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Abstract 6 

Introduction: Upper extremity impairment is a problem usually found in poststroke patients, and 7 

it is seldom completely improved even following conventional physical therapy. Motor imagery 8 

(MI) and action observation (AO) therapy are mental practices that may regain motor function in 9 

poststroke patients, especially when integrating them with brain-computer interface (BCI) 10 

technology. However, previous studies have always investigated the effects of an MI- or AO-based 11 

BCI for stroke rehabilitation separately. Therefore, in this study, we aimed to propose the 12 

effectiveness of a combined AO and MI (AOMI)-based BCI with functional electrical stimulation 13 

(FES) feedback to improve upper limb functions and alter brain activity patterns in chronic stroke 14 

patients. 15 

Case presentation: A 53-year-old male who was 12 years post stroke was left hemiparesis and 16 

unable to produce any wrist and finger extension. 17 

Intervention: The participant was given an AOMI-based BCI with FES feedback 3 sessions per 18 

week for 4 consecutive weeks, and he did not receive any conventional physical therapy during 19 

the intervention. The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and active range of 20 

motion (AROM) of wrist extension were used as clinical assessments, and the laterality coefficient 21 

(LC) value was applied to explore the altered brain activity patterns affected by the intervention. 22 



Outcomes: The FMA-UE score improved from 34 to 46 points, and the AROM of wrist extension 23 

was increased from 0 degrees to 20 degrees. LC values in the alpha band tended to be positive 24 

whereas LC values in the beta band seemed to be slightly negative after the intervention. 25 

Conclusion: An AOMI-based BCI with FES feedback training may be a promising strategy that 26 

could improve motor function in poststroke patients; however, its efficacy should be studied in a 27 

larger population and compared to that of other therapeutic methods. 28 

Trial registration: Thai Clinical Trial Registry: TCTR20200821002. Registered 17 August 2020, 29 

http://www.thaiclinicaltrials.org 30 
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Introduction 33 

Stroke is a major cause of global deaths, and most stroke survivors usually have 34 

hemiparesis on one side of the body that greatly affects their activities of daily living (ADLs) (1). 35 

In particular, weakness of the wrist or hand muscle is a common problem in poststroke patients 36 

that vastly impacts their ADLs, such as eating, dressing, and opening a door; moreover, it is rarely 37 

completely improved. Therefore, it is important to create an effective therapeutic method to 38 

improve upper limb function in poststroke patients (2). 39 

Currently, constraint-induced movement therapy (CIMT) is an effective therapy that can 40 

help poststroke patients restore their upper limb function. However, this method may be suitable 41 

for poststroke patients who have mild motor impairment, and it is not proper for moderately to 42 

severely symptomatic patients due to the limited capability to produce upper limb movement. 43 



Hence, there should be some solutions to solve this problem and help these patients regain function 44 

in their upper extremities (2, 3). 45 

Motor imagery (MI) is a mental simulation of a movement without an actual action (4). It 46 

is one of the therapeutic techniques that may be appropriate for poststroke patients who are unable 47 

to move their limbs because MI can activate brain areas involved in movement execution; thus, 48 

MI may be a promising therapeutic method for poststroke patients to improve their motor function, 49 

especially upper extremity function (5, 6). Nevertheless, it is difficult for a therapist to determine 50 

whether a patient is performing MI effectively. Thus, brain-computer interface (BCI) technology 51 

also plays a key role in fixing this problem (7). 52 

A BCI is a system that can monitor brain activity and translate an ongoing signal to be a 53 

control signal that is used to command external devices to achieve a user’s purpose or desired task. 54 

Currently, noninvasive electroencephalogram (EEG)-based BCI is a popular method usually used 55 

to decode a brain signal during MI and provide neurofeedback such as images, robots, tactiles and 56 

functional electrical stimulations (FESs) backward to a user to inform MI performance and 57 

enhance the learning process (3, 7). From EEG studies, it has been well known that executing MI 58 

produces a phenomenon called event-related desynchronization (ERD). ERD is power attenuation 59 

of the ongoing EEG signal in a specific frequency band, especially in the alpha or mu band (8 – 60 

