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Abstract
Circulating autoantibodies and sex-dependent discrepancy in prevalence are unexplained phenomena of
Alzheimer’s disease (AD). Using the 3xTg-AD mouse model, we reported that adult males show early
manifestations of systemic autoimmunity, increased emotional reactivity, enhanced expression of the
histone variant macroH2A1 in the cerebral cortex, and loss of plaque/tangle pathology. Conversely, adult
females display less severe autoimmunity and retain their AD-like phenotype. This study examines the link
between immunity and other traits of the current 3xTg-AD model. Young 3xTg-AD and wild-type mice drank a
sucrose-laced 0.4 mg/ml solution of the immunosuppressant cyclophosphamide on weekends for 5 months.
After behavioral phenotyping at 2 and 6 months of age, we assessed organ mass, serologic markers of
autoimmunity, molecular markers of early AD pathology and expression of genes associated with
neurodegeneration. Chronic immunosuppression prevented hematocrit drop and reduced soluble Aβ in 3xTg-
AD males while normalizing the expression of histone variant macroH2A1 in 3xTg-AD females. This
treatment also reduced hepatosplenomegaly, lowered autoantibody levels, and increased the effector T cell
population while decreasing the proportion of regulatory T cells in both sexes. Exposure to
cyclophosphamide, however, neither prevented reduced brain mass and BDNF expression nor normalized
increased tau and anxiety-related behaviors. The results suggest that systemic autoimmunity increases
soluble Aβ production and affects transcriptional regulation of macroH2A1 in a sex-related manner. Despite
the complexity of multisystem interactions, 3xTg-AD mice can be a useful in vivo model for exploring the
regulatory role of autoimmunity in the etiology of AD-like neurodegenerative disorders.

Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder that disproportionately affects women, both in
prevalence and severity [2, 33, 61]. Although the causes for this discrepancy remain poorly understood,
factors beyond longevity have been implicated [1, 22]. Recent genomic [41, 44, 60] and clinical studies [7, 58,
73, 99, 106] point to the involvement of the immune system in the etiology of AD. However, the possibility
that sex-speci�c differences in immunity [57] underlie increased disease prevalence in females has not been
explored. One limiting factor is the dearth of appropriate animal models in which the causal relationships
between the immune system, sex, and AD-like neuropathology can be studied in a controlled and systematic
manner.

The triple transgenic (3xTg-AD) mouse model is a widely-used tool for studying AD pathogenesis [11]
because it develops age-related cognitive impairments and soluble intraneuronal amyloid-beta (Aβ)
oligomers by 6 months of age and neuritic plaques and neuro�brillary tangles in the cortex and
hippocampus after 12 months of age [12, 78, 79]. The 3xTg-AD mouse model has been instrumental in
documenting how Aβ contributes to tauopathy [80, 114], how soluble Aβ and tau contribute to early stages of
the disease [40, 88] and how in�ammation potentiates neuropathology [51, 56, 109]. More recently, we
observed that in 3xTg-AD mice, behavioral de�cits similar to mild cognitive impairment appear as a
prodrome to subsequent decline in spatial learning/memory task performance [47, 65]. Namely, between 2
and 6 months of age, these mice display pronounced anxiety-related behaviors (e.g., “acrophobia” in the step-
down test and elevated plus maze, altered exploration of the open �eld and enhanced thigmotaxis in a
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swimming pool), changes in olfactory sensitivity and impairments in cognitive �exibility when tested in
reversal trials of the Morris water maze [47, 65]. Coinciding with these behavioral changes is the
spontaneous development of a progressive systemic autoimmune response, as evidenced by splenomegaly,
hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit and increased
number of double-negative T splenocytes [65]. Importantly, this immune activation in 3xTg-AD males
manifests as early as 1.5 month of age, well before the earliest documented signs of neuropathology [65],
and persists even at older ages [27]. When compared to wild-type males, AD males also show increased
expression of macroH2A1, (mH2A1) [53], which is a variant of the canonical histone H2A, important in
neuroplasticity and often upregulated during neurodegenerative processes [29, 46]. Paradoxically, the brains
of 1-year-old males no longer show plaque and tangle deposits. This loss of AD-like pathology in some male
cohorts was con�rmed independently by the donating investigator in 2014
(https://www.jax.org/strain/004807).

In comparison to 3xTg-AD males, 1-year-old 3xTg-AD females still show Aβ plaque deposition in the cortex
and hyperphosphorylated tau tangles in the hippocampus [9], in parallel with development of milder
autoimmune manifestations [53]. This sex-dependent shift in phenotypic traits is not isolated to a single
colony, as several independent groups have documented sex differences in behavior [13, 14, 17, 24, 37, 85,
86, 91, 104, 107, 112], AD-like neuropathology [19, 43, 84–86], response to environmental enrichment or
exercise [3, 35, 39, 111], life-span [37, 87] and immunity [37, 39]. Importantly, many of these sex-speci�c
differences are apparent within the �rst 6 months of life [17, 19, 24, 35, 39, 53, 85, 86, 91, 104]. Jointly, these
�ndings suggest that adult male 3xTg-AD mice develop a stronger autoimmune response than females that
alters their behavioral pro�le early in the course of the disease and is associated with a delay in AD-like
pathology in comparison to female littermates. However, no study to date has systematically examined the
cause-effect relationship between spontaneous peripheral immune activation, early behavioural dysfunction
and prodromal markers of AD-like pathology in both male and female 3xTg-AD mice. To test the nature of
sex-related systemic autoimmunity in the context of the altered 3xTg-AD phenotype, the current study
compares molecular, cellular and functional consequences of prolonged immunosuppressive treatment in
adult male and female 3xTg-AD and wild-type mice.

The alkylating agent cyclophosphamide (CY) is effective in arresting systemic autoimmunity via its
metabolite phosphoramide mustard, which is formed in cells with low levels of aldehyde dehydrogenase and
leads to apoptosis by forming DNA crosslinks. Given that chronic exposure to CY prevents
neurodegeneration and normalizes behavior in autoimmune mice [55, 96–98], an identical, well-established
protocol that does not involve injection-induced stress was chosen as a treatment modality in the current
study. To provide consistency and comparability across studies, previously used behavioral, cellular and
molecular variables [53, 65] were analyzed.

Materials And Methods

Animals
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Colonies of homozygous 3xTg-AD mice containing PS1M146V, APPswe, and tauP301L mutations and wild-type
(WT), non-transgenic controls of the same mixed B6129SF2 background were established from breeders
purchased from the Jackson Laboratories (Bar Harbor, ME, USA). In order to age-match the animals, in-house
litters born on the same date (+/-3 days) were selected for the current study and tested in parallel. Due to
inherent differences in the size of litters among 3xTg-AD breeders versus WT breeders, the �nal number of
animals included were 69 3xTg-AD mice and 75 WT mice. Pups were weaned at 21 days of age and housed
in same-sex, age-matched groups of 3 to 5 littermates under the following laboratory conditions: 22�C, 60%
humidity, ad lib access to low-fat rodent chow and water in 150 ml leak-proof bottles, and on a reverse 12-
hour light/dark cycle. They were tail-tattooed with AIMS™ ATS-3 System at the beginning of the study and
weighed every 2 weeks. All experimental protocols were performed with the approval of the local Animal Care
Committee and the Canadian Council on Animal Care.

Immunosuppressive treatment
Four-week-old mice were assigned to one of 8 groups (n = 13–21 mice/group) according to substrain (3xTg-
AD vs. WT), sex (male vs. female) and treatment (CY vs. vehicle, Veh). They were given to drink an aqueous
solution of CY (diluted to 0.4 mg/ml, "Procytox," Baxter, Mississauga, ON), an immunosuppressive drug,
laced with 16% sucrose, or sucrose-only solutions (vehicle) in place of water bottles, available ad libitum over
the weekends for 5 months. Such a non-invasive administration route was chosen to avoid confounding
effects of repeated pain- and restraint-induced stress on behavioral performance [6, 70, 93]. Moreover, due to
its metallic taste, CY was laced with sucrose to increase palatability and thus achieve the therapeutic dose
range previously shown to attenuate systemic autoimmunity and normalize functional de�cits in lupus-prone
mice [54]. In order to assess general CY toxicity, we similarly treated WT mice to control for multisystem
effects of CY and its metabolites that are not related to the immune system. Mice were individually housed,
and either CY or Veh solutions were administered throughout the duration of the study until sacri�ce at ~ 6.5
months of age. Total volume consumed per weekend was monitored, and the amount of CY consumed by
each mouse was recorded at the beginning of the study (1–2 months of age) and at the end of the study (5–
6 months of age). The �nal number of animals in each group was as follows: WT Veh males (n = 16), WT CY
males (n = 20), 3xTg-AD Veh males (n = 13), 3xTg-AD CY males (n = 17), WT Veh females (n = 18), WT CY
females (n = 21), 3xTg-AD Veh females (n = 14), and 3xTg-AD CY females (n = 15).

