et al. 2020). At present, the commonly used multivariate hydrological analysis methods include the 82 

nonparametric method (Silverman 1986; Kim et al. 2006), the specific joint distribution method (Bacchi et 83 

al. 1994; Yue 2000a, 2002; Escalante 2007; Shimizu 2010), the multivariate Normal distribution method 84 
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(Goel et al. 1998; Yue 2000b; Prohaska and Ilic 2010), the FEI method of transforming the multi-85 

dimensional joint distribution into one-dimensional distribution, and the empirical frequency method. 86 

However, the above methods have certain limitations and deficiencies. For example, the nonparametric 87 

method cannot give an analytical formula for the marginal distribution of variables, and the data prediction 88 

ability is weak. The specific joint distribution method requires the marginal distributions to be the same type 89 

(Shiau 2006). The multivariate Normal distribution method is prone to cause information distortion in the 90 

process of data conversion (Correia 1978). And the empirical frequency method does not have the ability to 91 

predict data extension. 92 

Copula functions overcome the shortcomings of the traditional methods, and can connect arbitrary 93 

marginal distributions through correlation structures. As an effective method of constructing multivariate 94 

joint distribution, the advantages of copula functions are: (1) arbitrary marginal distribution types, (2) 95 

flexible and diverse structures, (3) simple solution method, (4) strong applicability and wide scalability. In 96 

recent years, copula functions have become a research hotspot in the field of hydrology, and been widely 97 

used in multivariate hydrological analysis. For example, they have been used for flood frequency analysis 98 

(Salvadori and Michele 2004; Zhang and Singh 2006; Reddy and Ganguli 2012; Li et al. 2013; Sraj et al. 99 

2015; Zhong et al. 2018; Karahacane et al. 2020), rainfall frequency analysis (De Michele and Salvadori 100 

2003; Kao and Govindaraju 2007, 2008; Ashkar and Aucoin 2011; Zhang and Singh 2012), rain and flood 101 

analysis (Xiao et al. 2009; Keef et al. 2009; Candela et al. 2014), and multivariate simulation (Aghakouchak 102 

et al. 2010a, b; Chen et al. 2015, 2016; Poduje and Haberlandt 2017). 103 

Copula functions have also been applied in flood coincidence analysis. For example, Favre et al. (2004) 104 

used a copula function to construct the joint distribution of floods in a mainstream and its tributary, and 105 

calculated the flood coincidence probability. Wang et al. (2009) presented a Copula-based Flood Frequency 106 

(COFF) model with arbitrary marginal distributions to evaluate quantitatively flood risk at confluences. 107 

Klein et al. (2010) estimated coincidence probability of flood volumes at two reservoirs in a river basin 108 
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using copula functions. Schulte and Schumann (2016) developed multivariate copula-approaches to analyze 109 

coincidence risk of flood peaks in adjoining catchment. Using Copula Monte Carlo (CMC) method, Peng 110 

et al. (2017) further estimated flood risk in the confluence flood control downstream of a reservoir. However, 111 

these researches only considered flood magnitudes and ignored flood occurrence time. In fact, flood 112 

coincidence means that the simultaneous occurrence of large floods in different rivers. It needs to meet two 113 

conditions: the flood occurrence time should be within a certain range, and the flood magnitudes should be 114 

above a certain level. Therefore, when analyzing flood coincidence risk, both factors of flood occurrence 115 

time and magnitudes should be taken into consideration. Recently, assuming that the flood occurrence dates 116 

and magnitudes were independent, Chen et al. (2012) selected the multi-dimensional asymmetric 117 

Archimedean copula functions to analyze the flood coincidence risk of the upstream Yangtze River and its 118 

tributaries. Peng et al. (2019) employed multivariate copulas to estimate flood coincidence probabilities, 119 

considering flood occurrence dates and magnitudes simultaneously. Huang et al. (2018) took flood 120 

magnitudes of two rivers and flood occurrence interval dates as three reference variables, and further 121 

explored the flood hydrograph coincidence risk using copulas. 122 

The above researches revealed the characteristics of flood coincidence risk from different angles, and 123 

have made great progress in the flood coincidence analysis of mainstream and its tributaries. However, some 124 

researches only focused on the coincidence risk of flood magnitudes and neglected the flood occurrence 125 

time; other researches usually assumed that the flood magnitudes and occurrence time data series were 126 

independent and ignored the correlation of flood variables. In addition, most studies were limited to 127 

constructing distribution models to quantitatively evaluate the flood coincidence risk, and hardly compared 128 

with the actual situations, which cannot guarantee the rationality and reliability of the analysis results. 129 

The objective of this study is therefore to analyze flood coincidence risk in the mainstream and its 130 

tributaries considering the link of the up-downstream flood variables. Based on copula function, the joint 131 

distributions of flood magnitudes and occurrence dates are constructed for the flood coincidence analysis. 132 
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Daily flow data series at three hydrologic stations in the Fuhe River are chosen as a case study. First, the 133 

multivariate regression model is used to simulate the functional relationship among the flood variables of 134 

the mainstream and its tributaries. Second, the mixed von Mises and Pearson Type III marginal distributions 135 

are used to describe the annual maximum flood occurrence dates and flood magnitudes, respectively. Third, 136 

the coincidence probabilities of flood occurrence dates and magnitudes are estimated. Finally, the estimated 137 

and simulated flood coincidence risks are compared and assessed.  138 

2 Study area and data 139 

The Fuhe River, located at the east of Jiangxi Province and feeding into the Poyang Lake, was selected as a 140 

case study. Fig. 1 depicts the distributions of the mainstream and tributaries of the Fuhe River and related 141 

hydrological stations. Affected by the subtropical humid monsoon climate, there are abundant rainfall in the 142 

area (Wang et al. 2013). Floods are mostly formed by heavy rainstorms, which temporal and spatial 143 

distributions are consistent with heavy rains. And the flood season is generally from April to early July. 144 