13 Hz) and beta band (20 – 24 Hz). ERD usually occurs prominently over sensorimotor areas and 61 

is associated with motor cortex activation (8, 9). In BCI systems, ERD occurrence is always used 62 

as a spectral feature to indicate MI and provides meaningful feedback backward to a user to 63 

encourage the learning process, which is a key factor of neural plasticity (3, 7); moreover, previous 64 

studies have shown that an MI-based BCI with neurofeedback training could improve upper 65 

extremity function (10-14). 66 



In addition to MI, action observation (AO) is another therapeutic method that can be used 67 

for rehabilitation in poststroke patients who have a severe motor disability. AO is implemented to 68 

carefully observe a movement or an action performed by others. It can activate the neural structures 69 

involved with the observed movement. Generally, AO is easier than MI to practice and requires 70 

less cognitive ability than MI, particularly in poststroke patients who always have mental 71 

impairment (15). Furthermore, AO can provoke ERD as well as MI (16), and a previous EEG 72 

study in poststroke patients showed that performing AO could generate ERD power greater than 73 

MI (17). Therefore, an AO-based BCI with neurofeedback is another option that may be 74 

appropriate for poststroke patients who have cognitive impairment and could also improve upper 75 

limb function (18, 19). 76 

Normally, the effectiveness of MI and AO for improving motor function in poststroke 77 

patients has been studied separately; however, recent evidence from EEG, functional magnetic 78 

resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) studies has revealed that 79 

combined AO and MI (AOMI) can provoke the activation of brain areas related to motor function 80 

to a greater extent than pure MI or AO alone. AOMI imagines an action in terms of a movement 81 

sensation concurrently with observing the same action displayed on the screen (20, 21). However, 82 

evidence of using AOMI in the poststroke patient to enhance upper extremity function is still 83 

lacking, and from our literature reviews, there are only two studies from Sun et al. (22) and Wang 84 

et al. (23) that have studied the effectiveness of AOMI-based BCI to restore upper limb function 85 

in the poststroke patient. In Sun’s study, they investigated the effect of MI practice guided by 86 

synchronous AO on improving upper limb function in subacute stroke patients with an onset of 87 

less than 2 months. They found that the upper limb function in the participants who received MI 88 

practice guided by synchronous AO was improved more than that in the participants who received 89 



MI practice guided by asynchronous AO; however, they did not give any neurofeedback to the 90 

participant while executing the cognitive task. The same result was found in Wang’s, although 91 

their intervention was different. In Wang’s study, the participants had chronic stroke, and they also 92 

provided robotic hand feedback to the participant while they were performing the cognitive task. 93 

The purpose of this case report was to support the concept of using AOMI to recover upper 94 

extremity function in poststroke patients. We propose an AOMI-based BCI with FES feedback 95 

training to improve upper limb function in a chronic stroke patient who experienced a stroke 12 96 

years prior and had moderate impairment in upper limb function. 97 

Participant and methods 98 

Case description  99 

 The participant was a 53-year-old male who experienced a stroke 12 years prior. He had 100 

muscle weakness on the left side of the body, particularly in the wrist and hand muscle caused by 101 

right cerebral hemorrhage. After stroke onset, he received physical therapy only in the first three 102 

years and stopped it because his financial problems and symptoms seemed to improve. Currently, 103 

he is unable to voluntarily extend his wrist and all fingers. The participant’s conditions before the 104 

intervention were as follows: Fugl-Meyer Assessment of Upper Extremity (FMA-UE) score was 105 

34 points from a maximum of 66 points, active range of motion (AROM) of left wrist extension 106 

was 0 degrees, Modified Ashworth scale (MAS) of the left wrist flexor was 0, and the Mini-Mental 107 

