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Abstract: 

Quantifying the timing (duration and frequency) of brief visual events is vital to human 

perception, multisensory integration and action planning. Tuned neural responses to visual 

event timing have been found in areas of the association cortices implicated in these 

processes. Here we ask whether and where the human brain derives these timing-tuned 

responses from the responses of early visual cortex, which monotonically increase with event 

duration and frequency. Using 7T fMRI and neural model-based analyses, we find a gradual 

transition from monotonically increasing to timing-tuned neural responses beginning in area 

MT/V5. Therefore, successive stages of visual processing gradually derive timing-tuned 

response components from the inherent modulation of sensory responses by event timing. 

This additional timing-tuned response component was independent of retinotopic location. 

We propose that this hierarchical derivation of timing-tuned responses from sensory 

processing areas quantifies sensory event timing while abstracting temporal representations 

from the spatial properties of their inputs. 
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Introduction 

Quantifying spatial and temporal information of events is vital to perceiving and interacting 

with our environment. For example, accurately determining the duration and frequency of 

sub-second events is crucial for multisensory integration and motor action planning1,2. 

Converging behavioural, computational and neuroimaging results suggest that the human 

brain’s representation of visual event timing is derived from visual responses rather than a 

centralised (internal) clock3-11. Visual responses are strongly modulated by event timing12,13, 

but it remains unclear how we quantify the timing of sensory events from the neural 

responses in sensory cortices. 

Early visual cortical responses increase monotonically but sub-linearly with event 

frequency and duration, which can be described in terms of the summed amplitude of 

transient and sustained neural responses respectively for a stimulus of a fixed strength12,13. 

Therefore, established early visual neural response dynamics provide a signal from which 

event timing can be quantified. These monotonic responses are likely to be restricted to the 

retinotopic location of the stimulus as these responses are encoded in neural responsivity to 

the stimulus in retinotopically organized early visual areas.  

Beyond early visual areas, an extensive network throughout the human association 

cortices shows visual timing-tuned responses, with maximum response amplitudes at specific 

preferred durations (the time from event onset to offset) and periods (the time between 

repeating event onsets; i.e., 1/frequency)14. These responses are topographically mapped, 

such that the preferred durations and periods of neural populations gradually progresses 

across the cortical surface14,15. Such timing-tuned responses and maps are found in areas that 

also show tuning and mapping for other quantities, including visual numerosity, visual object 

size and haptic numerosity16-18. These areas have a more abstracted representation of multiple 

quantities that likely allows their neural responses to interact regardless of the spatial, 
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temporal or sensory origins17,18, potentially underlying perceptual interactions19,20. As these 

quantity-tuned responses are topographically mapped by the state of stimulus quantity, rather 

than its position on the retina or skin, we expect them not to be restricted to the stimulus’ 

position on the sensory organ: they are encoded in an abstracted, quantity-based frame of 

reference.  

Regarding the computation of timing-tuned responses, it seems likely that they are 

derived from the dynamics of early sensory neural responses. However, it is unclear how and 

where tuned representations to visual event timing are computed and transformed from 

monotonic responses in early visual cortices. Computational models for other quantities 

suggest that excitatory and inhibitory non-linear monotonic responses can be compared to 

give numerosity-tuned responses21,22. Indeed, monotonic responses of early visual areas that 

closely follow numerosity are transformed into tuned responses to numerosity in lateral 

occipital areas23. A range of motor event timing-dependent neural response profiles, from 

timing-tuned to monotonic, has been described in macaque premotor cortex24,25. These tuned 

and monotonic neurons are intermixed and together transform from abstract, timing-tuned 

response to action-triggering thresholds to determine motor action timing. 

Here we ask how monotonic and tuned neural responses to visual event timing are 

related throughout the brain’s hierarchy of both timing maps and visual field maps: whether 

and where monotonic responses are transformed into tuned responses. We further ask how 

the responses to timing and visual field position are related. We do this by comparing the fits 

of monotonically increasing and tuned neural response models on ultra-high-field (7T) fMRI 

data that was acquired during the presentation of repetitive visual events which gradually 

varied in event duration and/or period. 

 

 



 5 

Results 

Timing responses transform from monotonic to tuned along the visual field map hierarchy 

For each voxel, we used both a monotonic and a tuned response model (Fig. 1 and 

Supplementary Fig. 1) to predict the time course of response amplitudes to the changes in 

event timing. Each of these response models uses a set of candidate response model 

parameters to predict the neural response amplitudes to every combination of event duration 

and frequency (Fig. 1a, b). At every event’s offset, we evaluate this prediction (Fig. 1c, d) to 

generate a prediction of the neural response time course that would be seen for this set of 

candidate response model parameters (Fig. 1e). Convolving this with a hemodynamic 

response function (Fig. 1f) predicts an fMRI response time course (Fig. 1g), which we 

correlate to the measured responses (Fig. 1h). We repeat this for a large set of candidate 

response model parameters to find those parameters that most closely predict each voxel’s 

response time course. We then compared the goodness of fit of the resulting monotonic and 

tuned response models on cross-validated data to distinguish between these models’ 

performance despite differences in model complexity. 
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Fig. 1 Monotonic and tuned response model fitting procedures. a Monotonic response 

model for duration (left) and frequency (middle) response components, and tuned response 

model (right). b In each case, a compressive exponent parameter captures a non-linear scaling 

with increases in event duration (left) or frequency (middle and right). Together, these make a 

prediction of the per-event response amplitude for every event timing shown in the stimulus 

