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ABSTRACT

Engineering simulation accelerates the development of reliable and repeatable design processes
in various domains. However, the computing resource consumption is dramatically raised in
the whole development processes. Making the most of these simulation data becomes more and
more important in modern industrial product design. In the present study, we proposed a
workflow comprised of a series of machine learning algorithms (mainly deep neuron networks)
to be an alternative to the numerical simulatMfe have applied the workflowo the field of

dental implant design process. The process is based on a complex, time-dependent, multi-
physical biomechanical theory, known as mechano-regulatory method. It has been used to
evaluate the performance of dental implants and to assess the tissue recovery after the oral
surgery procedures. We provided a deep learning network (DLN) with calibrated simulation
data that came from different simulation conditions with experimental verification. The DLN
achieves nearly exact result of simulated bone healing history around implants. The correlation
of the predicted essential physical properties of surrounding bones (e.g. strain and fluid velocity)
and performance indexes of implants (e.g. bone area and bone-implant)ceatacgreater

than 0.980 and 0.947, respectively. The testing AUC values for the classification of each tissue
phenotype were ranging from 0.90 to 0.99. The DLN reduced hours of simulation time to
seconds. Moreover, our DLN is explainable via Deep Taylor decomposition, suggesting that
the transverse fluid velocity, upper and lower parts of dental implants are the keys that influence
bone healing and the distribution of tissue phenotypes the most. Many examples of commercial
dental implants with designs which follow these design strategies can be found. This work
demonstrates that DLN with proper network design is capable to replace complex, time-
dependent, multi-physical models/theories, as well as to reveal the underlying features without
prior professional knowledge.

Introduction

Development of devices in various domains requires reliable and repeatable design processes.
The process is typically based on trial-and-error in experiments. However, this usually takes
many iterations, cost, time, and most importantly, the prior professional knowledge/experience
about the particular devices. These facts limit the customization and the advance of the modern



devices. Thus, in the recent decades, engineering simulations or virtual expériraeatseen

widely used to accelerate the design processes. Their advantage is relatively faster and more
economical than experiments in the respect of looping through the complete sets of design
parameters. However, this leads to the other problems. For example, cumbersome computation
is required for the complex design problems; it is still not straight forward to pinpoint the
crucial design parameters which dominate the simulation results without the sense of experts.

Recently, machine learning, especially deep learning (DL), has been validated to be al powerf
tools in many applicatiods and shown outperformance than professions, such as AlphaGo in
board game Gbpediatric bone age assessmeatc. Unlike well-established applications in
natural language processing or image/speech recognition, researchers in individual domain are
still seeking the opportunity to apply machine learning to their research topics. Jean Rabault et.
al® used deep reinforcement learning network in a flow control problem. In their study,
experimental data is used to train a model to perform active flow control with strategy planning.
In the domain of atomic simulation, Behler and Parridaliged neural network to represent

the density functional theory (DFT) potential-energy landscape. First principle calculation
results were used in training a neuron network regressor, which is an alternate to DFT engine.
Machine learning provides high level of assistance to solve real physical problems and to
accelerate engineering design process.

Several successful examples have been proposed in the literature, demonstrating the power of
DL serving as an alternative to the specific physical numerical model. For example, Andrew
Senior et. al. proposed an advanced protein-structure prediction system, named Alphafold
They trained a neuron network to predict the distances between pairs of residues in protein, and
then usedhe resulting information to construct a mean force potential to describe the structure
of protein. Alphafold achieved the highest score in Critical Assessment of protein Structure
Prediction (CASP) and has been a well-accepted model in this field. Another successful story
is a grand challenge in computational chemistry. The solution of electronic Schrddinger
equation of atomic system, which can be solved by Quantum Monte Carlo (QMC), provides
most of its chemical properties. However, the computational demands grow exponentially as
the increasing of number of electrons and the accuracy is limited by the wavefunction ansatz.
Jan Hermann et. al. designed a deep learning network based model: RPahtiNdelivers
flexible, physical valid wavefunction ansatz for QMC. PauliNet outperforms conventional
ansatzes for molecules with up to 30 electrons with high accuracy compared with it of QMC
method while maintaining high computational effiagn These cases demonstrated the
possibility of using multiple networks to be an alternate solution for conventional numerical
methods +RZHYHU EDVHG RQ Wakeéty Bo¥lek Ribe/dependenty mhilti-
physical models/theories, such as the theories related to biomechanics, have not yet been
widely addressed in the literature.