State Exam (MMSE) score was 30 points. The participant provided written informed consent to 108 

participate in this study, which was approved by the Mahidol University Central Institutional 109 

Review Board (COA No. MU-CIRB 2020/097.3107), and the Thai Clinical Trial Registry 110 

identification number was TCTR20200821002. 111 



AOMI-based BCI with FES feedback training 112 

 In each training session, the participant was seated in a comfortable chair and placed his 113 

left forearm in the prone position on a desk. A 14-inch laptop computer was placed in front of him, 114 

and its display distance was appropriate for his eyesight. A g. tec biosignal amplifier (g. USBamp, 115 

Graz, Austria) with 16 grids of Ag/AgCl electrodes was used to record the EEG data, and their 116 

details are further described in the data acquisition section. For the FES, we attached electrodes 117 

over the left extensor digitorum muscle to generate wrist and finger extension, and the whole 118 

system is presented in Figure 1. 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

Figure 1. The components of AOMI-based BCI with the FES system that the participant was given 128 

on each training day. The system was composed of a g. tec biosignal amplifier, computer, and the 129 

FES. 130 



The participant received the AOMI-based BCI with FES feedback training for 3 days per 131 

week for 4 consecutive weeks. On each training day, he had to execute the cognitive task for 6 sets 132 

with resting time between sets for 3 minutes, and each set comprised 20 trials. The EEG data from 133 

the first 2 sets were used to create the classification model, and FES feedback was not activated in 134 

these sets. The classification model was applied in the next 4 sets to control the FES device, so 135 

there were a total of 80 trials of FES feedback on each training day. 136 

In each trial, the computer provided the sequences of cognitive tasks for the participant to 137 

perform, which are shown in Figure 2. First, the participant started by looking at the blank screen 138 

for 5 seconds. Then, a black cross appeared in the center of the screen for 3 seconds to warn the 139 

participant to prepare himself for executing the coming task, and this stage was called the 140 

“Preparation stage”. Next, the video-guided movement that demonstrated extension of the left 141 

wrist and fingers in first-person view was played on the screen for 5 seconds. At this moment, the 142 

participant was asked to attentively look at the screen and simultaneously imagined as if he was 143 

extending his left wrist and fingers, and this stage was called the “AOMI stage”. After that, the 144 

screen was blank to inform the participant to relax, and the relaxation time was random between 145 

10 and 13 seconds. 146 

 147 

 148 

 149 

 150 

Figure 2. The sequences of cognitive task that the participant had to perform in each trial. The 151 

participant was started watching the blank screen for 5 s. Next, the black cross appeared for 3 s to 152 

5 s 3 s 5 s  5-8 s  

Preparation stage AOMI stage 



warn the participant for the coming task. Then, the video-guided movement was played and the 153 

participant had to execute the cognitive task. Last, the blank screen was showed again for 154 

relaxation period.  155 

For this study, the FES device was custom-made, and the parameters for muscle stimulation 156 

were composed of biphasic square waves, pulse width 200 µs, frequency 50 Hz, and voltage 157 

intensities of approximately 30-40 volts, which were sufficient to produce extensor digitorum 158 

contractions and were painless. The FES was activated if EEG data in the imagination stage were 159 

classified as “AOMI class”, and it was not activated if EEG data were classified as “Preparation 160 

class”. These details are described more in the feature extraction and classification model section. 161 

AOMI-based BCI system 162 

 Data acquisition  163 

  We used a g. tec biosignal amplifier (g. USBamp, Graz, Austria) with 16 electrodes 164 

placed in the FP1, FP2, FC3, FC4, C5, C6, C3, C4, C1, C2, CP3, CP4, P3, P4, O1 and O2 positions 165 

according to the international 10-20 system to record the EEG data at a sampling rate of 512 Hz. 166 