(dots). c This gives a prediction of the response amplitudes that would be seen for each 

stimulus condition for a specific candidate set of response model parameters. d The times of 

event offsets in each stimulus condition, which vary in frequency. e Combining the per-event 

response amplitudes predicted by the response models (in c) and the times of the event offsets 

(in d) gives neural response amplitude predictions for each condition, equal to the amount of 

color under the curve. f The hemodynamic response function. g The neural response 

amplitude predictions (in e) are convolved with a hemodynamic response function (in f) to 

get the predicted fMRI response time courses. Note here that these predictions are for both 

ascending and descending sweeps of duration and/or period, while neural response 

predictions (in c and e) are for ascending sweeps only. h The monotonic response predictions 

for event duration and frequency changes are combined as a weighted sum. i The recorded 

fMRI response time course for an example voxel. The monotonic and tuned predictions were 

compared to the recording from each voxel. The free parameters of both the monotonic and 

tuned response models were found that maximize the correlation (R2) between predicted and 

measured fMRI response time courses. For the monotonic response model these parameters 

were the compressive exponents on duration and frequency components, and the weighting of 

these two components (ratio). For the tuned response model, the free parameters were the 

compressive exponent on event frequency, preferred duration (x), preferred period (y), 

response function extent along its major (σmaj) and minor (σmin) axes, and major axis 

orientation (θ). 
 

We excluded voxels where the cross-validated variance explained (R2) was 0.2 or less 

for both models. We found a clear modulation of responses by visual event timing throughout 

the visual field map hierarchy, with the monotonic response model best capturing responses 

of occipital areas and the tuned response model best capturing most of the responses in the 

parietal and frontal areas (Fig. 2a). 
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Fig. 2 Progressions of best-performing model on timing-selective responses and visual 

field position preferences. a Cross-validated variance explained of the best-performing 
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model within each voxel is displayed (averaged across both cross-validation splits, for voxels 

with a variance explained above 0.2 for either model). The variance explained of the 

monotonic response model is given in blue and of the tuned response model is given in red. 

The intensity of the color relates to the magnitude of the variance explained. b Eccentricity 

preferences for voxels with over 0.1 variance explained by the response model. c Polar angle 

preferences. Visual field map borders are shown as black dashed lines, and named in magenta 

text. The light shaded region is outside the fMRI recording volume. See also Supplementary 

Figs. 2-4. 

 

We used standard visual field mapping and population receptive field (pRF) 

modelling procedures26,27 to determine the preferred visual field positions of every voxel. We 

grouped these voxels into visual field maps (Fig. 2 and Supplementary Figs. 2 and 3), then 

averaged the fits in each visual field map and used a three-factor ANOVA to assess how 

model fits differed between visual field maps, models and participants. Model fits (R2) 

differed between visual field maps (F(16, 1021) = 27.95, p < 10-10, ηp
2 = 0.31) and models (F(1, 

1036) = 4.77, p = 0.029, ηp
2 = 0.005), and there was an interaction between visual field maps 

and model (F(16, 1021) = 59.26, p < 10-10, ηp
2 = 0.49). Post-hoc multiple comparisons 

demonstrated that early visual and lateral visual field maps had significantly better fits for the 

monotonic response model (V1, V2, V3, LO1, LO2, TO1, and V3AB; Fig. 3). In contrast, the 

responses of several parietal and frontal visual field maps were better captured by the tuned 

response model than the monotonic response model (IPS2, IPS3, IPS4, IPS5, sPCS1, sPCS2, 

and iPCS; Fig. 3). Regions that lay in between the early visual (monotonic) and 

parietal/frontal (tuned) maps (TO2, IPS0 and IPS1), showed no significant difference 

between the fit of the monotonic and tuned response model (V1: mean difference (µ) = -0.17, 

standard error (σx̅) = 0.01, t(23) = -14.28, p < 10-10, d’ = -2.91, 95% confidence interval (CI) = 

[-0.20, -0.15]; V2: μ = -0.17, σx̅ = 0.01, t(28) = -11.83, p < 10-10, d’ = -2.20, CI = [-0.20, -0.15]; 

V3: μ = -0.12, σx̅ = 0.01, t(31) = -9.94, p = 10-10, d’ = -1.76, CI = [-0.15, -0.10]; LO1: μ = -

0.17, σx̅ = 0.01, t(31) = -12.24, p < 10-10, d’ = -2.16, CI = [-0.20, -0.14]; LO2: μ = -0.15, σx̅ = 

0.01, t(29) = -10.99, p < 10-10, d’ = -2.01, CI = [-0.18, -0.13]; TO1: μ = -0.09, σx̅ = 0.02, t(31) = -
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5.18, p = 2 × 10-5, d’ = -0.91, CI = [-0.12, -0.05]; TO2: μ = -0.01, σx̅ = 0.02, t(31) = -0.48, p = 

0.635, d’ = -0.08, CI = [-0.04, 0.03]; V3AB: μ = -0.06, σx̅ = 0.02, t(31) = -3.25, p = 0.004, d’ = 

-0.57, CI = [-0.10, -0.02]; IPS0: μ = -0.02, σx̅ = 0.02, t(31) = -0.94, p = 0.376, d’ = -0.17, CI = 

[-0.05, 0.02]; IPS1: μ = 0.06, σx̅ = 0.03, t(31) = 2.09, p = 0.051, d’ = 0.37, CI = [0.00, 0.11]; 

IPS2: μ = 0.17, σx̅ = 0.02, t(31) = 8.23, p = 5 × 10-9, d’ = 1.46, CI = [0.13, 0.21]; IPS3: μ = 