Behavioral battery
Following an initial 5-day habituation period, all mice underwent behavioral phenotyping from 1.5 to 2.5
months and again from 5.5 to 6.5 months of age (Fig. 1A). These periods correspond to time points at which
3xTg-AD mice are documented to exhibit anxiety-like behaviors, altered olfactory sensitivity [47, 65] and
learning/memory impairment, accompanied by accumulation of intraneuronal Aβ in the hippocampus and
amygdala [12, 78]. In each block, mice were exposed to tests re�ective of neurological/sensorimotor
function, spontaneous locomotor activity and emotional reactivity. These tests were performed during the
dark phase in the following order: basic re�exes, beam walking, Rotarod, olfactory sensitivity, T-maze
alternation, novel object, open �eld, step-down, Morris water maze, and spontaneous activity, as described
earlier in detail [52, 65, 95].

Tissue collection



Page 6/40

Approximately 7-month-old mice were anesthetized with a ketamine/xylazine cocktail, and retro-orbital blood
samples were collected. Whole blood was collected after severing the inferior vena cava and centrifuged for
5 min (10,000 × g, Eppendorf MiniSpin Plus; Fisher Scienti�c Canada, Ottawa, ON, CAN). Serum was
separated from the clot and stored at -20 °C for quanti�cation of autoantibodies. Mice were intracardially
perfused with ∼120 ml of phosphate-buffered saline (PBS) over 5 min and tissues were harvested and wet
weighed as previously described [65]. Spleens were wet weighed, collected in cold PBS, kept on ice and then
processed for �ow cytometry analysis of T splenocyte distribution. Brains were wet weighed before
separating cortical hemispheres, which were �ash frozen in liquid nitrogen and stored at -80 °C for molecular
assays.

Assessment of autoimmunity markers
Hematocrit was measured to assess the volume percentage of red blood cells in blood, as low hematocrit
can be a sign of autoimmune hemolytic anemia. Retro-orbital blood samples from anesthetized animals
were collected in heparinized Fisher microhematocrit capillary tubes just prior to sacri�ce. Sealed tubes were
centrifuged for 10 min in a standard microhematocrit centrifuge (Clay-Adams, Parsippany, NJ, USA) and read
in a Critocaps reader.

Anti-nuclear antibody (ANA) positivity in sera, a hallmark of systemic autoimmunity, was assessed using an
immuno�uorescence assay (HEp2010 cells, EUROIMMUN Canada, Mississauga, ON, Canada) according to
manufacturer’s instructions [53]. Semi-quantitative assessment of nuclear staining patterns was performed
by an unbiased assessor according to a 1–4 scale using LED-�uorescence microscopy (EUROStar III,
EUROIMMUN). Staining patterns were classi�ed based on standardized nomenclature of ANA-HEp-2 cell
patterns established by the International Consensus on Antinuclear Antibody (ANA) Patterns, ICAP [20]. In
addition to semi-quantitative scoring of ANA positivity, circulating levels of ANA against double-stranded
DNA (dsDNA) in sera were quanti�ed using a fully-automated ELISA analyzer (EUROIMMUN Analyzer I) and
microtiter plate wells coated with dsDNA complexed with nucleosomes, as described previously [53]. A
separate ELISA with microtiter plate wells coated with human Aβ1−42 peptide was used to quantify serum
anti-Aβ1−42 antibody titers, as previously described [76]. Results were expressed as relative optical densities.

Splenocyte single cell suspensions were prepared as described earlier [53] and stained for T cell surface
markers: APC-anti-CD3 (T lymphocyte marker, 1:200, BD Biosciences Pharmingen, San Diego, CA, USA), FITC-
anti-CD4 (helper T lymphocyte marker, 1:200, eBioscience, San Diego, CA, USA), PE-anti-CD8 (cytotoxic T
lymphocyte marker, 1:200, eBioscience) and PE-Cy7-anti-CD25 (Treg marker, 1:300, eBioscience). For Foxp3
intracellular staining, after staining with the above surface markers, cells were �xed and permeabilized using
e-Bioscience Intracellular Foxp3 Transcription kit for 20 minutes and then stained with PerCP-Cy5.5-anti-
Foxp3 antibody (1:200, eBioscience) for 30 minutes. Data were acquired with BD FACSCanto (Becton
Dickinson, Mississauga, ON) and analyzed using FlowJo software (TreeStar, Ashland, OR, USA).
Compensation controls were set up with single staining for each of the antibodies, including a negative
control, using BD CompBeads (BD Biosciences, San Diego, CA, USA). The gating strategy was based on
unstained controls and/or �uorescence-minus-one (FMO) controls. Single and live events were gated based
on forward scatter and side scatter plots. For each sample 100,000 events were acquired, adjusting the
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forward scatter (FSC) and side scatter (SCC) voltage controls to place the lymphocytes on scale as well as to
exclude debris/dead cells.

Assessment of protein markers
Although the utility of 3xTg-AD mice stems from their age-associated development of both plaque and tangle
pathology, emerging data suggests that neuronal dysfunction in AD is triggered by soluble species rather
than insoluble tangles and plaques [32, 42]. The cortex was selected as the primary tissue of interest, as it is
the site of initial intracellular and extracellular neuropathology in 3xTg-AD mice [43, 78]. Extraction of soluble
tau and Aβ species was based on published methods [71, 94]. In brief, cortical samples (approx. 100 mg)
were sonicated in tris-buffered saline (TBS) with protease (cOmplete™ ULTRA Tablets, Mini, EASYpack
Protease Inhibitor Cocktail) and phosphatase (PhosSTOP EASYpack, phosphatase inhibitor tablets)
inhibitors (Roche, Mississauga, ON, CAN) and kept on ice for 5–10 minutes. For soluble Aβ analysis, TBS
homogenates were centrifuged for 20 min at 14,000 × g at 4 °C and supernatants (S1) were collected,
aliquoted, and frozen at − 80 °C until use. For analysis of soluble tau, TBS homogenates were centrifuged for
20 min at 27,000 × g at 4 °C and supernatants (S1) were collected for subsequent use. To prepare insoluble
tau aggregates, S1 pellets were homogenized in salt/sucrose buffer [0.8 M NaCl, 10% sucrose, 10 mM
Tris/HCl (pH 7.4), 1 mM ethylene glycol-bis(β-aminoethyl ether)-N’,N’,N’,N’-tetraacetic acid), 1 mM
phenylmethylsulfonyl �uoride] and centrifuged for 20 min at 27,000 × g at 4 °C. The resultant supernatant
(S2) was adjusted to 1% sarkosyl, incubated for 1 hr at 37 °C and centrifuged at 150,000 × g for 1 hr at 4 °C.
The sarkosyl-insoluble pellet was then re-suspended in TE buffer [10 mM Tris/HCl (pH 8.0), 1 mM ethylene
diamine tetraacetic acid] and stored at -80 °C for subsequent analysis. Protein concentrations in each
fraction were measured using a detergent-compatible protein assay (Bio-Rad Laboratories, Mississauga, ON,
CAN).

Aβ42 protein levels in TBS-soluble S1 fractions were measured by Chemiluminescent BetaMark x-42 ELISA
per manufacturer's instructions (BioLegend, San Diego, CA, USA). Concentrations were acquired with a
MultiskanGO and SkanIt software (Thermo Scienti�c, Nepean, ON, CAN) at 620 nm. This ELISA recognizes
both mouse and human Aβ42, and therefore mouse Aβ42 values assayed in the corresponding wild type
groups were subtracted as background. Values are presented as pg human Aβ42 per mg of total protein.