Flood events occur frequently in the Poyang Lake area, with an average of 4 years every 5 years. Among 145 

the most recent major flood events are those of 1954, 1983, 1995, 1998, 1999 and 2010. One of the main 146 

causes of flood disasters in the Poyang Lake area is that the flow from the five main rivers is too large and 147 

the water level is too high, leading the floods to overflow the levee or break it. On the other hand, the river 148 

networks are huge and floods are prone to encounter, which add to the severity of flood damage. 149 

As one of the five main rivers in the Poyang Lake water system, the Fuhe River is 348 km long and 150 

has a drainage area of 164,93 km2, which is the second largest river in Jiangxi Province. The Liaojiawan 151 

hydrological station with a control basin area of 8723 km2, and the Loujiacun hydrological station with a 152 

control basin area of 4969 km2, are located in the upper mainstream and tributary, respectively. The Lijiadu 153 

hydrological station with a catchment area of 15,812 km2 is located in the down-mainstream, which accounts 154 

for more than 95% of the entire drainage area. In this study, the daily flow discharge data series of these 155 

three hydrological stations from 1953 to 2016 were collected and the annual maximum flood magnitudes 156 
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and corresponding occurrence dates were sampled.  157 

[Insert Figure 1 about here] 158 

3 Methodology 159 

3.1 Copula functions 160 

Copula function is a multi-dimensional joint distribution function uniformly distributed in the domain of [0, 161 

1]. It can connect arbitrary marginal distributions through correlation structures to construct multi-162 

dimensional joint distributions (Joe 1997; Nelsen 2006). Based on Sklar's theorem (Schweizer and Sklar 163 

1983), assuming that the marginal distribution functions of random variables x and y, are  X
F x  and  YF y  164 

respectively, and  ,F x y  is their joint distribution, then the copula function can be written as: 165 

         , , ,X YF x y C F x F y C u v    (1) 

where  C   is a copula function;   is a parameter of the copula function to be estimated; u and v are 166 

marginal distribution functions, satisfying    X Xu F x P X x   , and    Y Yv F y P Y y   . 167 

Recently, the Archimedean copula functions have been widely used in hydrological frequency analysis 168 

(Grimaldi and Serinaldi 2006; Leonard et al. 2008; Guo et al. 2018; Yin et al. 2018). Among them, the 169 

Clayton copula (Clayton 1978), Gumbel-Hougaard copula (GH copula) (Hougaard 1986) and Frank copula 170 

(Frank 1979) are the most commonly used in practice. Because they just have one parameter and are easy 171 

to generate and solve. What’s more, they can be used to describe hydrological variables with positive or 172 

negative correlations (Nelsen 2006). The mathematical expressions are shown below: 173 

Clayton copula:      1

, 1 ; 0,C u v u v
  

        (2) 

GH copula:         
1

, exp ln ln ; 1,C u v u v
             (3) 
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Frank copula：     
 

1 11
, ln 1 ;

1

u ve e
C u v R

e

 






 



  
    

  
  (4) 

The parameter estimation methods of copula function mainly consist of the correlation index method, 174 

the line-of-fit method and the maximum likelihood method. In this study, the correlation index method was 175 

employed. Based on the relationship between the copula parameter   and the two variables’ Kendall 176 

correlation coefficient , the parameters of copula functions can be estimated by following formula: 177 

  

 1

2 Clayton

= 1 1 GH 

1 4 4 FrankD

 
 

  





  

，              

，                  

，    

  (5) 

where   is the Kendall correlation coefficient of two variables;   is a parameter of the copula function; 178 

and  1D   is the first-order Debye function. 179 

3.2 Marginal distributions of flood occurrence dates and magnitudes 180 

The flood occurrence dates often have the characteristics of periodicity. The von Mises distribution has a 181 

good fitting effect for the distribution of periodic or seasonal variables with a single peak (Fisher 1993; 182 

Mardia and Jupp 2009). In general, the annual maximum flood is affected by many factors, so its occurrence 183 

dates series may be multi-peaked. In this situation, a mixed von Mises distribution which comprises m von 184 

Mises distributions, can be applied to describe the probability density function of multi-peaked variables. 185 

The probability density function of the mixed von Mises distribution can be written as:  186 

 
   

 cos

1 0

exp ;0 2 ,0 2 , 0
2

i i

m
k x ui

X i i

i i

p
f x x u k

I k
 


  



        (6) 

where ip  is the coefficient of the mixing proportion; ik  is the scale parameter; iu  is the position parameter; 187 

 0 iI k  is the 0-order modified Bessel function; and m is the order of the finite mixed von Mises distribution 188 

(m=2). The maximum likelihood estimate (MLE) method is frequently used to calculate the parameters in 189 

Eq. (6) (Michael and Stanislav 2013). 190 
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For the annual maximum flood series, many distributions including the Pearson Type III (P3) 191 

distribution, Log-Pearson Type III distribution, Gamma-type distribution, Generalized Extreme Value 192 

(GEV) distribution, and Lognormal distribution can be used to describe the probability density function. In 193 

China, the Pearson Type Ⅲ distribution has been recommended by the Chinese Ministry of Water Resources 194 