0.19, σx̅ = 0.02, t(31) = 9.71, p = 10-10, d’ = 1.72, CI = [0.15, 0.23]; IPS4: μ = 0.11, σx̅ = 0.02, 

t(31) = 5.38, p = 10-5, d’ = 0.95, CI = [0.07, 0.15]; IPS5: μ = 0.14, σx̅ = 0.02, t(28) = 6.50, p = 8 

× 10-7, d’ = 1.21, CI = [0.10, 0.18]; sPCS1: μ = 0.22, σx̅ = 0.02, t(30) = 12.40, p < 10-10, d’ = 

2.23, CI = [0.19, 0.26]; sPCS2: μ = 0.19, σx̅ = 0.02, t(27) = 10.41, p = 10-10, d’ = 1.97, CI = 

[0.15, 0.22]; iPCS: μ = 0.06, σx̅ = 0.02, t(27) = 3.01, p = 0.007, d’ = 0.57, CI = [0.02, 0.11]). 

Strikingly, the amount of variance explained (i.e. the goodness of model fit) by both 

models increased along the visual field map hierarchy from V1 to TO1 (hMT+) (Fig. 3a), 

after which the tuned response model fit better. Tuned response model fits then remained 

relatively stable across frontal and parietal visual field maps while monotonic response model 

fits declined for more anterior visual field maps. As a result of these two changes, the 

difference in model fits (i.e. the additional variance explained by a timing-tuned response 

component) increased from occipital to frontal visual field maps (Fig. 3b). 
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Fig. 3 Comparison of fits of monotonic and tuned response models in each visual field 

map. a Cross-validated variance explained by monotonic and tuned response models. b 

Difference in cross-validated variance explained between models (tuned – monotonic) 

progressively changes from monotonic to tuned up the visual hierarchy. Markers show the 

mean variance explained of each visual field map, error bars show the standard error. Only 

the voxels that had a variance explained above 0.2 for either model are included. Significant 

differences between the models (in a paired t-test, FDR corrected for multiple comparisons): 

*p<.05 **p<.01, ***p<.001 and ****p<.0001. Bayes factors for each paired comparison are 

presented in the top row. 

 

 

 

Relationship between model fits and retinotopic location 

Since the monotonic response model performed well in early visual fields maps, it is likely 

that monotonic responses are computed from low-level stimulus properties. This suggests 

they would be limited to the retinotopic location of the stimulus (the central visual field 

representation), rather than elsewhere (the peripheral visual field representation). We 

therefore investigated whether the fits of the monotonic and tuned response models differed 
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between central and peripheral representations within each visual field map. We excluded 

voxels with a cross-validated variance explained (R2) of 0 in both models.  

First, we visualized the progressions of variance explained of each response model 

throughout the visual field by plotting the variance explained against eccentricity (Fig. 4 and 

Supplementary Fig. 5). It is clear that each model’s fit decreased as the voxel’s preferred 

visual position moved away from the stimulus area. This decrease was steep and sudden in 

early visual and lateral occipital visual field maps, which have smaller spatial receptive fields 

and where responses to event timing are best captured by monotonic response models. A 

decrease in model fits with eccentricity was also apparent in higher visual field maps, where 

the tuned response model begins to fit better, but this decrease was more gradual. 

The gradual progression from monotonic to tuned response model fits along the visual 

field map hierarchy suggests tuned responses are derived from monotonic inputs. 

Furthermore, it is important to remember that both response models describe the responses 

per event, so even in a monotonic response model (where total response amplitude increases 

with event frequency) the response per event actually decreases with frequency. As a result of 

this strong relationship between frequency and response amplitude in both models, much of 

the fMRI response of a timing-tuned neural population can be captured by a monotonic 

response model. Furthermore, as timing-tuned responses are found overlapping with visual 

field maps it may be that a spatial representation responding monotonically to temporal 

contrast is intermixed with a temporal representation with timing-tuned responses. We 

therefore also assess how much extra response variance the tuned response model can 

captured beyond the prediction of a monotonic response model: the difference between the 

tuned and monotonic response model fits. 

This difference between the monotonic and tuned response models’ fits decreased 

with eccentricity in early visual and lateral occipital visual field maps where responses to 
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event timing are best captured the monotonic response model. After TO1 the difference in 

goodness-of-fit does not show a consistent relationship to the voxel’s preferred visual 

position eccentricity. 

 

 

Fig. 4 Progression of timing response model fits with preferred visual field eccentricity 

in a representative selection of visual field maps. a Early and lateral occipital visual field 

maps show a sharp decrease of model fits moving away from the retinotopic representation of 

the stimulus position. This decrease then becomes more gradual where tuned response model 

fits begin to improve. b The difference between the response model fits (tuned - monotonic) 

also decreases with eccentricity in the early and lateral occipital visual field maps, but shows 

no consistent relationship with eccentricity after TO1. Markers show mean variance 

explained per eccentricity bin, error bars show the standard error of the mean. Solid lines 

show the best fit to changes with eccentricity, dashed lines are their 95% confidence 

intervals. Note that the data for these plots are not thresholded to a variance explained above 

0.2, but above 0. See also Supplementary Fig. 5. 