TBS-soluble and sarkosyl-insoluble total tau and phosphorylated tau were measured using Western blotting.
Ten and 15 µg of total protein were resolved on 10% gels and transferred to polyvinylidene �uoride
membranes (Bio-Rad, Hercules, CA, USA) for analysis of soluble and insoluble tau species, respectively. The
membranes were treated as described [71] for detection with primary antibodies anti-tau (tau46, 1:1000;
Covance, Princeton, NJ, USA) and anti-phospho-tau (D9F4G, 1:1000; Cell Signaling Technology, Danvers, MA,
USA) and secondary antibodies IRDye 680-conjugated goat anti-rabbit and IRDye 800CW-conjugated goat
anti-mouse (1:10000, Li-Cor Biosciences, Lincoln, NE, USA). Band intensities were quanti�ed by densitometry
by normalizing to mouse β-actin monoclonal antibody (1:10000; BioLegend).

Assessment of RNA expression
RNA was extracted from cortical samples in TRIzol using RNeasy spin columns (Qiagen, Mississauga, ON),
complementary DNA was synthesized and quantitative real-time polymerase chain reaction was performed
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as described previously [71]. Primers were designed using Primer3 software (http://bioinfo.ut.ee/primer3/)
and ordered from IDT (Coralville, IA, USA). BDNF mRNA copy number in each sample was normalized to its β-
actin mRNA copy number [53, 92]. The macroH2A variant of the canonical histone H2A is encoded by two
genes that produce distinct proteins, H2afy (encodes mH2A1) and H2afy2 (encodes mH2A2). Expression of
both was analyzed as described previously [117]. Genes of interest were normalized against the geometric
mean of GAPDH and HPRT, and relative enrichment was normalized to vehicle-treated WT controls. All primer
sequences are shown in Table 1.

Table 1
Primer sequences used for qRT-PCR.

Gene Accession Forward Primer Reverse Primer

BDNF NM_001048139.1 GCGGCAGATAAAAAGACTGC CTTATGAATCGCCAGCCAAT

β-actin NM_007393.5 AGCCATGTACGTAGCCATCC CTCTCAGCTGTGGTGGTGAA

H2afy NM_001159513.1 CCCGGAAGTCTAAGAAGCAGGG AGGATTGATTATGGCCTCCACC

H2afy2 NM_207000.2 CGTTCCCCAGTGGCAGAAACT CCTGCACGTAGATGCCGAT

Gapdh NM_001289726.1 GTGGAGTCATACTGGAACATGTAG AATGGTGAAGGTCGGTGTG

Hprt NM_013556.2 GGAGTCCTGTTGATGTTGCCAGTA GGGACGCAGCAACTGACATTTCTA

Statistical analysis
We previously described Genotype [65] and Sex-related differences in 3xTg-AD mice [53]. However, the focus
of this study was signi�cant Genotype × Treatment × Sex or Genotype × Treatment interactions. Raw data
analyses were performed using SPSS 20 software (IBM Corp., Armonk, NY, USA). Normal distribution of the
data was tested by the Shapiro-Wilk test. When data departed from normality, the overall assumption was
that parametric tests were robust enough to detect signi�cant group differences, since the cohorts were
independent and population variances were comparable, as revealed by Levene's test. Analysis of variance
(ANOVA), ANOVA with repeated measures, analysis of covariance (ANCOVA) and Chi-square test were used
for group comparisons. Treatment, Genotype and Sex were considered between-group factors, and Age or
Week as within-group factors, where applicable. If signi�cant interactions were detected, Student’s t-test was
used in post hoc comparisons. Partial eta-squared (η2p) and generalized eta-squared (η2g) were used as
measures of effect size for all effects and interactions reported for ANOVAs [90] and ANOVA with repeated
measures [5], respectively. For reference, Cohen’s benchmarks for small (0.01), medium (0.06), and large
(0.14) effects are recommended for these measures [25, 34, 90]. Pearson’s correlation coe�cients were
calculated when examining bivariate linear relationships for normal variables. The criterion for statistical
signi�cance was set at p ≤ .05. Graphs display mean values ± SEM. Signi�cant differences of p ≤ .05, p < .01
and p < .001 are shown as *, **, and ***, respectively.

Results

Peripheral Effects
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The earliest observable effects of sustained CY intake were the development of distinct patterns of fur
graying in 3xTg-AD mice, noticeable after the second month of exposure. Representative photos exemplify
commonly observed ru�ed and gray hair in 3xTg-AD males at 6 months of age (Fig. 1B). In contrast,
affected age-matched 3xTg-AD females exhibited a symmetrical, V-like pattern of discoloration. These
effects were not seen in CY-treated WT controls or in 3xTg-AD mice exposed to vehicle solution. They were
not associated with differences in CY dosage, as drug-treated 3xTg-AD and WT groups ingested comparable
amounts of CY when individual intake was measured over single weekends at ~ 2 months (Genotype: F1,69 =
1.098, n.s., η2p = .02; Sex: F1,69 = 1.20, n.s., η2p = .02) and ~ 6 months of age (Genotype: F1,67 = 2.287, n.s.,
η2p = .03; Sex: F1,67 = .314, n.s., η2p = .01, Fig. 1C). Despite this similarity, CY-treated 3xTg-AD mice showed
more profound weight loss than CY-treated WT controls, which became more apparent with time (Genotype 
× Treatment × Week: F9,1080 = 3.280, p < .001, η2g = .03, Fig. 1D).

Given a positive correlation between body and liver weight at sacri�ce (r128 = 0.797, p < .001), body weight
was used as a covariate in ANCOVA, which revealed heavier livers in 3xTg-AD mice than in WT controls
(Genotype: F1,119 = 10.840, p < .001, η2p = .083). Sustained exposure to CY reduced liver weight comparably
in all groups except in WT male mice (Genotype × Treatment × Sex: F1,119 = 5.207, p = .024, η2p = .042,
Fig. 1E). Although exposure to CY reduced spleen weight in a similar pattern (Treatment: F1,119 = 24.743, p 
< .001, η2p = .172, Fig. 1F), this effect was most profound in 3xTg-AD males (Genotype × Treatment × Sex:
F1,120 = 8.259, p = .005, η2p = .065).

Splenic T lymphocytes
The loss of CD4/CD8 markers and the emergence of “double-negative” clones of T cells are well-established
phenomena in systemic autoimmunity [108, 110]. Considering that the spleen is a major source of immune
cells [67], we investigated if CY alters the splenic distribution of T cell populations using �ow cytometry. The
strategies employed to gate CD3+, CD3+CD4+, CD3+CD8+ and Foxp3+CD25+CD4+ cells are shown in Fig. 2A.
Chronic intake of CY mitigated the loss of CD3+ cells in 3xTg-AD mice, irrespective of sex and without
affecting WT controls (Genotype × Treatment: F1,58 = 25.809, p < .001, η2p = .31, Fig. 2B). Compared to age-

matched WT groups (which did not show sex differences), 3xTg-AD males had fewer CD3+ cells in
comparison to their female conspeci�cs (Genotype × Sex: F1,58 = 5.994, p = .017, η2p = .09). Importantly, CY

similarly prevented the decline of CD3+CD4+ T cells (Genotype × Treatment: F1,58 = 27.923, p < .001, η2p = .33,

Fig. 2C) and CD3+CD8+ T cells in 3xTg-AD mice (Genotype × Treatment: F1,58 = 7.136, p = .01, η2p = .11,
Fig. 2D). We observed that the proportion of CD4 + regulatory T cells (Tregs) expressing CD25 and Foxp3
was higher in both male and female 3xTg-AD mice compared to WT conspeci�cs (Genotype: F1,32 = 101.511,
p < .001, η2p = .76, Fig. 2E). Again, chronic intake of CY attenuated the shift in balance towards T regulatory
cells in the CD4 + population in 3xTg-AD mice, irrespective of sex and without affecting WT controls
(Genotype × Treatment: F1,32 = 31.464, p < .001, η2p = .49, Fig. 2E).

In our original report [65], we made an attempt to compare lymphocyte populations in the bone marrow
(which is a primary lymphoid organ) by �ushing cells from the medullary cavity of femoral bones dissected
from 1-year old males. We were unable to do this comparison because a needle could not be inserted into the
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femoral cavity in 3xTg-AD males due to ossi�cation. Furthermore, the femur was solid and pale, suggesting
an absence of bone marrow cells (data not reported). Interestingly, in comparison to other groups, sustained
CY treatment restored normal, red appearance of the femur of 6-month-old 3xTg-AD males (supplemental
data).