(MWR 2006) as a uniform procedure for flood frequency analysis. Therefore, assuming that the annual 195 

maximum flood magnitudes obey the P3 distribution, and its probability density function is expressed as: 196 

 
       1

exp ; 0, 0,Xf x x x x


      


          
  (7) 

where  ,   and   are the shape, scale and position parameters of the P3 distribution, respectively; and 197 

    is the gamma function. The parameters of the P3 distribution can be estimated by the L-moment 198 

method (Hosking 1990). 199 

3.3 Goodness-of-fit tests 200 

The evaluation of goodness-of-fit is a very important step in the process of selecting the marginal 201 

distribution and the joint distribution. In order to judge whether the selected distribution is appropriate and 202 

whether it can accurately reflect the actual distribution of the sample, it is necessary to perform a fitting test 203 

and goodness evaluation. There are many methods for goodness-of-fit test in hydrological analysis, and the 204 

commonly used Root Mean Square Error (RMSE), Kolmogorov-Smirnov (K-S) and chi-square ( 2 ) test 205 

methods were selected to evaluate the comprehensive performance of the distributions. 206 

To test the goodness-of-fit of the marginal distributions and the joint distributions, the empirical 207 

probabilities of the samples should be obtained first. For the univariate series, the empirical probabilities of 208 

each flood variable generally can be obtained by the Weibull plotting position formula (Makkonen 2008), 209 

which can be written as: 210 

  
1

e i

i
P x

n



  (8) 
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where xi is the observed data; n is the sample length; and  e iP x  is the empirical exceedance probability. 211 

For the bivariate series, the empirical probabilities of joint distribution can be estimated using the 212 

Gringorten formula (Gringorten 1963), which has been widely applied in extreme flood events (Hirsch and 213 

Stedinger 1987; Yue 1999; Zhang and Singh 2007; Karmakar and Simonovic 2009; Xiong et al. 2019). The 214 

specific formula is as follows: 215 

 

 
 

1

, 0.44

,
0.12

n

j i j i

j

e i i

X x Y y

P x y
n



  





  

(9) 

where  ,i ix y  is a combination of the observed data; n is the sample length; and  ,e i iP x y  is the empirical 216 

joint distribution probability. 217 

The Root Mean Square Error (RMSE) is often selected to measure the difference between the 218 

theoretical probabilities of the fitted distribution and the empirical probabilities of the observed data. RMSE 219 

can effectively evaluate the performance of the fitted distributions. The smaller the RMSE value, the better 220 

the fitting effect. The RMSE value can be obtained as: 221 

 
 

1

1 n

ei i

i

RMSE P P
n 

    (10) 

where n is the sample size; Pi is the theoretical probabilities obtained from the fitted distribution; eiP  is the 222 

empirical frequencies from the observed data. 223 

The Kolmogorov-Smirnov (K-S) test is a goodness-of-fit test method that analyzes the distance 224 

between the empirical distributions and the theoretical distributions (Massey 1951; Weiss 1978; Razali and 225 

Wah 2011). It can judge whether the observed data of the sample obey the fitted distribution. For n observed 226 

data which are in an increasing order, the K-S test statistic is expressed as: 227 

 *sup ( ) ( )n x nD F x F x    (11) 

where  F x


 is the theoretical distribution;  n
F x  is the empirical distribution, supx  is the maximum 228 
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value of distances. 229 

The chi-square ( 2 ) test is to measure the degree of deviation between the observed values and the 230 

predicted values. The size of the chi-square value determines the degree of deviation. The chi-square test 231 

statistic is defined as: 232 

      2 2 2

1 1 2 22

1 2

=
k k

k

M np M np M np

np np np


  
  L   (12) 

where 1 2 , ,, kp p pK  are the hypothesized probabilities for k possible outcomes; and 1 2, , , kM M MK  are the 233 

observed counts of each outcome to be compared for expected counts 1 2  , , knp np npK,  in n independent 234 

trails. 235 

3.4 Estimation of flood coincidence risk 236 

Flood coincidence means large floods in the mainstream and its tributaries occur simultaneously. In general, 237 

the probabilities are used to quantitatively describe the degree of flood coincidence. According to the 238 

definition of flood coincidence, it is obvious that flood events are mainly characterized by flood occurrence 239 

dates and flood magnitudes. Thus, both factors should be taken into consideration when evaluating flood 240 

coincidence. In this study, the flood occurrence dates and flood magnitudes were selected as reference 241 

variables. 242 

3.4.1 Coincidence risk of flood occurrence dates  243 

Considering flood occurrence dates, the coincidence of flood occurrence dates refers to that the annual 244 

maximum floods in the mainstream and its tributaries occur on the same day. Therefore, the coincidence 245 

probabilities of the annual maximum flood occurrence dates of two rivers on the kth day can be defined as: 246 

  
       

1 1

1

,

    

t

k k i k k j k

T k k T k+1 k+1 T k k+1 T k k

P P t T t t T t

= F t t + F t t - F t t - F t t

 



    

， ， ， ，
 (13) 

where i and j are the hydrological stations on the mainstream and its tributary; iT  represents the occurrence 247 
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dates of the annual maximum flood, expressed as a certain day of the flood season; and kt  represents the kth 248 

day of the flood season. 249 

3.4.2 Coincidence risk of flood magnitudes  250 

Considering flood magnitudes coincidence, we can establish joint distributions of the annual maximum 251 

floods in the mainstream and its tributaries based on copula functions. Then, the flood coincidence risk can 252 

be quantitatively evaluated using the joint probabilities, co-occurrence probabilities and conditional 253 

probabilities. 254 

For the joint probabilities of flood magnitudes coincidence, it refers to the probabilities that at least 255 

one of two rivers occurs floods surpassing certain values, expressed as the following equation: 256 