Mechano-regulatory method has been a widely accepted theory for simulating bone healing
and tissue regeneration, and applied to the design of dental impl@mts biophysical stimuli:

strain and fluid velocity in the bone healing region calculated by finite element (FE) method
were consideréd. The model can predict the distribution of the tissue phenotypes, such as
resorption, mature bone, immature bone, cartilage, and fibrous tissue on each day during the
healing period, which is difficult to be revealed experimentally. This enables the preoperative
evaluations for the dental implants, as well as reduces sacrifices of animals. Although
mechano-regulatory method can provide accurate predictions, it still requires hours of
calculation and huge resource of computing power, which may not fulfill the demand of
efficiency in clinical surgery. Also, the method provides no direct suggestion on the geometry



design, and thus, clinic expertise and professional knowledge about dental surgery are still
needed.

In this work, we aim to demonstrate that, with the helpbper designed deep learning
network (DLN), a very complex biomechanics model can be replaced and the corresponding
computational efficiency can be enhanced. Data of bone healing history around 65 dental
implants were generated by mechano-regulatory method and used to train the DLN models.
Deep Taylor decomposition was then applied to the portion of DLN, revealing the strategy of
implant design, as well as the relevance between physical properties and the bone healing/tissue
phenotype regeneration. The contribution of this work is to provide a proof of concept that
deep learning approaebcan be used as a highly-complex model substitute in on-fly inference,
and most importantly, provide in-depth insight with no prior professional knowledge in dental
clinical expertise.

Results

Network overview. The current network consisted of three neural networks. The detailed
workflow is illustrated in Fig. 1. Network 1 (modified from U-Nfednd Inception block) was

used to replace the mechanical and fluid FE simulation procedures (see Methods for more
details). The input of Network 1 is the whole image of the implant model with the essential
properties, i.e., a matrix with the dimension of 210x52x4, where the first two dimensions
represerdd the relative position of the implant and the surrounding bones, while the third
dimension representedV KH FKDQQHOV RI FRUUHVSRQGLQJ PDWHUL
PRGXOXV 3RLVVRQTV UDWLR SHUPHDEL Oh&\butpuQasaW KH FR(
matrix with the dimension of 210x52x6, where the third dimension consisted of the predicted
principle strain I, 1l, and Ill, the fluid velocity in the x and y directioms¢he current iteration,

and stem cell concentratiomthe next iteration.

Network 2 employed an artificial neural network (ANN) structure, which was used to predict
the tissue phenotype at each pixel in the next iteration. This prediction required the 5 outputs
from Network 1, apart from stem cell concentration. The output from Netweds teformed
to 10920 vectors with the dimension of 1x5. Each of which contained the local properties at
the corresponding pixel in the image, avas then fed into Network 2. Note that typically, the
amount of the data of mature bone was significantly greater than it of resorption. Thus, the
focal loss functioff was used to reduce the effect of such data imbalance, where the function
parameters were determined by Bayesian optimization with tree parzen estinTdten, the
distribution of the tissue phenotypes in the image in the next iteration was obtained by
assembling the data of each pixel output from Network 2. However, with the increased iteration,
the distribution may contain several singular pixels with their tissue phenotypes different from
their neighboring pixels, which may not occur in the results generated by mechano-regulatory
method. Thiserror may accumulate along with the iterations. Thus, an additional network was
necessary to correct these singular pixels.

While Network 2 performed pixel-wisely, Network 3 (modified from U-NReperformed
a structured learning, which deals with the whole image, including singular pixels obtained
from Network 2 as the input data. The data for the current iteration generated by mechano-
regulatory method was used to train Network 3 to correct the singular pixels. In this way, the
number of singular pixels can be reduced, and the accuracy of the prediction throughout the
iterations was significantly improved.

By using Networks 1-3, the distribution of the tissue phenotypes around the implant can
be predicted. However, in addition to the tissue phenotypes imbalance problem, we found that



resorption type was classified incorrectly as mature bone quite frequiéntlys due to the

small difference between the values of their cell stimulus f&ctarorder to reduce such type

Il error of the resorption, the random forest algorithm was applied as a weak classifier. The
performance of the classification was improved since the classification domain was reduced to
two types in this step.
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Fig. 1 The current DLN structure.