The ground electrode and reference electrode were placed in the AFz position and right earlobe, 167 

respectively. The electrode impedances used to record EEG data were below 5 KΩ, and OpenVibe 168 

software (v2.2.0) was used for EEG data processing (data preprocessing, feature extraction, and 169 

the classification model) (24).  170 

 171 

 172 

 173 



 Data pre-processing 174 

  We used a notch 50 Hz filter to remove the power-line noise and common average 175 

reference (CAR) for re-reference EEG data. A bandpass filter at frequencies of 8 – 30 Hz was used 176 

to filter the EEG data because ERD occurred prominently in this frequency range (12). 177 

 Feature extraction and classification model 178 

  For the feature extraction method, we chose EEG data of the second at 1 to 3 from 179 

the preparation stage and AOMI stage as the two-class condition. Then, a common spatial pattern 180 

(CSP) filter that simultaneously maximizes the variance for one class and minimizes the variance 181 

of another class (25) was implemented on EEG data from two conditions. Next, fast Fourier 182 

transform (FFT) was used to transform EEG data filtered by CSP; then, we selected the power 183 

spectrum of the alpha band (8 – 15 Hz) and beta band (16 – 24 Hz) from the C3 and C4 channels 184 

as the feature vectors because these electrodes were placed over the sensorimotor areas of the hand. 185 

Later, the feature vectors in each condition were subjected to linear discriminant analysis (LDA) 186 

to establish the classification model, in which all processes were performed with OpenVibe 187 

software (v2.2.0). 188 

Outcome measurement 189 

 In this study, FMA-UE and AROM of left wrist extension were used as motor function 190 

assessments, and the participant was evaluated within 7 days before and after intervention. We 191 

also analyzed the laterality coefficient (LC) (26) of the alpha band (8 – 13 Hz) and beta band (14 192 

– 30 Hz) in each training session as neurophysiological signal assessments, and explored LC 193 

trending by using linear regression. Furthermore, we also analyzed an online classification 194 



accuracy to evaluate AOMI performance in each training session. The more accuracy reflected the 195 

higher number of FES feedback given to the participant in each training day. 196 

First, to compute the LC, we had to calculate the ERD/ERS values according to the 197 

following equation (9):  198 

𝐸𝑅𝐷/𝐸𝑅𝑆 % = (𝐴 − 𝑅)𝑅  × 100 199 

𝐴 is the power spectrum value during AOMI, and 𝑅 is the power spectrum value of the baseline 200 

period, which is the period before the AOMI period. In this study, we used EEG data from the first 201 

2 sets, in which FES feedback was not triggered on each training day to calculate ERD/ERS values. 202 

EEG data of seconds at 1 to 3 in the preparation stage and seconds at 1 to 5 in the AOMI stage are 203 

represented 𝑅 and 𝐴 in the equation above, respectively. Consequently, we derived 40 epochs of 204 

both the baseline period and cognitive task period to compute the ERD/ERS values on each 205 

training day. The data processing of ERD/ERS analysis was started by using independent 206 

component analysis (ICA) (27) to remove eyeblink, electrocardiograms (ECG), and muscle-related 207 

artifacts, and then the data were re-referenced to CAR. After that, Welch’s periodogram with a 208 

Hamming window with 50% overlap was used to estimate the power spectral density (PSD) and 209 

averaged across all epochs. Next, we obtained the power spectra of the alpha band (8-13 Hz) and 210 

beta band (14-30 Hz) by summing the PSD values and dividing by the number of frequencies. 211 

Afterward, we computed ERD/ERS % in each channel, and ERD/ERS values from FC3, C5, C3, 212 

C1, and CP3 were summed and averaged to represent the brain activity of the left hemisphere; in 213 

contrast, the ERD/ERS values from FC4, C6, C4, C2 and CP4 were summed and averaged to 214 

represent the brain activity of the right hemisphere. All processes were performed by EEGLAB, 215 

which is a MATLAB (R2020a) toolbox. 216 



 After receiving ERD/ERS values of both hemispheres, we could also analyze LC 217 

continuously, and its formula was as follows (26): 218 

𝐿𝐶 = (𝐶 − 𝐼)/(𝐶 + 𝐼) 219 

𝐶 is ERD/ERS values of the hemisphere on an opposite side of an imagined hand, and 𝐼 denotes 220 