      1 , 1 ,P X x Y y F x y C u v         (14) 

where x and y are the flood magnitudes in i and j river, respectively; and  ,F x y  is the joint distribution 257 

function of flood magnitudes in two rivers. 258 

For the co-occurrence probabilities of flood magnitudes coincidence, it refers to the probabilities that 259 

two rivers simultaneously occur floods surpassing certain values, expressed as the following equation: 260 

        
 

1 ,

1 ,

X YP X x Y y F x F y F x y

u v C u v

      

   
  (15) 

For the conditional probabilities, it refers to the probabilities that when given range for any one 261 

variable, the other variable fall into another range. In this study, under the condition that one river has 262 

occurred floods surpassing certain values, the probability that another river also occurs floods surpassing 263 

certain values, can be expressed as the following equation: 264 

 

   
 
     

 
 1 , 1 ,

1 1

X Y

X

P X x Y y
P Y y X x

P X x

F x F y F x y u v C u v

F x u

  
  



     
 

 

 (16) 
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4 Results and discussion 265 

4.1 Flood correlation analysis 266 

There are many methods to measure the correlation between variables in hydrological analysis, and the 267 

common Pearson correlation coefficient was used to describe the correlation between the annual maximum 268 

flood magnitudes series of these three hydrological stations in the Fuhe River. Fig. 2(a) shows the correlation 269 

analysis of the annual maximum flood magnitudes between the Liaojiawan, Loujiacun stations in the 270 

upstream and the Lijiadu station in the downstream, respectively. It can be seen that the Pearson correlation 271 

coefficient between the Liaojiawan and Lijiadu stations is 0.93, and between the Loujiacun and Lijiadu 272 

stations is 0.90. There are strong positive correlation in the annual maximum flood magnitudes between 273 

these stations. Since the control basin area of the Loujiacun station is smaller than that of the Liaojiawan 274 

station, its correlation with the Lijiadu station is relatively small. 275 

Fig. 2(b) shows the correlation analysis of the annual maximum flood magnitudes between the 276 

Liaojiawan and Loujiacun stations which are both located in the upper reaches of the Fuhe River. It can be 277 

seen that the Pearson correlation coefficient is 0.80, and their control basins are very close in space. 278 

Therefore, the key factors for flood generation, such as climatic conditions, geographical environment and 279 

topographical position, are very similar. It also proves that the regularity of flood occurrence in the upper 280 

reaches is highly consistent. 281 

In order to analyze the quantitative relationship among the annual maximum flood magnitudes series 282 

of the three stations, the multiple regression model was employed. The functional relationship among the 283 

annual maximum flood magnitudes of these three stations was constructed, and the result is as follows: 284 

 
1 2

ˆ 104.890 0.841 1.082Y Y X X         (17) 

where 1X  and 2X  represent the observed values of the annual maximum flood magnitudes at the 285 

Liaojiawan and Loujiacun stations, respectively; Ŷ  represents the simulated values of the annual maximum 286 

flood magnitudes at the Lijiadu station;   is the random error of the model, obeying a Normal distribution 287 
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with a mean value of 0, which can be expressed as  20,N  : .  288 

To evaluate the performance of the multiple regression equation, the relationship between the simulated 289 

values of the annual maximum flood magnitudes obtained by the multiple regression model and the observed 290 

values at the Lijiadu station, is plotted in Fig. 3. It can be seen that the scattered points are basically 291 

distributed along the 45° diagonal, indicating the simulated values and the observed values are very close. 292 

It further proves that the floods at the Lijiadu station are mainly formed by the superposition of the upstream 293 

floods, and the simultaneous occurrence of floods in the upstream are easy to cause large flooding in the 294 

downstream confluence area. 295 

[Insert Figure 2 about here] 296 

[Insert Figure 3 about here] 297 

4.2 Estimation of marginal distributions 298 

The mixed von Mises distribution was used to fit the occurrence dates series of the annual maximum flood 299 

at the three stations in the Fuhe River, and the parameters of the marginal distributions were estimated by 300 

the maximum likelihood method. Table 1 lists the values of the estimated parameters of the von Mises 301 

function. The empirical frequencies of the marginal distributions were obtained by Eq. (8), and the 302 

theoretical probabilities of the mixed von Mises distribution were calculated by Eq. (6). Fig. 4 shows the 303 

fitting relationship between the empirical frequency points and the theoretical probability curve for the 304 

annual maximum flood occurrence dates, in which the mixed von Mises distribution can fit the empirical 305 

distribution very well.  306 

In order to evaluate the performance of the marginal distributions more comprehensively, the K-S test 307 

method was used for the fitting test, and the Root Mean Square Error method was applied for the goodness 308 

evaluation. The results of the goodness-of-fit evaluation are presented in Table 1. It is shown that at a 309 

significance level of 0.05, the values of K-S test statistics do not exceed their critical values, implying that 310 

all the marginal distributions of the annual maximum flood occurrence dates have passed the hypothesis 311 
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test. Meanwhile, the RMSE values between the theoretical frequencies and the empirical probabilities are 312 

small enough. Therefore, the mixed von Mises distribution performs well in simulating the annual maximum 313 