The performance of the regression of physical propertiedn the current DLN, Network 1

can predict six physical properties, which were determined initially by FE simulation: principle
strain | (#, Il ( /), and Il (#), the fluid velocity in the x and y directiongd ¢ and stem

cell concentration J). In order to illustrate the overall view of the results, the predicted values
vs. the ground truth of the six physical properties for every pixel throughout 35 days in 14
implant cases (which were randomly chosen among the 65 cases) are shown (5356820

data points in total). It can be observed that the Pearson correlation coeffigi@itall the

six properties were greater than 0.980. The distribution of the scattered data also revealed that
there was no significant bias, and even the data with extreme values can be well predicted. Note
that the blue, red, and green dots represkhe data from pixels located in the dental implant,
non-cell-differentiation, and cell-differentiation regions, respectively. Where the pixels of the
dental implant (blue dots) associated with strain only, and thus, the corresponding values of
flow @and @accumulated around zero. This demonstrated that the current DLN accurately
captured this feature. It is also worth noting that, since the material properties of the pixels in
dental implant and non-cell-differentiation regions (blue and red dots) rethegmstant
throughout 35 days, their data can be predicted with higher accuracy compared to those in the
cell-differentiation region (green dots). The light blue region in each plot shown in Fig. 2
contained 99.99% data points; the double arrows indicated the width of the blue region with
the unit of the standard deviatioi The results show the excellent regression performance of
Network 1.
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Fig. 2 The predicted values vs. ground truth of the six physicakpiep, principle strain | £, Il ( 4, and Il

( 4), the fluid velocity in the x and y directionsd ¢ and stem cell concentratiod)( for every pixel througbut
35 days in the 14 implants. Where blue, red, and green dots rdpredendata from pixels located in dental
implant, non-cell-differentiation, and cell-differentiation regions, respelgtiv

The performance of classification of tissue phenotypeBour implants, referred as Implant

A to D, among the all the dataset of 65 implants were chosen to demonstrate the validity of the
current DLN. The corresponding distributions of tissue phenotype around the four implants on
the 3%" (final) day after the insertion surgery predicted by the current DLN and mechano-
regulatory method (referred as ground truth) are shown in Fig. 3. Implant A was with two
different thread depths, resulting in severe bone resorption occurred around the threads in the
lower part of the implant. Implant B was with the eagle-beak design proposed by El.et al.
The implant C and D were commercial ITI solid cylindrical screwed implémimber
033.502S and 033.512S, Institute Straumann AG, Waldenburg, Switzerland). It is worth noting
that Implants C was a dental implant used in the experimental study done by Marip et a
where our predicted bone resorption area has very good agreement with the experimental
observation. For Implant D, there was merely no resorption around the implant body. However,
cartilage almost covered the implant, and most of the surrounding bones were immature.

Fig. 3 shows the distribution of tissue phenotype predicted by the current DLN and the
ground truth generated by mechano-regulatory method. Also, figures of misclassification are
shown, illustrating the pixels in dark red, where their tissue phenotypes predicted by the two
methods were different. The pixels, where misclassified by the DLN, mainly accumulated at
the first thread and the region underneath of the implant. It can be observed that the results
predicted by the DLN have very good agreement with ground truths. It is remarkable that, the
DLN predicted results were simply based on the input data ontliay® Surprisingly, the
accumulation of error after 35 succesdivee-dependent iterations was not significant. The
pixels which were accurately predicted were in average 88% of all the pixels in the region of
interest (implant is not included) in the entire dataset. The corresponding distribution of the
accuracy of the predicted tissue phenotypes for all the 65 cases are shown in the supplementary.



Moreover, the performance of the current DLN was also evaluated by the receiver operating
characteristic (ROC) curves and calculating the corresponding area under curves (AUC). Fig.
4 shows the ROC curves for the classification of each tissue phenotype on every iteration (day)
around the implants in the training and testing datasets. It shows that the DLN can accurately
predict the differentiated tissue phenotype with testing AUC values of 0.99, 0.98, 0.95, 0.95
and 0.90 for fibrous tissue, cartilage, immature bone, mature bone, and resorption, respectively
The trained DLN showed robust performance for classifying each tissue phenotype.
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Fig. 3 The distribution of tissue phenotypes predicted by the DLN, thendrtruth generated by mechano-
regulatory method, misclassification, and DL predici@d
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Fig. 4 ROC curves for the classification of each tissue phenotype