 

Second, to assess the significance of the effect of eccentricity on timing response 

model fits within each map, we compared the variance explained in voxels near (<1°) and far 

(>2°) from the center of the visual field using 3-way ANOVAs for monotonic response 

model fits, tuned response model fits, and their difference (factors: visual field map, 

eccentricity range and participant; interaction: visual field map and eccentricity range).  
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For the monotonic response model there was a main effect of eccentricity range (F(1, 

1086) = 97.97, p < 10-10, ηp
2 = 0.09) and map (F(16, 1071) = 59.07, p < 10-10, ηp

2 = 0.47), and an 

interaction between eccentricity range and visual field map (F(16, 1071) = 5.81, p < 10-10, ηp
2 = 

0.08). This interaction demonstrated that the difference between eccentricity ranges differed 

between maps. Not all maps showed a difference between eccentricity ranges, but post-hoc 

multiple comparisons demonstrated a higher variance explained near the central visual field 

representation than in the periphery in several maps (V1, V2, V3,  LO1,  LO2,  V3AB, IPS0, 

IPS2, IPS3,  sPCS2, iPCS; Fig. 5a) (V1: median difference between near and far (M) = 0.01, 

Z = 2.69, p = 0.012, r = 0.08, 95% confidence interval of  the median difference computed 

from 1000 bootstrap iterations (CI) = [0.00, 0.03]; V2: M = 0.02, Z = 3.44, p = 0.001, r = 

0.11, CI= [0.01, 0.05]; V3: M = 0.06, Z = 4.51, p = 6 × 10-5, r = 0.14, CI = [0.04, 0.07]; LO1: 

M = 0.10, , Z = 4.94, p = 10-5, r = 0.15, CI = [0.08, 0.13]; LO2: M = 0.05, Z = 4.24, p = 

0.0001, r = 0.13, CI= [0.03, 0.06]; TO1: M = 0.03,, Z = 1.98, p = 0.062, r = 0.06, CI= [-0.02, 

0.07]; TO2: M = -0.03, , Z = -2.09, p = 0.051, r = -0.07, CI = [-0.07, 0.02];V3AB: M = 0.05, 

Z = 3.63, p = 0.0007, r = 0.11, CI = [0.01, 0.06]; IPS0: M = 0.03, Z = 2.94, p = 0.006, r = 

0.09, CI = [0.01, 0.04]; IPS1: M = 0.01, Z = 1.83, p = 0.071, r = 0.06, CI = [-0.00, 0.02]; 

IPS2: M = 0.01, Z = 2.58, p = 0.015, r = 0.08, CI = [-0.00, 0.02]; IPS3: M = 0.02, Z = 3.66, p 

= 0.0007, r = 0.11, CI = [0.00, 0.04]; IPS4: M= 0.02, Z = 1.83, p = 0.071, r = 0.06, CI = [0.00, 

0.03]; IPS5: M = 0.00, Z = 1.87, p = 0.071, r = 0.06, CI = [0.00, 0.01]; sPCS1: M = 0.01, Z = 

1.25, p = 0.210, r = 0.04, CI = [-0.00, 0.01]; sPCS2: M = 0.02, Z = 4.13, p = 0.0002, r = 0.13, 

CI = [0.01, 0.03]; iPCS: M = 0.03, Z = 3.95, p = 0.0003, r = 0.12, CI = [0.02, 0.04]; all n = 32 

pairs). 

For the tuned response model, there were main effects of eccentricity range (F(1, 1086) = 

31.33, p = 3 × 10-8, ηp
2 = 0.03) and map (F(16, 1071) = 34.31, p < 10-10, ηp

2 = 0.34) but the 

interaction between eccentricity range and map did not reach significance (F(16, 1071) = 1.62, p 
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= 0.058, ηp
2 = 0.02). Again, post-hoc multiple comparisons demonstrated a higher variance 

explained near the central visual field representation than in the periphery in several maps 

(V1, V2, V3, LO1, LO2, V3AB, IPS3, IPS5, sPCS2, iPCS; Fig. 5b) (V1: M = 0.00, Z = 4.34, 

p = 6 × 10-5, r = 0.14, CI = [0.00, 0.01]; V2: M = 0.01, Z = 4.73, p = 10-5, r = 0.15, CI = [0.01, 

0.03]; V3: M = 0.03, ], Z = 4.92, p = 7 × 10-6, r = 0.15, CI = [0.02, 0.06; LO1: M = 0.04, Z = 

4.94, p = 7 × 10-6, r = 0.15, CI = [0.03, 0.05]; LO2: M = 0.01, Z = 2.99, p = 0.007, r = 0.09, 

CI = [0.00, 0.02]; TO1: M = 0.03, Z = 0.88, p = 0.379, r = 0.03, CI = [-0.02, 0.07]; TO2: M = 

-0.05, Z = -1.93, p = 0.084, r = -0.06, CI = [-0.08, -0.00]; V3AB: M= 0.03, Z = 3.33, p = 

0.003, r = 0.10, CI = [0.01, 0.04]; IPS0: M = 0.01, Z = 1.78, p = 0.107, r = 0.06, CI = [-0.00, 

0.02]; IPS1: M = 0.00, Z = 1.66, p = 0.126, r = 0.05, CI = [-0.00, 0.03]; IPS2: M = 0.00, Z = 

1.35, p = 0.196, r = 0.04, CI = [-0.02, 0.04]; IPS3: M = 0.03, Z = 3.03, p = 0.007, r = 0.09, CI 

= [0.02, 0.06]; IPS4: M = 0.02, Z = 1.55, p = 0.147, r = 0.05, CI = [0.01, 0.04]; IPS5: M = 

0.02, Z = 2.84, p = 0.008, r = 0.09, CI = [0.01, 0.03]; sPCS1: M = 0.01, Z = 1.33, p = 0.196, r 

= 0.04, CI = [-0.01, 0.02]; sPCS2: M = 0.02, Z = 2.90, p = 0.008, r = 0.09, CI = [0.00, 0.04]; 

iPCS: M = 0.02, Z = 2.73, p = 0.011, r = 0.09, CI = [0.00, 0.05]; all n = 32 pairs). 