Serological measures
By 6 months of age, 3xTg-AD males (and females to a lesser degree) exhibit robust signs of autoimmunity
including low hematocrit and hyperproduction of serum autoantibodies to nuclear antigens [53]. In
comparison to Veh controls, prolonged CY exposure lowered hematocrit in all groups except 3xTg-AD males
(Genotype × Treatment × Sex: F1,73 = 8.399, p = .005, η2p = .10, Fig. 3A). This genotype- and sex-dependent
effect of CY was accompanied by pronounced alterations in serum autoantibodies to nuclear antigens (ANA;
χ2 = 60.596, df = 7, p < .001). Although weak ANA reactivity was noted in 3 out of a total 68 (3/68) CY-treated
mice, serum samples from ~ 60% of Veh-treated animals showed distinct staining patterns dependent on
genotype and sex (Fig. 3B). In particular, a subset of WT control males (3/16) displayed granular polar/Golgi-
like staining, while nearly all 3xTg-AD males (12/13) exhibited moderate to strong homogeneous staining of
the nucleus and nucleoli. Interestingly, serum samples from two-thirds of Veh WT females also produced
staining of the nucleus (9/18) and cytoplasm (3/18). In line with these qualitative �ndings, exposure to CY
reduced serum levels of antibodies to dsDNA in all treated groups (Treatment: F1,119 = 45.126, p < .001, η2p 
= .28, Fig. 3C). However, this mitigation was more prominent in 3xTg-AD males, which exhibited higher levels
of anti-dsDNA than 3xTg-AD females or WT female controls (Genotype × Treatment × Sex: F1,119 = 22.256, p 
< .001, η2p = .16). Consistent with these effects, CY also reduced Aβ antibody titers in all groups (Treatment:
F1,120 = 36.358, p < .001, η2p = .23, Fig. 3D). Interestingly, this reduction was more pronounced in WT females,
where the Veh group showed the highest levels of Aβ autoantibodies (Genotype × Treatment × Sex: F1,119 =
8.454, p = .004, η2p = .07, Fig. 3D).

Behavior
Consistent with our previous study [65], data collected with a large behavioral battery demonstrated
signi�cant genotype differences in tests of motor co-ordination/strength, spontaneous activities and
performance in spatial learning/memory tasks (Table 2). We also documented signi�cant Genotype by Sex
interactions in the beam-walking test, spontaneous activities, and reversal learning trials in the Morris water
maze. When compared to WT groups, 3xTg-AD females performed better in the beam-walking task of
visuomotor coordination (as measured by shorter traversing time) and in the basket test (re�ecting muscle
strength). 3xTg-AD mice, irrespective of sex, exhibited superior performance in the Rotarod test for balance
and endurance, as measured by longer latency to fall compared to WT mice (Genotype: F1,123 = 11.334, p 
= .001, η2p = .083, Fig. 4A). When tested in the Morris water maze for spatial learning/memory assessment,
male and female 3xTg-AD mice swam quicker than age-matched WT controls (Genotype: F1,121 = 72.442, p 
< .001, η2p = .374, Fig. 4B). The superior performance of 3xTg-AD mice in these measures of basic
sensorimotor evaluation rule out general de�cits in locomotion or exploration in this strain. Moreover, 3xTg-
AD mice did not show robust de�cits in Morris water maze acquisition trials in comparison to WT controls,
but 3xTg-AD females performed poorer than 3xTg-AD males in reversal acquisition trials. CY increased water
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consumption (Treatment: F1,110 = 5.136, p = .025, η2p = .045; Table 2) and food intake (Treatment: F1,113 =
5.377, p = .022, η2p = .045; Table 2) in both males and females, irrespective of their genotype and testing age,
suggesting that the more robust reductions in body and liver weights in 3xTg-AD mice are not due to reduced
caloric or water intake. Importantly, exposure to CY did not have a signi�cant effect on simple re�exes,
olfactory sensitivity, T-maze alternation rate, spontaneous activity or water maze performance, either at 2 or 6
months of age. These results jointly suggest that basic neurological function, muscle strength, motor
coordination, spontaneous locomotion and learning/memory capacity were not signi�cantly altered by
chronic CY exposure. Our analysis therefore highlights tests which showed signi�cant effects of CY on
genotype and/or sex differences.
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Table 2
Summary of behavioral data collected. Descriptions of methodology and variables tested in each tests are

described in detail in previous reports [23, 39, 40].
Behavioral
Domain

Test Measure Signi�cant Test
of Between-
Subject
Factor(s)

Alterations
in 3xTg-AD
vs WT

Effect of
Immunosuppression

Sensorimotor
co-
ordination,
strength

Beam-
walking

Latency to
traverse beam

Genotype × Sex:
F1,122 = 6.889,
p = .010, η2p 
= .053

↓ in
females

Null

Beam slips Genotype × Sex:
F1,122 = 5.867,
p = .017, η2p 
= .046

↓ in
females

Null

Rotarod Latency to fall Genotype:
F1,123 = 11.334,
p = .001, η2p 
= .083

↑ in both
sexes

Null

Basket test Latency to fall Genotype × Sex:
F1,72 = 7.449, p 
= .008, η2p 
= .094

↑ in
females

Null

Sensory Olfactory
sensitivity
to peanut
butter (PB)

Sni�ng
Duration − 
0.01% PB

not signi�cant None Null

Sni�ng
Duration − 0.1%
PB

Sex: F1,123 =
7.356, p = .008,
η2p = .056

None Null

Sni�ng
Duration − 1%
PB

not signi�cant None Null

Anxiety-like
behavior

Step down Latency to
descend

Genotype:
F1,122 = 38.334,
p < .001, η2p 
= .236

↑ in both
sexes

↑ in 3xTg-AD males
and WT females

6 mo:
Genotype × 
Treatment × 
Sex: F1,124 =
3.921, p = .05,
η2p = .03

↑ in both
sexes

Open �eld Fecal boli Genotype:
F1,122 = 23.332,
p < .001, η2p 
= .16

↑ in both
sexes

Null
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Behavioral
Domain

Test Measure Signi�cant Test
of Between-
Subject
Factor(s)

Alterations
in 3xTg-AD
vs WT

Effect of
Immunosuppression

Distance
moved

Genotype:
F1,123 = 13.623,
p < .001, η2p 
= .1

↓ in both
sexes

Null

Frequency of
visits to center

not signi�cant None Null

Latency to
enter center

not signi�cant None Null

Distance
moved in center

not signi�cant None Null

Time spent
moving in
center

Genotype × 
Treatment × 
Sex: F1,122 =
3.970, p = .049,
η2p = .043

↑ in
females

↑ in 3xTg-AD males
and ↓ in 3xTg-AD
females

Time spent
immobile in
center

Genotype × 
Treatment × 
Sex: F1,122 =
4.180, p = .043,
η2p = .033

↑ in both
sexes
(only at 6
mo)

↑ in 3xTg-AD males

Thigmotaxis
duration

Genotype:
F1,123 = 4.525,
p = .035, η2p 
= .035

↓ in both
sexes
(males
only at 6
mo)

Null

Velocity Genotype:
F1,123 = 5.292,
p = .023, η2p 
= .041

↓ in both
sexes
(females
only at 6
mo)

↓ in both sexes and
strains

Treatment:
F1,123 = 5.062,
p = .026, η2p 
= .04

Novel
object

Object contact
duration

not signi�cant None Null

Object contact
frequency

not signi�cant None Null
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Behavioral
Domain

Test Measure Signi�cant Test
of Between-
Subject
Factor(s)

Alterations
in 3xTg-AD
vs WT

Effect of
Immunosuppression

Object contact
latency

not signi�cant None Null

Spontaneous
behaviors

Automated
activity
boxes
(INBEST)

Water intake Treatment
F1,110 = 5.136,
p = .025, η2p 
= .045

None ↑ in both sexes and
strains

Sucrose (4%)
intake

Treatment:
F1,109 = 24.437,
p < .001, η2p 
= .183

↓ in
females

↓ in both sexes and
strains

Genotype × Sex:
F1,109 = 9.970,
p = .002, η2p 
= .084

Food intake Treatment:
F1,113 = 5.377,
p = .022, η2p 
= .045

↑ in males
(only at 6
mo)

