Research on Resonance Mechanism and Collaborative Optimization of Double-cavity Self-Excited Oscillating Pulse Cavitation Jet Nozzle

xiaoming yuan (xiaomingbingbing@163.com)
Yanshan University
https://orcid.org/0000-0001-5779-1366

Li Wang
Yanshan University

Weidong Wang
Yanshan University

Lijie Zhang
Yanshan University

Yong Zhu
Jiangsu University

Original Article

Keywords: Self excited oscillation, Pulsed cavitation jet, The nozzle, Resonance mechanism, Collaborative optimization

Posted Date: June 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-593170/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The peak value and pulsation amplitude of the self-excited oscillating pulse cavitation jet nozzle are important indexes to evaluate the jet performance. It is of great significance in theory and engineering practice to predict the peak value of the self-excited oscillating pulse cavitation jet nozzle accurately. In order to investigate the evolution mechanism of the inner and outer flow field of a double-cavity self-excited oscillation pulse cavitation jet nozzle, a simulation model of the jet impact test of the nozzle was established. Before entrance rounded corners, former cavity cavity diameter, cavity cavity length, before the cavity under the nozzle diameter, cavity, the cavity cavity after entry the rounded, lumen diameter, cavity length and cavity after cavity under the nozzle diameter as design variables, and strike force to combat force peak pulse amplitude as the target variable, the orthogonal experiment method, back propagation neural network combined with non dominated sorting genetic algorithm, The collaborative optimization design method of self-excited oscillating pulse cavitation jet nozzle was determined. Based on the collaborative optimization results, the 3D printing technology was used to manufacture the visualization test model of the flow field of the self-excited oscillating pulse cavitation jet nozzle, and the experimental verification was carried out. The results show that when the inlet pressure is 2MPa, the main and secondary order of the influences of various factors on the jet performance of the nozzle is the nozzle diameter under the front cavity, the diameter of the back cavity, the diameter of the front cavity, the length of the front cavity, the nozzle diameter under the back cavity, the cavity distance, the fillet of the back cavity, the fillet of the front cavity and the length of the back cavity. Compared with the optimal result of orthogonal test, the amplitude of impact pulsation and the peak value of impact force are increased by 14.61% and 2.42% respectively. The optimal structure of the nozzle determined by collaborative optimization can produce obvious pulse cavitation jet, and the cavitation region of the nozzle cavity contracts periodically with time. The higher the inlet pressure, the higher the cavitation intensity and the higher the content of hollow bubble. This study can promote the development of jet performance calculation of self-excited oscillation pulse cavitation jet nozzles, and provide support for the design of self-excited oscillation pulse cavitation jet nozzles.

Full-text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures
Figure 1

Nozzle geometry model

Figure 2

Nozzle simulation calculation domain model
The overall and local mesh models of nozzle field were calculated: (a) The nozzle as a whole; (b) Cavity position; (c) Exit position

Test 2. Hit force curve of target surface
Figure 5

Test 7. Hit force curve of target surface

Figure 6
Experiment 2 Evolution process of cavitation vortex: (a) t=0.0027s; (b) t=0.003s; (c) t=0.004s; (d) t=0.005s; (e) t=0.120s; (f) t=0.124s; (g) t=0.128s; (h) t=0.130s

Figure 7

Experiment 7 Evolution process of cavitation vortex: (a) t=0.002s; (b) t=0.003s; (c) t=0.01s; (d) t=0.011s; (e) t=0.151s; (f) t=0.154s; (g) t=0.156s; (h) t=0.160s
Figure 8

Experiment 2 Cloud map of axial velocity distribution of flow field at different moments: (a) t=0.120s; (b) t=0.124s; (c) t=0.128s

Figure 9

Experiment 7 Cloud map of axial velocity distribution of flow field at different moments: (a) t=0.151s; (b) t=0.154s; (c) t=0.156s
Figure 10

Experiment 2 Radial velocity distribution cloud image of flow field at different moments: (a) t=0.120s; (b) t=0.124s; (c) t=0.128s

Figure 11

Experiment 7 Radial velocity distribution cloud map of flow field at different moments: (a) t=0.151s; (b) t=0.154s; (c) t=0.156s
Figure 12

Experiment 2 Cloud map of turbulent kinetic energy distribution in the flow field at different moments: (a) t=0.120s; (b) t=0.124s; (c) t=0.128s

Figure 13

Experiment 7 Cloud map of turbulent kinetic energy distribution in the flow field at different moments: (a) t=0.151s; (b) t=0.154s; (c) t=0.156s
Figure 14

Flow chart of collaborative optimization design scheme
Figure 15

Test results of BP neural network in collaborative optimization

Figure 16

Pareto optimal solution set under nozzle co-optimization
Figure 17

The striking force waveform of target surface under different nozzle structures: (a) Test 1; (b) Test 2; (c) Test 3; (d) Test 4; (e) Test 5
Figure 18


Figure 19

Evolution process of flow field of nozzle at 0.5MPa: (a) Cavitation development stage; (b) Cavitation aggregation stage; (c) Cavitation collapse stage
Figure 20

Evolution process of flow field of nozzle at 3 MPa: (a) Cavitation development stage; (b) Cavitation aggregation stage; (c) Cavitation collapse stage

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- video1.mp4