Finally, the difference in variance explained between the models revealed a main 

effect of eccentricity range (F(1,1086) = 10.57, p = 0.001, ηp
2 = 0.01) and map (F(16, 1071) = 

54.85, p < 10-10, ηp
2 = 0.46), and an interaction between the eccentricity range and map (F(16, 

1071) = 2.90, p = 0.0001, ηp
2 = 0.04). Here, post-hoc multiple comparisons demonstrated that 

the difference in variance explained between the models was larger near the center of the 

visual field than in the periphery only in V3, LO1, LO2 and IPS0 (Fig. 5c). Notably, these are 

areas in which the monotonic response model outperformed the tuned response model. Areas 

in which the tuned response model outperformed the monotonic response model showed no 

significant difference between eccentricity ranges. The Bayes factors of the paired 

comparisons in the latter areas are below one, indicating that such a difference between 
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eccentricity ranges is indeed absent. This suggests that the additional response component 

explained by tuning was location-independent. (V1: M = -0.00, Z = -1.72, p = 0.181, r = -

0.05, CI = [-0.02, 0.00]; V2: M = -0.01, Z = -0.93, p = 0.541, r = -0.03, CI = [-0.02, 0.00]; 

V3: M = -0.02, Z = -2.77, p = 0.024, r = -0.09, CI = [-0.04, -0.01]; LO1: M = -0.05, Z = -4.88, 

p = 2 × 10-5, r = -0.15, CI = [-0.08, -0.03]; LO2: M  = -0.04, Z = -3.85, p = 0.0010, r = -0.12, 

CI = [-0.05, -0.02]; TO1: M = -0.01, Z = -1.93, p = 0.153, r = -0.06, CI = [-0.04, 0.00]; TO2: 

M = -0.01, Z = -0.37, p = 0.753, r = -0.01, CI = [-0.02, 0.01]; V3AB: M = -0.01, Z = -2.04, p 

= 0.141, r = -0.06, CI = [-0.02, -0.00]; IPS0: M = -0.01, Z = -2.90, p = 0.021, r = -0.09, CI = 

[-0.02, -0.00];  IPS1: M = -0.00, Z = -0.37, p = 0.753, r = -0.01, CI = [-0.01, 0.01]; IPS2: M = 

-0.01, Z = -0.75, p = 0.594, r = -0.02, CI = [-0.02, 0.00]; IPS3: M = 0.02, Z = 1.72, p = 0.181, 

r = 0.05, CI = [0.01, 0.03]; IPS4: M = 0.01, Z = 0.97, p = 0.541, r = 0.03, CI = [-0.01, 0.02]; 

IPS5: M = 0.01, Z = 1.53, p = 0.236, r = 0.05, CI = [-0.00, 0.02]; sPCS1: M = 0.00, Z = -0.13, 

p = 0.896, r = -0.00, CI = [-0.01, 0.01];  sPCS2: M = 0.00, Z = 0.80, p = 0.594, r = 0.03, CI = 

[-0.01, 0.02];  iPCS: M = -0.00, Z = -0.45, p = 0.753, r = -0.01, CI = [-0.02, 0.01]; all n = 32 

pairs). 

 

 

Fig. 5 Model fits decrease with distance from the stimulus area, but the additional 

response variance explained by the timing-tuned model is only affected in visual field 

maps where the monotonic response model fits better. a Cross-validated variance 

explained by the monotonic response model in eccentricity ranges near and far from the 

stimulus area. b Cross-validated variance explained by the tuned response model in 

eccentricity ranges near and far from the stimulus area. In both cases, responses are clearer 
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near the stimulus area in many visual field maps. c The difference in cross-validated variance 

explained between the two models was significant only in V3, LO1, LO2 and IPS0, where the 

monotonic response model fit better than the tuned response model. Markers show the 

median variance explained in each visual field map, error bars show the 95% confidence 

interval, computed from 1000 bootstrap iterations. Only voxels that had a variance explained 

above 0 for either model are included. Significant differences between the near and far 

eccentricity ranges (Wilcoxon signed-rank test, FDR corrected for multiple comparisons): 

*p<.05 **p<.01, ***p<.001 and ****p<.0001. Bayes factors for each paired comparison are 

presented in the top row. 

 

Timing response transforms from monotonic to tuned along the timing map hierarchy 

In previous work the locations of timing-tuned responses were defined as timing maps, as the 

tuned response model performed best over the brain as a whole14. Such timing maps overlap 

with visual field maps, but do not have the same borders so do not include the same set of 

voxels. So far in this study, we have used visual field map borders, which may include both a 

spatial representation responding monotonically to temporal contrast and a temporal 

representation with timing-tuned responses. Therefore, to focus on the temporal 

representation more specifically, we compared the models specifically within the timing map 

borders. We excluded voxels where the cross-validated variance explained (R2) was 0.2 or 

less for both models. We used a three-factor ANOVA to assess how model fits differed 

between timing maps, models and participants. Model fits differed between timing maps (F(9, 

596) = 24.65, p < 10-10, ηp
2 = 0.28) and models (F(1, 604) = 145.37, p < 10-10, ηp

2 = 0.20), and 

there was an interaction between maps and model  (F(9, 596) = 35.63, p < 10-10, ηp
2 = 0.36). 