ERD/ERS values of the hemisphere on the same side of an imagined hand. The value of LC is 221 

between -1 and 1, which indicates a higher or lower value in the hemisphere on the opposite side 222 

of an imagined hand. This implies how lateralization of the brain functions during the cognitive 223 

task (26, 28).  224 

Results 225 

 After 12 training sessions, FMA-UE was increased from 34 to 46 points, the AROM of left 226 

wrist extension was increased from 0 to 20 degrees, The LC values in the alpha and beta bands 227 

were changed from -0.03 to 0.47 and from -0.08 to -0.18, respectively, which showed in Table 1. 228 

The alteration trend of LC values throughout 12 training sessions in the alpha band seemed to be 229 

positive (regression coefficient = 0.016) while that in the beta band seemed to be slightly negative 230 

(regression coefficient = -0.006) over time, which showed in Figure 3 and 4, respectively. For 231 

analysis of the online classification accuracy, the averaged accuracy from total 12 training sessions 232 

was 83.85 percentage, and the percentage of classification accuracy in each training session 233 

showed in Figure 5. 234 

 235 

 236 

 237 



Table 1. Comparison of assessment values between pre- and post-interventions 238 

Assessments Pre Post 

FMA-UE 34 46 

AROM of wrist extension 0 20 

LC values in alpha band -0.03 0.47 

LC values in beta band -0.08 -0.18 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

Figure 3. The LC values in the alpha band (8-13 Hz) in each training session seemed to be positive 249 

over time. 250 



 251 

 252 

 253 
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 259 

 260 

Figure 4. The LC values in the beta band (14-30 Hz) in each training session seemed to be slightly 261 

negative over time. 262 

 263 

 264 

 265 

 266 
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 275 

 276 

 277 

Figure 5. The percentage of online classification accuracy in each training session, and the 278 

averaged classification accuracy was 83.85 percentage. 279 

Discussion  280 

 The objective of the current case study was to support the concept of applied AOMI-based 281 

BCI training for stroke rehabilitation, and our results demonstrated that AOMI-based BCI training 282 

with FES feedback could improve upper extremity function in a chronic stroke patient who 283 

experienced a stroke 12 years prior. FMA-UE was improved from 34 to 46 points, and the AROM 284 

of left wrist extension was increased from 0 degrees to 20 degrees after receiving 12 training 285 

sessions, consistent with the results from previous studies (22, 23); however, our method and 286 



training paradigm were different from those of previous studies. In addition, the participant did 287 

not receive any conventional physical therapy during this intervention. 288 

 There may be many factors that explain why our intervention improved motor function in 289 

the participant. First, the benefit from AOMI practice. It is well known that MI is a mental practice 290 

that can access or activate the brain areas associated with motor execution, including the 291 

supplementary motor area, premotor cortex, primary motor cortex, inferior/superior parietal 292 

lobule, basal ganglia, and cerebellum, without physical movement (29), but its drawback is that it 293 

is difficult to perform and depends on the cognitive ability of the patient. While AO is easier than 294 

MI to practice, it can also provoke brain regions involved in physical movement (21). However, it 295 

rarely activates the primary motor cortex (29), which is important for the recovery of motor 296 

function (30). Thus, AOMI may play a crucial role in fixing these problems; moreover, previous 297 

studies have shown that AOMI can activate corticomotor areas to a greater extent than MI or AO 298 

alone (31-33). In this study, we provided video-guided movement, which showed movement of 299 

the wrist and finger extension to the participant while he was executing MI. The video-guided 300 

movement may have made him focus on kinesthetic MI more easily and required a lower cognitive 301 

demand to perform the task; therefore, he could perform the cognitive task effectively 302 

corresponding to the averaged classification accuracy was 83.85 percentage, which might 303 

contribute to improving motor function. 304 

 Second, the EEG-based BCI with a neurofeedback system; although AOMI practice could 305 

promote the activation of the brain areas relating to an actual movement, it still lacks feedback, 306 

which is a key factor in the motor learning process (34). To solve this problem, we combined a 307 