flood occurrence dates in the Fuhe River.  314 

The P3 distribution was applied to describe the annual maximum flood magnitudes series of the three 315 

stations, and the parameters were estimated by the L-moment method. The values of the estimated 316 

parameters of the P3 distribution are presented in Table 2. The empirical frequencies and the theoretical 317 

probabilities were calculated by Eqs. (8) and (7), respectively. The fitting curves of the marginal 318 

distributions are shown in Fig. 4. It can be seen that graphically, the P3 distribution fits the empirical 319 

distributions well. In addition, the chi-square test and the Root Mean Square Error method were selected for 320 

the fitting test and goodness evaluation. Table 2 lists the relative evaluation index results. It is shown that 321 

the p-values of the chi-square test of the three stations are all larger than the critical values at the 0.05 level 322 

of significance, implying that the hypothesis test that the flood magnitudes obey the P3 distribution is not 323 

rejected. So, the P3 distribution performs well in quantifying the marginal distributions of the annual 324 

maximum flood magnitudes. 325 

[Insert Table 1 about here] 326 

[Insert Table 2 about here] 327 

[Insert Figure 4 about here] 328 

4.3 Estimation of joint distributions 329 

The dependence of the annual maximum floods among these three stations have been verified. Thus, the 330 

copula functions can be used for the flood coincidence analysis. Based on the Clayton, GH and Frank copula 331 

functions, the bivariate joint distribution of the annual maximum flood occurrence dates at the Liaojiawan 332 

and Loujiacun stations was constructed. Similarly, the two-dimensional joint distributions of the annual 333 

maximum flood magnitudes between the Liaojiawan, Loujiacun and Lijiadu stations were also constructed, 334 

respectively. The Kendall rank correlation coefficient was employed to reckon the parameters of the 335 
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Archimedean copula functions. Table 3 presents the values of the estimated parameters. Using the Eq. (9), 336 

the empirical frequencies of the joint distributions were calculated. In order to select the most appropriate 337 

copula function among the three candidate copulas, the Root Mean Square Error method was applied to test 338 

the goodness of fitting. The RMSE values between the empirical frequencies and the theoretical 339 

probabilities are listed in Table 3. The results show that for the annual maximum flood occurrence dates and 340 

flood magnitudes, the RMSE values of the Clayton copula function are the lowest. It indicates that the 341 

Clayton copula function is the most appropriate copula for modeling the joint distributions of flood variables 342 

at these stations of the Fuhe River. Therefore, the Clayton copula function is selected to establish the joint 343 

probability distributions of the annual maximum flood occurrence dates and magnitudes, respectively. The 344 

theoretical and the observed nonexceedance joint probabilities are exhibited in Fig. 5, in which the x-axis is 345 

sorted in ascending order of the theoretical nonexceedance joint probabilities. It can be seen that the 346 

theoretical frequency curves can fit the observed values well. 347 

[Insert Table 3 about here] 348 

[Insert Figure 5 about here] 349 

4.4 Analysis of flood coincidence risk 350 

4.4.1 Coincidence risk of flood occurrence dates  351 

With Eq. (13), the coincidence probabilities of the occurrence dates of the annual maximum flood at the 352 

Liaojiawan and Loujiacun stations were calculated and the results are presented in Fig. 6. The curve 353 

demonstrates that the coincidence probabilities of flood occurrence dates in the mainstream and tributaries 354 

of the upper Fuhe River present the characteristics of multiple-peak. Before March and after August, the 355 

coincidence probabilities are very small, which are basically close to zero. During the period from mid-356 

March to late April, there are a relatively stable coincidence risk, which are almost below 0.015%. Early 357 

May to early July is a higher coincidence period of the flood occurrence dates, including two peaks. The 358 

first coincidence peak occurs on May 12, with an associated probability of 0.026%. The second peak with 359 
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an associated probability of 0.057% occurs on June 21, which is the largest coincidence risk. According to 360 

the analysis of climate, it can be known that the Fuhe River is located in the subtropical monsoon climate 361 

zone, and the flood season is from April to July. During this period, the precipitation is frequent and the 362 

precipitation intensity is high, which is easy to cause floods. Moreover, floods have obvious characteristics 363 

that change with the seasons. The annual flow is mainly distributed in the flood season, and most of the 364 

large floods occur in individual months of the flood season, such as May, June and July. From the beginning 365 

to the end of the flood season, the flood intensity changes from weak to strong, and then from strong to 366 

weak. Therefore, May to early July are the overlapping periods of floods in the mainstream and tributaries. 367 

As shown in Fig. 6, the higher coincidence probabilities of the occurrence dates of the annual maximum 368 

flood occur in May to early July, which proves that the calculated results are in accordance with the actual 369 

situation. Adding together all the daily coincidence probabilities of the flood occurrence dates, expressed as370 

1

n
t t

k

k

P P


  , we can obtain the coincidence probability of the annual maximum flood occurrence dates in 371 

the mainstream and tributaries, and the result is 2.87%. 372 

[Insert Figure 6 about here] 373 

4.4.2 Coincidence risk of flood magnitudes 374 

The coincidence probabilities of the annual maximum flood magnitudes for different design floods in the 375 

mainstream and its tributaries were estimated. With Eqs. (14) and (15), the joint probabilities and the co-376 

occurrence probabilities of T-year design floods at the Liaojiawan and Loujiacun stations were calculated, 377 

respectively. With Eq. (16), the conditional probabilities of the occurrence of T-year design floods at the 378 