Post-hoc multiple comparisons demonstrated that responses of anterior maps (TLS, TPCI, 

TPCM, TPCS, TFI and TFS) were better fit by the tuned response model (Fig. 6). However, 

posterior timing maps (TLO and TTOP) were better fit by the monotonic response model, 

which was not evident in previous analyses that did not compare models in each map 

separately. Responses in timing maps TTOA and TPO (which largely overlap with TO2, 

IPS0 and IPS1) showed no significant difference between the fits of the monotonic and tuned 

response models. (TLO: μ = -0.11, σx̅ = 0.01, t(31) = -7.29, p = 8 × 10-8, d' = -1.29, 95% 
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confidence interval (CI) = [-0.13, -0.08]; TTOP: μ = -0.06, σx̅ = 0.02, t(31) = -3.25, p = 0.004, 

d' = -0.57, CI = [-0.09, -0.02]; TTOA: μ = 0.00, σx̅ = 0.02, t(31) = 0.06, p = 0.952, d' = 0.01, CI 

= [-0.03, 0.03]; TPO: μ = 0.02, σx̅ = 0.02, t(31) = 1.05, p = 0.337, d' = 0.19, CI = [-0.02, 0.06]; 

TLS: μ = 0.07, σx̅ = 0.02, t(29) = 3.11, p = 0.005, d' = 0.57, CI = [0.02, 0.11]; TPCI: μ = 0.10, 

σx̅ = 0.02, t(25) = 4.41, p = 0.0003, d' = 0.87, CI = [0.06, 0.15]; TPCM: μ = 0.14, σx̅ = 0.02, t(29) 

= 7.47, p = 8 × 10-8, d' = 1.36, CI = [0.10, 0.17]; TPCS: μ = 0.21, σx̅ = 0.01, t(31) = 14.76, p < 

10-10, d' = 2.61, CI = [0.18, 0.23]; TFI: μ = 0.10, σx̅ = 0.02, t(25) = 5.08, p = 6 × 10-5, d’ = 1.00, 

CI = [0.06, 0.14]; TFS: μ = 0.20, σx̅ = 0.02, t(30) = 13.05, p < 10-10, d' = 2.34, CI = [0.17, 

0.23]). 

We do not compare model fits between eccentricity ranges within timing maps 

because the voxel selection within the timing maps is not chosen to cover all visual field 

position eccentricities. 
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Fig. 6 Comparison of fits of monotonic and tuned response models in each timing map. 

a Cross-validated variance explained by the monotonic and tuned response models. b 

Difference in cross-validated variance explained between models (tuned – monotonic) 

progressively changes from monotonic to tuned up the timing map hierarchy. Markers show 

the mean variance explained of each timing map, error bars show the standard error. Only the 

voxels that had a variance explained above 0.2 for either model are included. Significant 

differences between the models (in a paired t-test, FDR corrected for multiple comparisons): 

*p<.05 **p<.01, ***p<.001 and ****p<.0001. Bayes factors for each paired comparison are 

presented in the top row.  

 

Discussion 

Tuned responses to visual event timing occur in a hierarchical network of topographically 

organized maps throughout the human association cortices14. Responses of early visual field 

maps are also modulated by event timing, monotonically increasing with event duration and 

frequency12,13. In the current study we asked how these two sets of responses are related 

throughout the brain’s hierarchy of both timing maps and visual field maps: whether and 

where monotonic responses are transformed into tuned responses. We also assessed how the 

responses to timing and visual field position are related. Visual field maps and timing maps 

largely overlap but have different borders and so include different neural populations which 

may have slightly different properties. We found increasingly clear monotonic responses to 

visual event duration and frequency from primary visual cortex to lateral occipital and 

temporal-occipital visual field maps (LO1, LO2, and TO1). After this, we found a gradual 

transition from monotonic responses to tuned responses from posterior to anterior brain areas, 

both when separated into visual field maps and timing maps. Both kinds of responses 

typically decreased when moving away from the retinotopic location of the stimulus. 

However, the difference between the model fits in areas where the tuned model outperformed 

the monotonic response model (i.e. the additional variance explained by the tuned response 

model) did not consistently depend on retinotopic location of the neural population. 

We found that monotonic responses to visual stimulus event timing occurred in early 

visual field maps (as is also reported by Stigliani and colleagues12). More specifically, the 
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amplitude of these monotonic responses accumulated sub-linearly with event duration and 

frequency (in line with Zhou and colleagues13). In contrast to these previous experiments, we 

characterised the time between events in terms of the frequency of event onsets, rather than 

interstimulus interval (the time from one single event’s offset to another single event’s onset). 

This describes our stimulus design more straightforwardly because we use a repeating 

periodic stimulus that includes a large variation in event durations (the time from event onset 

to offset) for any particular frequency. 

The fits of the monotonic response model increased from the V1 to the TO visual field 

maps. This is in line with the relative increase of transient responses to temporal contrast 

(stronger for magnocellular inputs), compared to sustained responses to temporal contrast 

(stronger for parvocellular inputs), when moving up the visual field map hierarchy12. Indeed, 

in macaques the inputs to neurons in area MT are mainly from the magnocellular stream (the 

TO visual field maps are functionally homologous to MT)28-30, which has benefits for an area 

specialized in motion processing. A greater proportion of magnocellular inputs increases the 

modulation of responses by stimulus timing and may likewise be beneficial for subsequently 

deriving representations of stimulus timing. 

A transition from monotonic to tuned responses occurs in the TO2, IPS0 and IPS1 

visual field maps or, similarly, the TTOA and TPO timing maps. Strikingly, visual field map 

TO2 and timing map TTOA overlap with the human MT+31,32. This area appears to be 

required for visual event timing perception as transcranial magnetic stimulation here disrupts 

timing judgements5.  