Now consider six performance indexfor the 65 dental implants based on the tissue
phenotypes predicted on théfay. These indexes were commonly used in the study of dental



implants, i.e., the percentage of mature bong,(Bone resorption @ and soft tissue dJ,

bone area (BA), bone-implant-contact (BIC) and marginal bone loss (MBL, i.e. bone resorption
above the first thread). Where the region of interest of BA, BIC, and MBL are illustrated in the
supplementary (Fig. S3 ¢ anjl dlote that these indexes are high-level metrics, which were
not directly predicted by the current DL, and further post-image processing was required. The
predicted values vs. ground truth for all 65 implants are shown in Fig. 5. The light blue region
contains all the 65 data points; the double arrows indicate the width of the blue region. It can
be observed that the data points in the plotsairfdl MBL were rather underestimated by the
current DLN. It is due to the problems of data imbalance of the resorption type and the
ambiguity between the resorption and mature bones, as mentionedEtie\aso resulted in

some of the pixels wemaisclassifiedasmature bone, and thus data points in the BA plot were
overestimated. Even though it can be observed that Pearson correlation coefficients of all the
indexes were greater than 0.9#7s remarkable that even the loss functions used for training
were in a pixel-wise sense, and these six performance indexes which are the statistical
information of the entire imagen still be accurately predicted.
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Fig. 5 The predicted values vs. ground truth of six performance fitlexpercentage of mature bong)Fone
resorption (k) and soft tissue @, bone area (BA), bone-implant-contact (BIC), and marginal bosgMBL))
for all the 65 dental implants.

Discussion

Performance of the current DLN. Based on the results compared between the DLN and
mechano-regulatomnethod implemented by FEM. The DLN proved its applicability to be an
alternative to FEM and a highly-complex biomechanical model. Fig. 6 reveals the
computational resource consumption of mechano-regulatory method and the DLN in this study.
The total computing time of the current DLN (including training time and inference time) was
two orders fewer compared to that of mechano-regulatory method. If we only took into account
single inference, the computing time reduction was in three orders of magnitude. It is worth



mentioning that it is impossible to obtain a perfect DLN with a finite dataset. As feeding more
simulation datasets to the current network, the accuracy of the prediction improves. This DLN
has demonstrated a rapid preoperative evaluation of dental implants. It is expected to serve as
a screening system eliminating implants with pool design, and to save a significant amount of
time and costs on implant design.

=1 Mechano-regulatory method
< 221 Network 1

[0 Network 2

=71 Network 3

=71 DL inference

Time (sec)

1
10
Mechano-regulatory Deep learning Deep learning
method implemented training inference

by FEM

Fig. 6 The comparison of computational resource consumption betweeameetgyulatory method
implemented by FEM and DLN.

From black box to interpretable. In order to make the DLN interpretable, Deep Taylor
decompositiof (DTD) was applied. It redistributed the relevabetween input data and the
predicted results layer by layer, enabling the feature explanation for each implant case. This
decomposition analysis provideddepth insight on the relationship between (1) the physical
propertiesandtissue phenotypef?) the geometry of implants and tissue phenotypes. They are
discussed as follows.

The relevance between physical properties and tissue phenotypEgj. 7is a phase diagram

of tissue phenotypes with logarithmic axes, showing regions of fibrous tissue to resorption
corresponding to magnitudes of the two bio-stimuli: octahedral shear stmadhfluid velocity

@The data points included all the pixels throughout 35 days in the 14 implants used in Fig. 2
and Fig. 3. The regions separated by black lines in Fig. 7 represent the five tissuepgisenoty
The color of each data point indicates the most important physical properties among the six
based on the results of DTD. Note that, for illustration purposes,acqlyarter of the data
points chosen randomly are shown. It seems to be obvious that the properties ref@keadiid
dominate in the upper left triangular region, while the properties relatedhiould dominate

in the lower right triangular region. This statement is true for cartilage and immature bone only,
i.e. dark blue points are typically located higher than green poikig. 7.

However, in the regions of mature bone and resorption do not follow that statement, and are
dominated by concentratiom and @(the x-component of) respectively. This statement
makes sense for mature bones, as they dominate in the final stage of the healing period with
high stem cell concentration. Next, in order to verify the correlation betw@send resorption
suggested by DTD, we have examined the distributio@afound all the 65 implants on the
35" day. We then discovered that, regions between threads have no resorption as long as an
alternating positive and negativ@pattern occurred in that region. Examples@ivith such
alternating pattern can be foumdmplants A (upper half), B, and D as shown in Fig. 3, where
less resorption occurred at the corresponding location. The results proved that the current DLN



is capable to capture the hidden attributions and provide physical insights without professional
supervision.
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Fig. 7 The phase diagram of tissue transition regions (from fibraugette resorption) with logarithmic axes of
fluid flow and octahedral shear strain. The color of each point inditte#arost important physical property
among the six to the corresponding tissue region progdiTD.