Lijiadu station, when given the occurrence of floods at the Liaojiawan station were obtained. In the same 379 

manner, the conditional probabilities of T-year design floods occurring at the Lijiadu station, given floods 380 

at the Loujiacun station were also calculated. Tables 4 and 5 display the flood coincidence probabilities 381 

including the joint probabilities, co-occurrence probabilities, and conditional probabilities for 5, 10, 20, 50, 382 

and 100-year design floods in the Fuhe River basin. 383 
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It can be seen that the joint probabilities of the occurrence of 5, 10, 20, 50 and 100-year design floods 384 

at the Liaojiawan and Loujiacun stations are 30.48%, 17.14%, 9.20%, 3.86%, and 1.96%, respectively. The 385 

co-occurrence probabilities for different design floods with the return periods of 5, 10, 20, 50 and 100 years 386 

at the Liaojiawan and Loujiacun stations are 9.52%, 2.86%, 0.80%, 0.14% and 0.04%, respectively. 387 

Obviously, the joint probabilities are greater than the co-occurrence probabilities for different design floods. 388 

The results show that as the return periods increase, the joint probabilities and co-occurrence probabilities 389 

of flood magnitudes coincidence decrease. That is, small and medium floods are more likely to occur 390 

simultaneously, which conforms to the general law in practice. 391 

Given the occurrence of 5, 10, 20, 50, and 100-year design floods at the Liaojiawan station, the 392 

conditional probabilities of the same flood magnitudes occurring at the Lijiadu station are 16.41%, 5.01%, 393 

1.46%, 0.26%, and 0.07%, respectively. Similarly, given the occurrence of 5, 10, 20, 50, and 100-year 394 

design floods at the Loujiacun station, the conditional probability of the same flood magnitudes occurring 395 

at the Lijiadu station are 15.21%, 4.47%, 1.26%, 0.22%, and 0.06%, respectively. It can be seen that floods 396 

with lower return periods result in higher coincidence probabilities. The conditional probabilities between 397 

the Liaojiawan and Lijiadu stations are higher than that between the Loujiacun and Lijiadu stations. With 398 

reference to the previous analysis, the drainage area controlled by the Liaojiawan station is larger than that 399 

of the Loujiacun station, the correlation of flood variables between the Liaojiawan and Lijiadu stations is 400 

stronger. Therefore, the floods at the Liaojiawan station have more significant impact on the downstream 401 

floods. From the point of view, the calculated results are reasonable. 402 

[Insert Table 4 about here] 403 

[Insert Table 5 about here] 404 

4.5 Comparison of simulation results 405 

Fig. 2 provides the evidence that the flood variables at the Liaojiawan and Loujiacun stations are highly 406 

correlated and consistent. Therefore, when floods simultaneously occur in the upper stream, the flood 407 
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frequencies in the mainstream and its tributaries are more likely to be the same. In this study, assuming that 408 

floods with the same frequencies simultaneously occur at the Liaojiawan and Loujiacun stations. Then based 409 

on the constructed multiple regression model, expressed as Eq. (17), the design flood at the Lijiadu station 410 

can be obtained. Flood magnitudes obey the P3 distribution, so the corresponding design frequencies can 411 

be inferred using Eq. (7). And the return periods are calculated as well. Table 6 lists: (1) the design flood 412 

values at the Liaojiawan and Loujiacun stations under the return periods of 5, 10, 20, 50, and 100 years; (2) 413 

the simulated flood values at the Lijiadu station, which are obtained by the regression model after the same 414 

frequency floods occurring in the two upstream stations; (3) the corresponding frequencies and return 415 

periods of the simulated floods at the Lijiadu station. The results show that with the rise of flood magnitudes 416 

at the Liaojiawan and Loujiacun stations, the floods at the Lijiadu station are increasing. The flood return 417 

periods of the Lijiadu station are generally longer than those of the Liaojiawan and Loujiacun stations, 418 

especially when the return periods are larger. For example, when 10-year design floods simultaneously 419 

occur at the Liaojiawan and Loujiacun stations, an 11-year flood may occur at the Lijiadu station. However, 420 

when 100-year floods simultaneously occur at the Liaojiawan and Loujiacun stations, there may be a 137-421 

year flood at the Lijiadu station. 422 

In order to verify the rationality and feasibility of the above three flood coincidence probability 423 

calculation methods, the theoretically calculated coincidence probabilities were compared with the design 424 

frequencies of the simulated flood at the Lijiadu station. Table 7 lists five conditions under different return 425 

periods, including: (1) the design frequencies of the simulated floods at the Lijiadu station when floods with 426 

the same frequency simultaneously occurring at the Liaojiawan and Loujiacun stations, (2) the joint 427 

probabilities and the co-occurrence probabilities of the same frequency floods occurring at the Liaojiawan 428 

and Loujiacun stations, (3) the conditional probabilities of the same frequency floods occurring at the 429 

Lijiadu station, given the occurrence of T-year floods at the Liaojiawan station, named
1

c
P ; (4) the 430 

conditional probabilities of the same frequency floods occurring at the Lijiadu station, given the occurrence 431 
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of T-year floods at the Loujiacun station, named 
2

c
P . Meanwhile, these five flood probabilities are plotted 432 

in Fig. 7. 433 

The results show that compared with the design frequencies of the simulated flood at the Lijiadu station, 434 

the joint probabilities of floods simultaneously occurring in the upper mainstream and its tributaries are 435 

generally greater, while the co-occurrence probabilities and both conditional probabilities are less. Among 436 

the four flood coincidence probabilities, the conditional probabilities (
1

c
P ) are the closest to the design 437 

frequencies of the simulated floods, especially when the return periods are low. For example, the joint 438 

probability and the co-occurrence probability of 10-year floods at the Liaojiawan and Loujiacun stations are 439 