We had previously reported that the responses of the timing maps were better fit by 

tuned than monotonic functions14. In the current study, we find that the responses in the 

timing maps TLO and TTOP are better captured by monotonic rather than tuned response 

models. We had previously grouped all timing maps together in this comparison, and used a 
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monotonic response model that assumed a linear accumulation of response amplitude with 

event duration14. Based on the results from the current study, we are no longer convinced that 

TLO and TTOP are topographically organized by preferred event timing because their 

monotonic response functions have no timing preference. 

Nevertheless, there may be timing-tuned neurons with specific timing preferences in 

TLO and TTOP. The transition from monotonic to tuned responses is remarkably gradual 

across the visual field map and timing map hierarchies. This suggests that tuned and 

monotonic timing-selective responses may not be mutually exclusive. Intermixed monotonic 

and motor timing-tuned neuronal populations have been found in macaque medial premotor 

cortex during a rhythm continuation task24,25. FMRI’s spatial resolution groups the responses 

of large neural populations, which prevents us from distinguishing a hierarchical change in 

the proportions of intermixed monotonic and tuned neurons from a hierarchical 

transformation of event timing representations of single neurons. Both of these possibilities 

have independent components reflecting tuning for event timing and the accumulation of 

neural response amplitude with event frequency.  Regardless of whether these components 

are found in the responses of distinct neurons or contribute to the responses of the same 

neuron, we propose that the difference between the fits of the monotonic and tuned response 

models reflects neural tuning for event timing after accounting for the underlying frequency-

dependence of sensory responses. 

The goodness of fit of both the monotonic and tuned response models are greatest 

near the retinotopic location of the visual field center, where the stimulus was presented, in 

most visual field maps. However, in visual field maps where the tuned response model 

outperforms the monotonic response model, the extra response variance captured by the 

tuned response model is independent of retinotopic organization. Based on the location-

invariance of this additional tuned response component (beyond the monotonic frequency-
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dependent response component), the location-dependence of the tuned response model’s fit 

may be rooted in the location-dependence of the monotonic, frequency-dependent response 

component. 

Previous studies of responses to timing have not compared the temporal modulation 

of responses to visual position selectivity on an individual subject level, which is important 

given the fine spatial scale of changes in visual position selectivity in visual field maps. A 

recent meta-analysis found dorsal-ventral gradients of responsivity to spatial and temporal 

tasks in the intraparietal sulcus and the right frontal operculum and posterior-anterior 

gradients around the supplementary motor area33. We expect this discrepancy in locations to 

be due to the difference in task demands, as the studies in the meta-analysis were only 

included if they used a task that was clearly linked to spatial or temporal processing. 

Conversely, the current study did not require the participants to make any timing-related 

judgements when measuring temporal modulation of neural responses, nor spatial judgements 

during visual field mapping. Still, we do find a posterior-anterior gradient, but across the 

entire brain, such that spatial responses to the temporal contrast of stimuli (i.e., monotonic 

responses) are found posterior, while timing-selective tuned responses are found more 

anterior. 

The emergence of visual numerosity tuned responses shows striking similarities with 

the emergence of visual timing tuned responses we describe here. Both numerosity and event 

timing are quantities, but spatial and temporal quantities respectively. Both show tuned 

responses in higher-level association areas14,16. While these responses largely overlap, there 

are clear differences in their location. This suggests that, although the different quantities are 

not processed using the exact same neural populations, there may be similar computational 

mechanisms for estimating different quantities in the brain. In both cases, early visual 

responses monotonically follow numerosity and timing, and tuned responses emerge later23. 
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However, the transition from monotonic responses to numerosity to numerosity-tuned 

responses takes place around the lateral occipital areas, rather than the temporal occipital 

areas that we see for timing. This transition is very sudden in the case of numerosity 

responses, in contrast to the gradual transition we see in the emergence of timing-tuned 

responses. As a result, the numerosity-tuned responses are not partly captured by or 

intertwined with monotonic responses. Therefore, only monotonic numerosity response 

model fits decrease when moving away from the retinotopic location of the center of the 

visual field, while the numerosity-tuned response model fits are consistent throughout the 

visual field.  

To begin estimating stimulus timing from visual inputs requires an analysis of neural 

responses to temporal changes in those inputs. Early retinotopic visual areas will only show 

such responses at the retinotopic location of the stimulus. However, a true sense of event 

timing should generalize across all stimulus locations, separating timing information from 

other stimulus properties. Here we find here that the human brain appears to transform simple 

monotonic responses to timing into tuned temporal representations, where the tuned 

component is independent of the event’s location in the visual field. As such, similar to 

numerosity, the brain’s responses to stimulus timing reflect a transformation and abstraction 

from low-level sensory information. Once this abstracted tuned representation of event timing 

has been derived, it is propagated into brain areas implicated in allocating attention, 

multisensory integration and planning actions, suggesting it benefits a wide variety of 

cognitive functions.  

 

Methods 

Participants 
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We collected data from eight participants (1 female, aged 25 to 35). All participants were 

right-handed and had normal or corrected to normal vision. Two participants were co-authors, 

familiar with the goals of the study. All participants were briefly trained in duration 

discrimination tasks before scanning, to encourage attention to stimulus timing and avoid 

learning or habituation effects at the start of data collection. All subjects gave written 

informed consent. All experimental procedures were cleared by the ethics committee of 

University Medical Center Utrecht. 

 

Stimuli 

Timing mapping stimuli 

All visual stimuli were generated using MATLAB and Psychtoolbox-334. The visual stimuli 

were presented on a 27.0 x 9.5 cm screen inside the MRI bore (resolution 1600 x 538 pixels) 

at 41 cm from the participant’s eyes. 