↑ in both sexes and
strains

Genotype × Sex:
F1,113 = 6.406,
p = .013, η2p 
= .054

Running wheel
rotations

not signi�cant None Null

Working
memory

T-Maze Spontaneous
alternation rate

6 mo:
Treatment × 
Sex: F1,131 =
4.472, η2p 
= .036

None ↓ in males and ↑ in
females

Spatial
learning and
memory

Morris
water
maze

Cue trials - Path
distance

not signi�cant None Null

Cue trials -
Latency

Genotype:
F1,122 = 8.472,
p = .004, η2p 
= .065

↓ in both
sexes

Null

Cue trials -
Velocity

Genotype:
F1,122 = 26.806,
p < .001, η2p 
= .18

↑ in both
sexes

Null
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Behavioral
Domain

Test Measure Signi�cant Test
of Between-
Subject
Factor(s)

Alterations
in 3xTg-AD
vs WT

Effect of
Immunosuppression

Acquisition
trials - Path
distance

Genotype × 
Timepoint × 
Day: F3,363 =
3.502, p = .016,
η2p = .028

↑ in both
sexes (on
Day 1, 2
mo)

Null

Acquisition
trials - Latency

not signi�cant None Null

Acquisition
trials - Velocity

Genotype:
F1,121 = 72.442,
p < .001, η2p 
= .374

↑ in both
sexes

Null

Probe trials -
Time spent in
Target
Quadrant

not signi�cant None Null

Reversal cue
trials - Path
distance

Sex: F1,121 =
7.704, p = .006,
η2p = .06

None Null

Reversal cue
trials - Latency

Genotype:
F1,121 = 10.814,
p < .001, η2p 
= .082

↓ in both
sexes

Null

Reversal cue
trials – Velocity

Genotype:
F1,122 = 28.250,
p < .001, η2p 
= .189

↑ in both
sexes

Null

Reversal
acquisition
trials - Path
distance

Genotype × Sex:
F1,121 = 6.871,
p = .01, η2p 
= .054

↑ in
females

Null

Reversal
acquisition
trials – Latency

Sex: F1,121 =
10.416, p 
= .002, η2p 
= .079

None Null

Reversal
acquisition
trials – Velocity

Genotype × Sex:
F1,121 = 22.711,
p < .001, η2p 
= .158

↑ in
females

Null
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Behavioral
Domain

Test Measure Signi�cant Test
of Between-
Subject
Factor(s)

Alterations
in 3xTg-AD
vs WT

Effect of
Immunosuppression

Reversal
acquisition
trials - Time
spent in
previous
quadrant

Genotype × Sex:
F1,121 = 6.114,
p = .015, η2p 
= .048

↑ in
females

Null

Two-month-old 3xTg-AD mice showed a longer latency to step down from an elevated platform than WT
controls (Genotype: F1,126 = 15.876, p < .001, η2p = .11, Fig. 4C). When re-tested at an older age, CY-treated
3xTg-AD males and WT females were slower to descend than respective Veh-treated controls (Genotype × 
Treatment × Sex: F1,124 = 3.921, p = .05, η2p = .03).

In the open �eld test, 3xTg-AD mice defecated more (Genotype: F1,122 = 23.332, p < .001, η2g = .160) and
travelled less than WT controls (Genotype: F1,123 = 13.623, p < .001, η2g = .10; data not shown). Although
exposure to CY failed to abolish these differences, it increased time spent in the center of the arena by 3xTg-
AD mice in a sex-speci�c manner (Genotype × Treatment × Sex: F1,124 = 4.178, p = .043, η2g = .03). Namely,
prolonged exposure to CY increased center duration in 3xTg-AD males but reduced it in 3xTg-AD females at 6
months (Genotype × Treatment × Sex: F1,123 = 5.752, p = .018, η2p = .05, data not shown). The time spent in
the center of the open �eld correlated signi�cantly with immobility time (2 months: r134 = .834, p < .001; 6
months: r130 = .874, p < .001). Video-tracking analysis revealed genotype- and sex-speci�c effects in CY
groups (Genotype × Treatment × Sex: F1,122 = 4.18, p = .043, η2g = .03). Namely, immobility time was
increased signi�cantly in CY-treated 3xTg-AD males when tested at 6 months of age (Genotype × Treatment 
× Sex: F1,122 = 4.092, p = .045, η2p = .03, Fig. 4D).

Neuropathology
Despite abolishing manifestations of systemic autoimmunity, CY treatment failed to normalize lower brain
mass in ~ 7-month-old 3xTg-AD mice (Genotype: F1,120 = 83.032, p < .001, η2p = .41, data not shown).
Consistent with a growing consensus that neuronal damage in AD is triggered by soluble oligomers [42, 101],
lighter brains in 3xTg-AD mice coincided with sex-dependent differences in TBS-soluble total tau and
phospho-tau (Thr181) levels in the cortex (representative western blots are shown in Fig. 5A). Densitometric
analysis revealed that 3xTg-AD females had elevated levels of TBS-soluble total tau in comparison to WT
controls, but a similar elevation was not noted in 3xTg-AD males (Genotype × Sex: F1,81 = 18.77, p < .001, η2p 
= .19, Fig. 5B). 3xTg-AD females also exhibited an increase in phospho-tau in comparison to all other groups
(Genotype × Sex: F1,81 = 16.354, p < .001, η2p = .18, Fig. 5C). Importantly, immunosuppression with CY had no
appreciable effect on protein levels of TBS-soluble tau or phospho-tau species. In contrast to the �ndings
with TBS-soluble tau species, sarkosyl-insoluble tau levels were not elevated in 3xTg-AD females or males
compared to WT (data not shown).
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Coinciding with the increase in soluble tau, 3xTg-AD mice also displayed elevated Aβ42 levels in TBS-soluble
fractions of the cortex (Genotype: F1,68 = 193.776, p < .001, η2p = .74, Fig. 5D). However, unlike tau, this
increase in soluble human Aβ42 was greater in 3xTg-AD males than females (Genotype × Sex: F1,68 = 8.921, p 
= .004, η2p = .116; 3xTg-AD males > 3xTg-AD females, t28 = 2.249, p = .033). Although signi�cant Genotype by
Sex by Treatment interaction was not detected with the present sample size, between-group comparisons
with a t-test revealed the most profound effect in 3xTg-AD males (CY-treated < Veh-treated, t15 = 3.325, p 
< .01).

Soluble phospho-Tau [92] and Aβ species [36, 82] may exert their neurotoxic effects at least in part by
downregulating BDNF expression, which is lower in the cortices of 3xTg-AD mice than in WT [53]. Given the
essential role of BDNF downregulation in pre-clinical stages of AD [31, 83] and its links to anxiety-like
behaviors [21], we examined BDNF mRNA levels to determine if its cortical expression is altered after
generalized immunosuppression. However, CY failed to normalize BDNF expression in 3xTg-AD mice
(Genotype: F1,80 = 4.575, p = .035, η2p = .05, Fig. 5E).

Histone variants, which replace canonical histones in nucleosomes, were recently implicated in neural
plasticity [62, 66, 117] and neurodegeneration [29, 46, 75]. We previously found that 3xTg-AD males, but not
females, exhibit elevated expression of the histone variant macroH2A1 (mH2A1) compared to WT controls
[53]. In the current study, 3xTg-AD mice exhibited increased H2afy expression (the mRNA for mH2A1 protein)
in comparison to age-matched WT controls (Genotype: F1,74 = 13.238, p < .001, η2p = .15). Interestingly, CY
treatment abolished the increased H2afy expression in the 3xTg-AD substrain (Genotype × Treatment: F1,74 =
5.182, p = .026, η2p = .07, Fig. 5F). However, although no signi�cant third order interaction was detected with
the present sample size, in comparison to insigni�cant differences between CY and Veh-treated 3xTg-AD
males, a more profound H2afy downregulation was observed in CY-treated 3xTg-AD females (CY-treated < 
Veh-treated, t19 = 3.148, p < .005). No signi�cant between-group differences could be detected for H2afy2
expression (data not shown), suggesting that CY exposure speci�cally modulates mH2A1 expression.