17.14% and 2.86%, respectively. At this time, the design frequency of the simulated flood at the Lijiadu 440 

station is 9.41%. The conditional probability of a 10-year flood occurring at the Lijiadu station given a 10-441 

year flood at the Liaojiawan station is 5.01%. The conditional probability of a 10-year flood occurring at 442 

the Lijiadu station given a 10-year flood at the Loujiacun station is 4.47%. Combined with the previous 443 

analysis, we can see that flood with the same frequency simultaneously occurring at the Liaojiawan and 444 

Loujiacun stations can lead to large floods at the Lijiadu station. The corresponding design frequencies of 445 

the simulated floods are more consistent with the conditional probabilities that the same frequency floods 446 

occurring at the Lijiadu station when given T-year floods at Liaojiawan station. In practice, the floods at the 447 

Lijiadu station are basically formed by the superposition of the floods in the upper mainstream and its 448 

tributaries. More importantly, the floods at the Liaojiawan station account for a larger proportion in that of 449 

the Lijiadu station. Therefore, the results conform to the general law. 450 

[Insert Table 6 about here] 451 

[Insert Table 7 about here] 452 

[Insert Figure 7 about here] 453 

5 Conclusions 454 

Flood coincidence risk analysis plays an important role in reservoir operation and flood management. In 455 
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this study, the coincidence probabilities of flood magnitudes and occurrence dates in the mainstream and 456 

tributaries of the Fuhe River were estimated with copula functions. The 66-year daily flow discharge data 457 

series were considered to construct the marginal distributions of flood magnitudes and occurrence dates. 458 

Based on copula functions, the joint distributions of the annual maximum flood magnitudes and occurrence 459 

dates in the mainstream and its tributaries were established, respectively. The coincidence risk of flood 460 

occurrence dates was calculated, and the coincidence analysis by joint probabilities, co-occurrence 461 

probabilities and conditional probabilities for different flood magnitudes were compared with the simulation 462 

results. The main conclusions of this study were summarized as follows: 463 

(1) There is a strong consistency and significantly correlation between the floods at the upstream and 464 

downstream with the Pearson coefficients reaching 0.90. The floods at the Lijiadu station are mainly formed 465 

by the superimposition of the upstream floods. The mixed von Mises distribution and P3 distribution 466 

perform well in quantifying the marginal distributions of occurrence dates and flood magnitudes, and the 467 

Clayton copula is the best one for simulating the joint distributions of flood variables.  468 

(2) The coincidence events of the annual maximum flood occurrence dates at the Liaojiawan and 469 

Loujiacun stations mainly occur from May to early July. There are two flood coincidence peaks occurring 470 

on May 12 and June 21, which coincidence probabilities are reaching 0.026% and 0.057%, respectively. 471 

The coincidence risk of the annual maximum flood occurrence dates in the upper mainstream and its 472 

tributaries throughout a year is 2.87%.  473 

(3) The joint probability and co-occurrence probability of 50-year design floods at the Liaojiawan and 474 

Loujiacun stations are 3.86% and 0.14%. If a 50-year flood occurs at the Liaojiawan or Loujiacun station, 475 

the corresponding probability of a flood with the same frequency occurring at the Lijiadu station is 0.26% 476 

or 0.22%, respectively.  477 

(4) Floods with the same frequencies simultaneously occurring at the Liaojiawan and Loujiacun 478 

stations are likely to superimpose into large floods at the Lijiadu station. Among the three coincidence 479 
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probability calculation methods, the conditional probability is the most consistent with the flood coincidence 480 

risk in the mainstream and its tributaries, which is more reliable and rational in practice.  481 

In this study, the copula-based quantitative analysis of flood coincidence risk contributes us to better 482 

understand the spatiotemporal characteristics of floods in the Fuhe River. By calculating the flood 483 

coincidence probabilities of flood magnitudes and occurrence dates, we can verify the feasibility of the 484 

calculation method of flood coincidence probability considering the connection of the mainstream and its 485 

tributaries, so as to have a comprehensive knowledge in the flood coincidence laws. The results provide a 486 

scientific basis and effective support for improving the flood control capacity and ensuring the safety of 487 

flood control targets in the Poyang Lake region.  488 
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Table 1   Parameters and test results of marginal distributions of flood occurrence dates 668 

Station i
u  

i
k  

i
p  K-S  RMSE 

 
1.82 6.11 0.13 

  

Liaojiawan 2.28 39.34 0.14 0.061(0.167) 0.022 

 
2.98 10.86 0.73 

  

 

2.58 3.01 0.68 
  

Loujiacun 2.98 32.51 0.32 0.053(0.167) 0.019 

 
2.75 8.04 0.00 

  

 1.83 1.75 0.15   

Lijiadu 2.82 8.98 0.54 0.085(0.167) 0.033 

 2.96 3.42 0.31   

  669 
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Table 2   Parameters and test results of marginal distributions of flood magnitudes 670 

Station Mean (m3/s) Cv   Cs   p-value ( 2 ) RMSE 

Liaojiawan 2861.69  0.51  0.77 0.249 (0.05) 0.047  

Loujiacun 1903.75  0.43  0.78 0.249 (0.05) 0.025  

Lijiadu 4570.62  0.45  0.63 0.247 (0.05) 0.055  

  671 
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Table 3   Parameters and test results of joint distributions of flood occurrence dates and magnitudes 672 