The relevance between geometry of implants and tissue phenotyp&3.D also provides

the pixel-wise relevance scote output prediction. In other words, the critical parts of the
geometry of implants, which affect the resulting tissue phenotype the most, can be revealed.
Two examples, Implants A and B, are shown in Fig. 8a, b. Where the black lines outline the
shape of implants; the most important pixels are colored corresponding to the iterations, i.e. O
to 35 days (blue to red). The corresponding distribution of tissue phenotype are shown in Fig.
8c, d where severe bone resorption occurred in Implant A and bone resorption was suppressed
in Implant B. In the case of Implant A, pixels in the upper region were essential in the first few
iterations and then moved toward the lower regions after thel@p. On the other hand, an
alternating pattern, i.e., the upper regions were essential at the early and final stages of
iterations, was observed in the case of Implant B. The results indicated that the upper and lower
parts of implants have higher influences on the overall distribution of tissue phenotype.

To verify this statement, the middle parts of Implants A and B (red squares with solid and
dashed lines) were swapped, resulting in two new implants labeled as Implants ABA and BAB,
as shown in Fig. 8e and f, respectively. The predicted distributions of tissue phenotypes shown
in Fig. 8g and h. Interestingly, the position of the pixels of importance in the cases of Implants
A and ABA are very similar, even though the design of the middle parts are significantly
different, as shown in Fig. 8a and e. Next, Fig. 8b and f show that the alternating pattern of
pixels of importance discovered in Implants B is also found in Implant BAB. Moreover, the
distribution of regions outside the red squares in Fig. 8c and d are very similar to Fig. 8g and
h, respectively. In other words, the swapping of the middle parts only affects the local cell
differentiation within the red squares, and has almost no effect on the remaining parts of the
bones.



Fig. 8 (a)(b)(e)(f) The most important pixels of Implants A, B, ABAd BAB for the overall distribution of
tissue phenotype are colored corresponding to'trte 85" day (blue to red), suggested by DTB)(d)(g)(h)
The distribution of tissue phenotype of the four implants or3#eday, showing that swapping of the middle
part of Implants A and B leads no significant effect on the overall disibof tissue phenotype.

It is striking that the current DLN, with no prior professional knowledge in dental clinical
expertise, provided design guideline for dental implants that designers are advised to put more
focus on the upper and lower parts of implants, instead of the middle part, to give a more
effective influence on the overall bone healing. This statement matches the commercial design
strategies that most of special designs focus on the upper or lower parts of implants. Many
examples can be found in the market of dental implants: NeO ImflgAtgha Bio Tech,

Petah Tykva, Israel) with cutting flutest both the upper and lower partsaser-Lok
implant£!22 (BioHorizons, Birmingham, England) with microchannels at the upper part;
NobelSpeedy implant® (NobelSpeedy Groovy, Nobel Biocare AB, Gothenburg, Sweden)



with sharp apex cuts at the lower p&mdopore Hybrid implanté2®(Endopore Dental System,
Innova Corporation, Toronto, ON, Canada) with no threads apart from the upper part. The
current DLN successfully extracted such important features mentioned above, purely based on
the dataset of 65 implants generated by mechano-regulatory method with the training time less
than several hours. The current DLN has great potential to be beneficial to dental implant
industries.

Conclusion

In the current study, a deep learning network which can instantly evaluate the performance of
dental implants before surgeries is developed. The training dataset included 65 dental implants
and the corresponding distribution of tissue phenotypes froni'ttee 38" days, generated by
mechano-regulatory method. The essential physical properties, such as principle strains, fluid
velocities, and stem cell concentration, of surrounding bones were accurately predicted (the
correlation coefficients> 0.98(Q. These properties normally require hours of FEM calculation,

and now can be predicted within seconds. The performance indexes, such as the percentage of
bone area and bone-implant-contact, and marginal bone loss, of implants were also predicted
(r >0.947).

This level of accuracy is achieved by tailor-made DLN design, consisting of three networks.
Network 1, modified from U-Net and Inception bloekas used to replace FEM simulation
procedures. Network 2 (ANNyas used to classify the tissue phenotype. Network 3, modified
from U-Net, was used to de-noise and reduce accumulation of error throughout the iterations.
Also, focal loss function and random forest algorithm were used to deal with the problems of
data imbalance and type Il error of the resorption type. The network desigies predicting
results of 35 days with data on tH&day as input data only.