Discussion
The current 3xTg-AD model exhibits an early anxiety-like phenotype that precedes the onset of �uctuating
learning/memory de�cits, as well as sex-speci�c markers of systemic autoimmunity and a delay in the
progression of AD-like pathology [23, 47, 53, 65]. Here we demonstrate that systemic immunosuppression
failed to attenuate substrain dissimilarities in brain weight, soluble tau/phospho-tau, BDNF expression or
anxiety-related tasks. However, immunosuppressed 3xTg-AD males had improved hematocrit and lower Aβ
load in the cerebral cortex. Compared to 3xTg-AD males, immunosuppressed females developed a distinct
pattern of fur discolouration and showed downregulated expression of histone H2afy mRNA. Taken together,
the results from our studies suggest that a sex-related autoimmune response in 3xTg-AD mice increases
soluble Aβ load in the cortex which coincides with altered transcriptional regulation of histone variant H2afy
in females only. Moreover, it appears that systemic autoimmunity does not fully account for the altered
behavioral pro�le of 3xTg-AD mice. One may hypothesize that emerging autoimmunity is associated with
either altered transcriptional regulation that has developed over time, a change in the mixture of background
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strains, or the pleiotropic effect of human transgenes acting on the immune system directly or via sex
hormones. Since information pertaining to the status of the immune system in the original 3xTg-AD cohorts
is lacking, the role of human transgenes in accounting for autoimmune manifestations could be addressed
in the future by characterizing the immune status of PS1 and tau mice that show spleen enlargement [63].
Since human Aβ has recently been reported in the spleens of 15-month-old 3xTg-AD males [27] and blood of
5-9-month-old 3xTg-AD females [23], we may speculate that peripheral Aβ might further exacerbate
peripheral immune responses.

Similar to many patients with mild cognitive impairment [64], enhanced emotionality and anxiety-like
behaviors characterize the phenotype of 3xTg-AD mice from an early age and increase in severity over time
[35, 38, 47, 65, 103]. Consistent with our work, enhanced emotionality in 6-month-old 3xTg-AD males
coincides with an accumulation of soluble Aβ in the amygdala [30]. However, it has been also repeatedly
reported that functional impairments in 3xTg-AD mice do not necessarily correlate with Aβ burden in the
brain [4, 28, 50, 68, 81, 116]. In the current study, generalized immunosuppression did not abolish anxiety-
related behaviors in 3xTg-AD males, but it reduced soluble Aβ in the cortex. This �nding is particularly
interesting in light of reports that Aβ itself may have innate immune functions like antimicrobial activity [59,
72] and that disruption of immune pathways attenuates Aβ burden [89]. Restoration of increased splenic
Foxp3 + Tregs to basal levels has previously been shown to coincide with a reduction in the expression of Aβ
in the hippocampus of 3xTg-AD males [27]. Using CY, we see similar lessening of Aβ burden in the cortex of
3xTg-AD males and females. Tregs play a major role in suppression of autoimmune pathology and are often
poorly functioning in subjects with autoimmune disease [113]. It is therefore possible that the increase in the
proportion of Tregs in 3xTg-AD mice is a protective reaction to enhanced autoimmune responses in these
animals. Mitigating the in�uence of systemic Foxp3 + Treg-mediated immunosuppression on immunocytes
may allow a re-balance of the immune response and reduced brain accumulation of Aβ [8]. One may
speculate that the altered behavioral performance of 3xTg-AD mice re�ects allostatic load due to
autoimmune-mediated clearance of neurotoxic aggregates from the brain [100]. Females may not be able to
readily mount such an immune response, rendering them vulnerable to plaque/tangle accumulation at older
ages. Indeed, we found that 3xTg-AD females, but not males, exhibit an earlier rise in the amount of total and
phosphorylated (Thr181) soluble tau in the cortex in comparison to WT controls. These �ndings complement
recent immunohistochemical data documenting that 100% of 6-month‐old 3xTg-AD females exhibit
phospho-tau (Ser202/Thr205 and Ser422) in the hippocampus whereas male 3xTg‐AD mice show
considerable neuropathological variability [9]. This sex discrepancy in soluble total and phosphorylated tau
may help to explain why accumulations of hyperphosphorylated tau tangles are observed in the brains of 12-
month-old 3xTg-AD females [23] but not males [65].

Although the production of antibodies to Aβ and other antigens (nuclear and dsDNA) in 3xTg-AD males is
consistent with clinical studies reporting autoantibodies in AD patients [48], their presence in WT females is
an unexpected �nding that requires further investigation. We previously noted that ~ 75% of aged WT males
also showed varying degrees of ANA positivity [65]. These unexpected results in the WT mice of both sexes
support the notion that the hybrid strain generated from 129 and C57BL/6 mice (ancestor to both the WT
and 3xTg-AD strains) is predisposed to spontaneously develop autoimmune manifestations [16, 18].
However, why the insertion of AD-related genes accelerates the progression of autoimmune manifestations
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(in males in particular) remains to be determined. Similarly, more data are required to reveal the nature of the
sex-speci�c patterns in depigmentation in 3xTg-AD mice exposed to CY. Hair graying, a typical sign of aging
in mammals, has previously been linked to irreparable DNA damage that impairs the maintenance of
melanocyte stem cells with age [49]. It remains to be determined if the graying in CY-treated 3xTg-AD mice
re�ects an increased accumulation of phosphoramide mustard (the cytotoxic metabolite of CY) leading to
accelerated DNA damage and an early-aging phenotype.

Although the role of histone variants in the CNS is only beginning to be studied, existing data suggest that
they are critical regulators of neural plasticity [66, 117]. The transcription of histone variants is highly
responsive to environmental stimuli [117], including age-related regulation in the brain [66]. Histone
macroH2A is a variant of the canonical histone H2A and is encoded by 2 genes that produce distinct
proteins, H2afy (encodes mH2A1) and H2afy2 (encodes mH2A2). We recently showed that H2afy, the mRNA
for the histone variant mH2A1, is upregulated in the 3xTg-AD model, which is consistent with studies that
demonstrate that H2afy is a marker of disease activity in neurodegenerative disorders [46]. The current study
demonstrates that upregulated H2afy transcription can be modi�ed by generalized immunosuppression.
This suggests that upregulation of mH2A1 transcription may be driven by immune changes in AD. Since our
data are limited to mRNA levels coding for mH2A1, we cannot draw conclusions about potential differences
in mH2A1 histone variant incorporation into the chromatin of 3xTg-AD brains or its reversal with an
immunosuppressive drug. However, transcriptional regulation of histone variants is related to altered histone
variant incorporation [66, 117]. The effect of CY on histone variant expression was restricted to mH2A1,
suggesting that mH2A1 is uniquely responsive to intervention and may play a role in AD pathology and
chromatin dysregulation. However, a larger sample size is required to con�rm the sex-speci�c difference in
H2afy mRNA expression and to test its role in regulation of behavioral performance, fur appearance, or
autoimmune markers in 3xTg-AD mice.

Taken together, the current study supports the hypothesis that development of systemic autoimmunity in
3xTg-AD mice modulates transcription of H2afy and soluble Aβ accumulation in a sex-speci�c manner. Since
adult 3xTg-AD females show a more profound autoimmune pro�le than WT females, it is plausible that their
intrauterine environment differentially affects brain development during embryogenesis of the offspring [26].
Alternatively, the organizational actions of sex steroid hormones during development are also linked to sex
differences in Aβ accumulation in 3xTg-AD mice [19] and represent a future direction of inquiry.

The divergent effects of CY on certain pathological endpoints underscore its broad spectrum of activity as
an alkylating agent that irreversibly interferes with the duplication of DNA in cells that divide frequently.
While this mechanism of action makes it a potent immunosuppressant, CY may also cause bene�cial
immunomodulatory effects such as the induction of cytotoxic CD8+ T lymphocytes and CD4+ TH1 cells
[102]. In keeping with previous observations [77], CY appeared to selectively promote an increase in the
effector T cell population while decreasing the proportion of Tregs. This had the effect of normalizing 3xTg-
AD T cell populations in relation to WT mice. The relative lack of effect on WT controls may seem
counterintuitive at �rst, but is in line with evidence that autoimmune effector cells (including T cells and B
cells) are uniquely sensitive to high-dose CY [15]. Although we did not count B cells in the current study,
circulating autoantibody production was impaired after chronic exposure to CY. While we cannot rule out the
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possibility that CY also directly affects soluble Aβ and expression of histone mH2A1 variant, only a small
fraction of the alkylating metabolites of CY have been shown to cross the blood brain barrier in mice [105].
Since CY and its metabolites may exert multisystem toxicity (immunosuppression is just one of its many
effects), further experiments may bene�t from more selective blockades of T cells, B cells, cytokines, or
autoantibodies to elucidate terminal factors that account for changes in behavior and protein markers.
Lastly, although epigenetic factors are known to be involved in establishing and maintaining immune
responses [69], the current study does not reveal the mechanism(s) by which CY modulates epigenetic
pathways.