Joint distribution 
Clayton GH Frank 

   RMSE    RMSE    RMSE 

Occurrence dates between Liaojiawan 

and Loujiacun 
3.69  0.028  2.84  0.030  9.38  0.029  

Flood magnitudes between Liaojiawan 

and Loujiacun 
2.59  0.033  2.30  0.043  7.05  0.037  

Flood magnitudes between Liaojiawan 

and Lijiadu  
6.25  0.039  4.12  0.048  14.64  0.043  

Flood magnitudes between Loujiacun 

and Lijiadu  
4.99  0.034  3.49  0.045  12.07  0.041  

  673 
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Table 4   Joint probabilities and co-occurrence probabilities of flood magnitudes at Liaojiawan and Loujiacun stations 674 

(%) 675 

Station 

Loujiacun Coincidence 

probabilities T (year) 5 10 20 50 100 

Liaojiawan 

5 30.48 24.85 22.33 20.91 20.45 

Joint probabilities 

10 24.85 17.14 13.50 11.38 10.69 

20 22.33 13.50 9.20 6.67 5.83 

50 20.91 11.38 6.67 3.86 2.93 

100 20.45 10.69 5.83 2.93 1.96 

5 9.52 5.15 2.67 1.09 0.55 

Co-occurrence 

probabilities 

10 5.15 2.86 1.50 0.62 0.31 

20 2.67 1.50 0.80 0.33 0.17 

50 1.09 0.62 0.33 0.14 0.07 

100 0.55 0.31 0.17 0.07 0.04 

  676 
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Table 5   Conditional probabilities of flood magnitudes at three stations (%) 677 

Station 
Lijiadu 

T (year) 5 10 20 50 100 

Liaojiawan 

5 16.41  9.23  4.83  1.98  0.99  

10 8.20  5.01  2.74  1.15  0.58  

20 4.06  2.59  1.46  0.62  0.32  

50 1.61  1.06  0.61  0.26  0.14  

100 0.80  0.53  0.31  0.13  0.07  

Loujiacun 

5 15.21  8.48  4.43  1.82  0.91  

10 7.54  4.47  2.42  1.01  0.51  

20 3.73  2.29  1.26  0.54  0.27  

50 1.48  0.93  0.52  0.22  0.11  

100 0.74  0.47  0.26  0.11  0.06  

  678 
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Table 6   Statistical analysis of design floods at three stations in Fuhe River 679 

Return period (year) 5 10 20 50 100 

Design flood at Liaojiawan (m3/s) 4007 4816 5543 6430 7061 

Design flood at Loujiacun (m3/s) 2544 2997 3406 3904 4258 

Simulated flood at Lijiadu (m3/s) 6227 7397 8451 9735 10649 

Simulated flood frequency at Lijiadu (%) 19.79 9.41 4.41 1.59 0.73 

Return period at Lijiadu (year) 5 11 23 63 137 

  680 



37  

Table 7   Comparative analysis of flood coincidence probabilities under different conditions  681 

Return period (year) 5 10 20 50 100 

Simulated flood frequency (%) 19.79 9.41 4.41 1.59 0.73 

Joint probability (%) 30.48 17.14 9.20 3.86 1.96 

Co-occurrence probability (%) 9.52 2.86 0.80 0.14 0.04 

Conditional probability c

1P (%)  16.41 5.01 1.46 0.26 0.07 

Conditional probability 
2

c
P (%) 15.21 4.47 1.26 0.22 0.06 

  682 



38  

Lists of Figures 683 

Fig. 1   Location of hydrological stations in the Fuhe River basin  684 

Fig. 2   Correlation analysis of annual maximum flood variables in Fuhe River 685 

Fig. 3   Multiple regression model fitting results of flood variables at Lijiadu station 686 

Fig. 4   Fitted empirical and theoretical probabilities of marginal distributions 687 

Fig. 5   Fitted empirical and theoretical probabilities of joint distributions 688 

Fig. 6   Daily coincidence probabilities of occurrence dates of annual maximum flood at Liaojiawan and Loujiacun 689 

stations 690 

Fig. 7   Flood coincidence probabilities under different conditions 691 

  692 



39  

 693 

Fig. 1   Location of hydrological stations in the Fuhe River basin  694 
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    (a) 1~Y X  and 2Y X:            (b) 1 2~X X  

Fig. 2   Correlation analysis of annual maximum flood variables in Fuhe River   695 
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 696 

Fig. 3   Multiple regression model fitting results of flood variables at Lijiadu station 697 
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(a) Flood occurrence dates and flood magnitudes at Liaojiawan station 

  

(b) Flood occurrence dates and flood magnitudes at Loujiacun station 

  

(c) Flood occurrence dates and flood magnitudes at Lijiadu station 

Fig. 4   Fitted empirical and theoretical probabilities of marginal distributions  698 
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(a) Occurrence dates between Liaojiawan and Loujiacun 

stations 

(b) Flood magnitudes between Liaojiawan and Loujiacun 

stations 

 

 

(c) Flood magnitudes between Liaojiawan and Lijiadu 

stations 

(d) Flood magnitudes between Loujiacun and Lijiadu 

stations 

Fig. 5   Fitted empirical and theoretical probabilities of joint distributions  699 
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 700 

Fig. 6   Daily coincidence probabilities of occurrence dates of annual maximum flood at Liaojiawan and Loujiacun 701 

stations  702 
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 703 

Fig. 7   Flood coincidence probabilities under different conditions 704 
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