BCI and knowledge of machine learning to monitor and classify EEG data while the participant 308 

was performing AOMI to provide real-time feedback represented by the FES backward to him to 309 



inform his performance. We selected the FES as neurofeedback because it is able to provoke the 310 

activity of the brain regions associated with motor function (35) and may re-establish the 311 

sensorimotor feedback loop affected by stroke (36, 37). 312 

 Third, our strategy included repetitive practice with real-time feedback that may facilitate 313 

neural plasticity. In this study, the participant received 12 training sessions, and at each session, 314 

he was asked to attempt AOMI for 80 trials. It is known that repetition of a simple movement can 315 

induce use-dependent plasticity, leading to reorganization of the neural structure associated with 316 

motor function (38), and a recent study demonstrated that repetitive MI could promote use-317 

dependent plasticity (39) ; therefore, repetitive AOMI could enhance use-dependent plasticity. 318 

Moreover, attempted AOMI with the given feedback is similar to Hebbian learning, which is the 319 

process used to strengthen the synaptic connection between neurons (37, 40). The activation of the 320 

brain regions related to motor function during AOMI coincided with FES feedback, which 321 

indicated that wrist extension might strengthen the synaptic connection in the neural pathways 322 

regarding upper limb function. In conclusion, these factors might be the causes why AOMI-based 323 

BCI training with FES feedback could improve upper limb function in this participant.  324 

 Furthermore, we also assessed the alteration in the ERD/ERS pattern by analyzing LC 325 

values in each training session. For LC values in the alpha band, their values tended to be positive 326 

when comparing the values between the first and last training sessions. It may be inferred that 327 

ERD in the affected hemisphere was stronger than that in the unaffected hemisphere when the 328 

participant was performing the cognitive task. This pattern was similar to that in healthy subjects, 329 

in which the ERD pattern usually occurs strongly over the contralateral hemisphere with respect 330 

to the imagined limb (41). Hence, this result may imply that the alteration of brain function 331 

returned to normal, corresponding to an improvement in upper limb function. Nevertheless, the 332 



trend of LC values in the beta band was opposite, and it seemed to be slightly negative over time. 333 

These results might also be explained by the automatization process in which the participant was 334 

used to the cognitive task due to performing it several times, so he may have required less effort 335 

to perform the task; consequently, neural activation in the contralateral hemisphere may have 336 

decreased (28). However, there was only one participant in this study. In future studies, the changes 337 

in LC values in the beta band should be investigated in a larger population of poststroke patients 338 

who receive an AOMI-based BCI with neurofeedback. Moreover, there were other limitations to 339 

this study in addition to one participant, such as the lack of a control group, in evaluating whether 340 

AOMI-based BCI training is superior to AO- or MI-based BCI training in terms of improvement 341 

of upper limb function. Next, we did not measure EMG to monitor the muscle activity of the left 342 

upper extremity while the participant performed the cognitive task; however, we used visual 343 

inspection to ensure that the participant did not use any signal artifacts from any part of the body 344 

movement to be the control signal in every trial. Finally, we did not know exactly which parts of 345 

the brain were damaged from the stroke because his stroke onset occurred 12 years ago, so his 346 

medical information was eliminated, and he felt inconvenient for MRI examination again.  347 

Conclusions 348 

 we would like to support the concept of using an AOMI-based BCI for stroke rehabilitation, 349 

and our results have shown that it can improve upper limb function in chronic stroke patients. 350 

Additionally, because of its advantages, we believe it may be a promising strategy used to improve 351 

motor function in poststroke patients. 352 

 353 

 354 
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