Although our study points to early, sex-related immune activation as an important phenomenon, careful
considerations need to be made when discussing its implications for clinical AD. At best, the 3xTg-AD model
is representative of early-onset familial AD caused by genetic mutations in APP and PSEN1, which account
for an estimated 1% or less of all AD-related dementia cases [2]. It remains unclear if familial forms of AD
share a similar sex discrepancy with late-onset AD. Nevertheless, increasing evidence suggests that sex
interacts with genetic factors to modify the risk for AD. For example, women carrying the ε4 allele of the
apolipoprotein E gene (APOE4), the strongest genetic risk factor for late-onset AD, have a far more
pronounced risk of developing AD than men carrying the allele [1, 115]. Moreover, several reports suggest
that a maternal family history of AD confers higher risk for developing sporadic AD than paternal history or
no family history [10, 45, 74]. The interactions between sex and genetic factors highlight the possibility that
familial forms of AD may also be affected by sex differences. It also remains unclear to what extent, if any,
brain-reactive autoantibodies and Tregs attenuate brain pathology by counteracting neuroin�ammation in
clinical AD [100]. Despite unknown mechanisms, the 3xTg-AD model may be a valuable in vivo model for
studying interactions between autoimmunity and AD-like neurodegenerative brain disorders.

Limitations
The main limitation of this study is the use of a mouse model that differs substantially in phenotype from its
original description in 2003. Namely, the delay in AD-like neuropathology in recent cohorts of male mice and
temporal disconnection between plaque/tangle formation and behavioral de�cits calls into question the
underlying assumptions of the 3xTg-AD model. Nevertheless, the early emergence of spontaneous systemic
autoimmunity �rst detected in 3xTg-AD mice in 2013 suggests a potential mechanism that plays a role in
regulating AD-like neurodegeneration, thus begging further investigation.

Our epigenetic data are limited to the measurement of mRNA levels. Therefore, we cannot draw conclusions
about potential differences in mH2A1 histone variant incorporation into the chromatin of 3xTg-AD brains, or
the mechanism by which its transcription is modulated by sustained immunosuppression. Along the same
lines, cyclophosphamide affects a broad spectrum of cells and does not allow us to pinpoint which of T
cells, B cells, cytokines, and/or autoantibodies constitute key factors in mediating its effects on multiple
molecular and immunological dependent variables. Lastly, although this study reveals sex-speci�c effects of
generalized immunosuppression at different system levels, it does not identify the origin of autoimmune
phenomena in 3xTg-AD mice.
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A behavioral experiment involving a 2 × 2 × 2 design (with Genotype, Sex and Treatment as main factors) can
be considered an overly ambitious endeavor. Indeed, it required the testing of three separate mouse cohorts
to achieve a suitably large sample size (N > 100) in order to detect effects of medium size in three sets of
variables. Given such a complex design, our project lasted almost three years and involved different groups
of unbiased experimenters who performed behavioral experiments, which inherently generated variability
among groups. Lastly, a behavioral battery followed by multiple comparisons increased the possibility of
detecting signi�cant p-values by chance and of committing a Type I error. We used MANOVA in preliminary
data analysis and tempered our interpretations of signi�cant task-speci�c differences in the Discussion
section to minimize false inference and overstatement.

Conclusions
The 3xTg-AD model is characterized by sex-related systemic autoimmunity, early anxiety-like behaviors and
transcriptional changes in epigenetic factors. We show that chronic immunosuppression with CY prevents
hepatosplenomegaly, hypergammaglobulinemia and restores the phenotype of splenic T cells yet does not
improve 3xTg-AD performance in anxiety-related tasks or increase brain mass or BDNF or lower phospho-tau
levels. Sex-speci�c, reduced production of soluble Aβ, expression of histone mH2A1 variant, and fur graying
suggest that chronic CY exposure has broad spectrum and sex-speci�c effects on molecular CNS markers
and peripheral tissues. Collectively, our work suggests that systemic autoimmunity promotes speci�c
prodromal markers of AD-like pathology and epigenetic markers of neurodegeneration, which jointly may
contribute by yet unknown mechanisms to phenotypic alterations in the 3xTg-AD model.
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Figure 1

Cyclophosphamide (CY)-induced alterations in peripheral indicators. (A) Study design and experimental
timeline diagram depicting the age and testing timepoints for data collected. In brief, 1-month old 3xTg-AD
and WT mice of both sexes were randomly assigned to receive treatment with CY or vehicle solution on
weekends until 6.5 months of age (n = 13-21 mice/group). All mice were tested in a behavioral battery
between 1.5-2.5 months of age (2-month timepoint) and re-evaluated between 5.5-6.5 months of age (6-
month timepoint) to determine the short- and long-term effects of CY treatment. After the behavioral testing
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was completed, at 6.5 months of age, mice were euthanized and tissues were collected for biomarker assays
(see text). (B) Representative photos showing ru�ed and depigmented fur in cyclophosphamide (CY)-treated
3xTg-AD males and a distinct, V-pattern of graying commonly seen in 3xTg-AD females. Alterations in fur
quality or condition were not noticeable in CY-exposed WT controls or in vehicle-treated (Veh) groups. (C)
Mice with access to CY on weekends voluntarily ingested similar doses (mg/kg/weekend) of the
immunosuppressant at ~2 (WT Males: 377 ± 37; 3xTg-AD Males: 382 ± 20; WT Females: 377 ± 36; 3xTg-AD
Females: 396 ± 30) and ~6 months of age (WT Males: 323 ± 37; 3xTg-AD Males: 390 ± 54; WT Females: 300
± 30; 3xTg-AD Females: 364 ± 56). (D) Sustained exposure to CY (closed symbols), but not vehicle solution
(open symbols), induced loss of body mass that was more severe in the 3xTg-AD substrain (triangle) than in
WT controls (circles) and became more apparent at older ages (Genotype × Treatment × Week: F1,120 = 5.55,
p < .02). (E) Prolonged treatment with CY abolished substrain differences in liver weight by ameliorating
hepatomegaly evident in Veh-treated 6-month-old 3xTg-AD mice (males: p < .001; females: p < .01). CY also
induced more pronounced weight reduction in WT females (p < .001), than in WT males. (F) Vehicle-treated
3xTg-AD mice of both sexes exhibited spleen enlargement which was prevented in CY-treated conspeci�cs
(males: p < .001; females: p < .001). CY treatment in WT females, but not in WT males, also signi�cantly
reduced spleen weights in comparison to the Veh group (p = .005). WT Veh males (n = 16), WT CY males (n =
20), 3xTg-AD Veh males (n = 13), 3xTg-AD CY males (n = 17), WT Veh females (n = 18), WT CY females (n =
21), 3xTg-AD Veh females (n = 13), 3xTg-AD CY females (n = 15). Overall group comparisons were carried
out using three-way ANOVA (Genotype × Treatment × Sex) followed by post hoc t-tests. Body weight
comparisons were performed using a repeated measures ANOVA with week as a between-subject factor
followed by post hoc ANOVAs at each timepoint. Error bars = SEM, *p ≤ .05, **p < .01, ***p < .001, ‡ =
genotype × treatment interaction.
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Figure 2