Moreover, the success of the DIsNits interpretability. Based on the results obtained via
Deep Taylor decomposition, it is suggested that the transverse fluid velocity, upper and lower
parts of dental implants are the keys that influence bone healing and the distribution of tissue
phenotypes the most. Many examples of commercial dental implants with designs which follow
these design strategies can be found. This proves that the design guidelines provided by the
current DLN withoutprior knowledge of dental clinics, match the experiences learned in the
dental implant industries for yearhis work is a proof of concept that deep learning approach
can be an alternative to complex, time-dependent, multi-physical models/theories, such as
mechano-regulatory method, as well as to reveal the underlying features without clinical
expertise.

Methods

Mechano-regulatory method overview.Mechano-regulatory method is a well-accepted
algorithm to predict the history of bone healing. The algorithm firstly determined the local
octahedral shear straidand relative fluid/solid velocity(f the region around the implants
subjected to the given load. Then, the local tissue phenotype on the next iteration can be
determined by the cell stimulus fact®r

S= /a+ /b (1)
wherea = 0.0375 and fluid stimulus constamt P1%The corresponding range of the
value ofSfor these tissue phenotypes are listed in TabfeiSthe supplementary. Each tissue
phenotype has a set of material progetti®!, as shown in Table S2 in the supplementary.



Note that the effective material properties for the next iteration is the linear combination
between the material properties of the granulation ti¥gusitially filled in the callus region
and the differentiated tissue phenotyfadoased on the concentration of the stemrcdiffused
from the boundary of the cell-differentiation region, such that
JAOEeE ] J

) Jade :UEJaoe‘:x (2)
where J2©&s the maximum concentration. In addition, the smoothing procedure was applied
by averaging the properties with the those in the previous nine steps to avoid the numerical
instability?®>. The detailed workflow of mechano-regulatory method can be found in the
supplementary (Fig. S1).

Data preparation by FEM simulation. Mechano-regulatory method was implemented by
FEM package ANSYS. Simulation data of 65 dental implants with different geometries and
the corresponding bone healing history throughout 35 days was generated by ANSYS and
Matlab. Structured rectangular meshes were adopted in the current model, allowing a direct
transfer between elements and pixels without any interpolation. The two-dimensional
axisymmetric FE model included a Ti-6Al-4V implant, a cortical bone layer, cancellous bones,
and calluses. The implant and the remaining parts were meshed by PLANE42 and CPT212
(coupled pore-pressure mechanical element) provided by ANSYS. Biting load was applied via
aGLVSODFHPHQW RI P R Q. WKatiswhim&triRbowdary chritifidn g W
constraints of nodes were shown in Supplementary Fig. S3a. The callus region located around
the implant was the cell-differentiation regions. One of its boundaries, marked as the dashed
line, was the cells origin, which is the source of the diffusion of stem cells.

Network setting and training. The hyper-parameters of Networklll-were optimized by
Bayesian method. The number of filters, corresponding filter size and activation function for
network | and Il (U-net) and the amount of units in each dense layer, number of layers, and
suitable regularization weigjfor Network 11 (ANN) were determined after 50 trials of network
training. Each training includes 50 epochs.

After the structures of the networks were set, Adam optimization algorithm was #pplied
The dataset was then split into a twenty percent testing set and an eighty percegtdetini
During the training process, the early stopping method was applied where the parameter of
patience was seis 20 epochs. Next, for each case of dental implant, dataset of 35 images
corresponding to 35 days of the distribution of tissue phenotypes were recomposed into 630
pairs of input and output images as training dataset, i.e. Day0O an@ {, DD Q GDay @
and 35,Dayland 2,D\ WR Day&3to 35, Day 34 to 35. This training strategy allowed
the DLN establishes the features relationship between every successive day, reducing error
accumulation for long-term predictions. After the training, the resulting DLN achieved in
average 88% accuracy of tissue phenotype prediction on Day 35 in the cell-differentiation
regions, for both the training and testing sets with the image of Day 0 as the input data only.
High testing AUCs (ranging from 0.90 to 0.99) is also achieved. Note that the current problem
is related to bone healing and mechano-regulatory algorithm which are time dependent and
highly complicated. It typically requires large amount of dataset. However, it is remarkable
that the current network design and the training strategy enable highly-accurate long-term
predictions based on short-term training and limited dataset (65 dental implants only).
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