Effects of generalized immunosuppression on T splenocyte populations. (A) The �gure illustrates the gating
strategies employed to identify the distribution of T lymphocytes in the spleen. Debris was excluded, and
lymphocytes included, using a forward scatter area (FSC-A) versus side scatter area (SSC-A) gate. Single
cells (singlets) were then selected on a FSC-A versus FSC-W plot. This population was then analyzed in a
FL1/SSC plot in order to quantify the percentage of CD3-APC positive cells. An FL2/FL1 plot was used to
quantify the percentage of CD4-FITC and CD3-APC positive cells in the total live cell population. Similarly, an
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FL3/FL1 plot was used to quantify the percentage of CD8-PE and CD3-APC positive cells in the total live cell
population. To determine Foxp3+CD25+ Tregs, CD3+CD4+ T cells were further gated on the SSC (FL2) for
CD25-PE-Cy7 and FSC (FL1) for Foxp3-PerCP-Cy5.5. The cell population at Q2 are the % Foxp3+CD25+
/CD4+ Tregs. For each sample, 100,000 events were acquired. (B) Analysis of splenic T lymphocytes
revealed that 3xTg-AD males treated with CY exhibited a signi�cant increase in spleen-derived CD3+ T cells
compared to vehicle-treated littermates (p < .001). This effect occurred independent of sex, as CY also
normalized low CD3+ T cells in vehicle-treated 3xTg-AD females (p < .001). The loss of CD3+ T cells was
more pronounced in 3xTg-AD males than females (p < .001), while a similar sex difference was not seen in
WT controls. (C) CY partially restored low CD3+CD4+ T cell counts apparent in vehicle-treated 3xTg-AD males
(p < .001) and females (p < .001). (D) CY also normalized low CD3+CD8+ T cells in the 3xTg-AD substrain (p
< .001) such that levels were comparable to WT controls. (E) In addition to mitigating the loss of T effector
cells, CY treatment abated the rise in the proportion of Foxp3+CD25+/CD4+ Tregs apparent in vehicle-treated
3xTg-AD males (p < .001) and females (p < .001). WT Veh males (n = 5-8), WT CY males (n = 5-11), 3xTg-AD
Veh males (n = 5-7), 3xTg-AD CY males (n = 5-10), WT Veh females (n = 5-8), WT CY females (n = 5-10),
3xTg-AD Veh females (n = 5-6), 3xTg-AD CY females (n = 5-6). Overall group comparisons were carried out
using three-way ANOVA (Genotype × Treatment × Sex) followed by post hoc t-tests. Error bars = SEM, *p ≤
.05, **p < .01, ***p < .001.
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Figure 3

Effects of generalized immunosuppression on serological markers of autoimmunity. (A) Immunosuppression
reduced hematocrit in comparison to vehicle-treated mice in all groups except 3xTg-AD males (WT males: p =
.039; WT females: p = .035; 3xTg-AD females: p = .02). (B) CY-treated 3xTg-AD and WT mice were negative
for serum anti-nuclear antibodies (ANA), but distinct staining patterns were noted in Veh-treated animals.
3xTg-AD males exhibited homogeneous staining of the nucleus and nucleoli (white arrows), while sex-
matched WT males displayed polar/Golgi-like staining (white arrowheads). Serum from WT females that
were treated with vehicle also stained the nucleus. (C) CY exposure reduced anti-double-stranded DNA (anti-
dsDNA) in the sera of all groups (Treatment: F1,120 = 28.951, p < .001) and, in particular, in 3xTg-AD males
(p < .001 vs vehicle-treated 3xTg-AD males) and WT females (p < .001 vs vehicle-treated WT females). (D)
Although CY treatment reduced serum anti-Aβ42 antibodies in all groups, the antibodies were elevated most
strongly in the vehicle-treated WT female group. WT Veh males (n = 8-16), WT CY males (n = 11-20), 3xTg-AD
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Veh males (n = 7-13), 3xTg-AD CY males (n = 10-17), WT Veh females (n = 8-18), WT CY females (n = 10-21),
3xTg-AD Veh females (n = 6-13), 3xTg-AD CY females (n = 7-15). Overall group comparisons were carried out
using three-way ANOVA (Genotype × Treatment × Sex) followed by post hoc t-tests. Error bars = SEM, *p ≤
.05, **p < .01, ***p < .001, # = overall treatment effect, + = genotype × treatment × sex interaction.

Figure 4

Cyclophosphamide (CY) modulation of anxiety-like behaviors in 3xTg-AD mice at 2 and 6 months of age. (A)
Performance in the Rotarod remained superior for 3xTg-AD mice (triangles), irrespective of sex, in
comparison to age-matched WT controls (circles) (Genotype: F1,123 = 11.334, p = .001, η2p = .083). Acute or
prolonged CY treatment (closed symbols) did not signi�cantly alter the latency to fall off the Rotarod. (B)
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Two- and 6-month old 3xTg-AD males and females swam faster than age-matched WT controls in the Morris
water maze acquisition trials (Genotype: F1,121 = 72.442, p < .001, η2p = .374). CY did not alter the
swimming speed of 3xTg-AD mice or WT controls. (C) From an early age, 3xTg-AD males and females took
longer than sex-matched WT controls to descend from an elevated platform in the step-down test, consistent
with “acrophobia” (Genotype: F1,126 = 15.876, p < .001). After several months of CY exposure, 3xTg-AD
males, but not WT controls, took longer to complete the step-down test in comparison to vehicle-treated
animals, suggesting that prolonged immunosuppression exacerbated anxiety-like behavior (Genotype ×
Treatment × Sex: F1,124 = 3.921, p = .05). Sustained CY intake had no discernable impact on the step-down
performance of 3xTg-AD females, but WT controls (similar to 3xTg-AD males) took longer to complete the
task at 6 months of age. (D) In the open �eld test, CY-treated 3xTg-AD males spent the most time immobile in
the center of a large open �eld (Genotype × Treatment × Sex: F1,123 = 4.092, p = .045). WT Veh males (n =
16), WT CY males (n = 20), 3xTg-AD Veh males (n = 13), 3xTg-AD CY males (n = 17), WT Veh females (n =
18), WT CY females (n = 21), 3xTg-AD Veh females (n = 13), 3xTg-AD CY females (n = 15). Overall group
comparisons were carried out using three-way ANOVA (Genotype × Treatment × Sex) followed by post hoc t-
tests. Error bars = SEM, *p ≤ .05, **p < .01, ***p < .001, # = overall treatment effect, + = genotype × treatment
× sex interaction.
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Figure 5

Effects of generalized immunosuppression on soluble and epigenetic markers of neurodegeneration. (A)
Representative western blot illustrating total tau, phosphorylated tau, and β-actin protein levels in TBS
homogenates extracted from the cortex of 6-month-old mice. (B) Densitometric analysis of western blots
revealed that 6-month-old 3xTg-AD females had elevated levels of TBS-soluble total tau (normalized to β-
actin) in comparison to WT controls, but this genotype-related difference was not noted in males (Genotype ×
Sex: F1,81 = 18.77, p < .001) and was not altered by CY immunosuppression. (C) 3xTg-AD females also
exhibited an increase in phospho-tau (Thr181) in comparison to all other groups (Genotype × Sex: F1,81 =
16.354, p < .001), but CY had no appreciable effect on the phosphorylation status of tau. (D) Soluble human
Aβ42 was greater in 3xTg-AD males than females (Genotype × Sex: F1,68 = 8.921, p = .004, η2p = .116). No
signi�cant third order interaction was detected, but between-group comparisons with t-tests revealed that CY-
treated 3xTg-AD males had lower Aβ42 load than Veh-treated controls (p < .01). (E) BDNF mRNA levels were
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downregulated in 3xTg-AD mice of both sexes compared to controls. CY did not affect BDNF mRNA levels
(normalized to β-actin) in 3xTg-AD mice. (F) 3xTg-AD mice treated with vehicle only had signi�cantly higher
H2afy expression compared to controls (p < .0001). CY treatment reversed the upregulated H2afy expression
observed in vehicle-treated 3xTg-AD mice. This effect was mediated by reduced H2afy expression in
response to CY treatment only in 3xTg-AD mice (p = .046). No signi�cant third order interaction was detected,
but between-group comparisons with t-tests revealed H2afy downregulation in CY-treated 3xTg-AD females.
WT Veh males (n = 11), WT CY males (n = 11), 3xTg-AD Veh males (n = 9), 3xTg-AD CY males (n = 9), WT
Veh females (n = 13), WT CY females (n = 14), 3xTg-AD Veh females (n = 10), 3xTg-AD CY females (n = 11).
Overall group comparisons were carried out using three-way ANOVA (Genotype × Treatment × Sex), followed
by post hoc t-tests. Error bars = SEM, *p ≤ .05, **p < .01, ***p < .001. Abbreviations: Aβ, amyloid-beta; BDNF,
brain-derived neurotrophic factor; mRNA, messenger RNA; pTau, phosphorylated tau; tTau, total tau; TBS, tris-
buffered saline.