Participants were asked to fixate at the center of a red fixation cross that crossed the 

whole display on a gray background. Visual events comprised the presentation of a filled 

circle with a diameter of 0.4° that appeared for a variable duration at a variable temporal 

period14. The position of the circle changed pseudo-randomly between stimulus events, but 

was always within 0.75° of this fixation cross and 0.25° or more away (edge to edge) from 

the previous position. Every 21 s on average, the presented circle was white rather than the 

usual black.  Participants had to respond by pushing a button when they saw this white target 

stimulus. No timing judgements were ever required. 

Each event timing was repeated in a 2100 ms time frame, such that an entire TR 

(=2100 ms) contained the same event duration and period. The number of events presented 

within the 2100 ms between timing changes varied with event period and increments in event 

period sometimes fell slightly before or after 2100 ms. The maximum drift of event onset 
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timing was only 300 ms, and the increments in event period were only 50 ms, so this 

deviation was not perceptible. The presented event timing was used for analysis.  

To distinguish responses to specific event timings from responses to other stimulus 

parameters, we used four conditions where event duration and period were related in different 

ways (Supplementary Movie 1). First, the “constant luminance” condition, in which event 

duration and period were equal and both changed together (50-1000 ms, 50 ms steps) (Fig. 

1b, d, black points). Second, the “constant duration” condition, in which event period 

changed (50-1000 ms, 50 ms steps), while event duration remained 50 ms (Fig. 1b, d, blue 

points). Third, the “constant period” condition, in which the event duration changed (50-1000 

ms, 50 ms steps), while the period always remained 1000 ms (Fig. 1b, d, red points). In all the 

aforementioned conditions, increasing progressions of event duration and/or period were 

followed by a 16.8 s interval of events with a 2100 ms period. The event duration was 50 ms 

in the “constant duration” condition and 2000 ms in the other two conditions. These extreme 

timings help to distinguish very small response functions (which would respond briefly and 

with low amplitude in the 50-1000 ms range) and very large response functions (which 

respond continuously and with high amplitude) in fMRI responses26,35. Furthermore, these 

long event durations and periods produce little response from neural populations preferring 

sub-second timing. Conversely, populations whose response monotonically increases with 

duration, period, or mean luminance should respond most strongly to these stimuli. After this, 

the same event timings were presented in a decreasing order, followed by another 16.8 s 

interval of events with a 50 or 2000 ms duration and a 2100 ms period. We used a single 

model to capture responses to both increasing and decreasing event duration and/or period 

progressions. Including responses to both increasing and decreasing timings in the same 

model counterbalanced adaptation effects with stimuli that give both higher and lower 

responses preceding presentation of any timing.  
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Finally, the “gaps” condition was designed to sample further combinations of event 

periods and durations (Fig. 1b, d, green points). This stimulus configuration consisted of four 

progressions with timing changing in 50 ms steps. In chronological order: increasing event 

durations (50-500 ms) and decreasing event periods (950-500 ms); increasing event durations 

(50-500 ms) and increasing event periods (550-1000 ms); decreasing event durations (500-50 

ms) and increasing event periods (500-950 ms); and decreasing event durations (500-50 ms) 

and decreasing event periods (1000-550 ms). Each of these progressions was separated by 6.3 

s of events with 50 ms duration and 2100 ms period, and the last was followed by 14.7s with 

that timing.  

We tested each of 24 possible orders of all four stimulus configurations once per 

participant, so each participant’s data included 24 scanning runs, each totaling 470.4 seconds 

and acquired in four sessions. 

 

Visual field mapping stimuli 

We acquired visual field mapping responses to examine the relationship between our voxels’ 

responses to visual event timing and visual field position, and to delineate visual field maps. 

The visual field mapping paradigm was identical to that described in previous studies16,17. 

The stimulus consisted of drifting bar apertures at various orientations, which exposed a 

moving checkerboard pattern. The stimulus had a radius of 6.35°, much larger than the timing 

mapping stimuli (0.75° radius). Two diagonal red lines, intersecting at the center of the 

display, were again presented throughout the entire scanning run. Participants fixated the 

center of the cross and pressed a button when these lines changed color, and detected 80-

100% of the color changes that were presented within each scanning run. 

 

fMRI data collection and pre-processing 
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Acquisition procedures were similar to procedures described elsewhere17,35. Briefly, data was 

acquired with a 7T Philips Achieva scanner with a repetition time (TR) of 2100 ms, echo 

time (TE) of 25 ms, and a flip angle of 70°. The T1-weighted anatomical scans were 

automatically segmented with Freesurfer and manually edited to minimize segmentation 

errors. The T2*-weighted functional scans were acquired using a 32-channel head coil at a 

resolution of 1.77x1.77x1.75 mm, with 41 interleaved slices of 128x128 voxels. The resulting 

field of view was 227x227x72 mm. We used a single shot gradient echo sequence with 

SENSE acceleration factor 3.0 and anterior-posterior encoding, plus a top-up scan with the 

opposite phase-encoding direction to correct for image distortion in the gradient encoding 

direction36. We also acquired a T1-weighted anatomical image with the same resolution, 

position and orientation as the functional data. We used a 3rd-order image-based B0 shim of 

the functional scan’s field of view (in-house IDL software, v6.3, RSI, Boulder, CO, USA). 

The anterior temporal and frontal lobes were excluded from acquisition due to the fact that 

7T fMRI has a low response amplitude and large spatial distortions in these areas. For timing 

mapping, we used 24 runs, 224 TRs (470.4 s) each, separated into 4 sessions with typically 6 

runs each. For visual field mapping, we used 8-10 runs, 182 TRs (382.2 s) each, in a single 

separate session. 

The functional data was co-registered to the anatomical space using AFNI 

(afni.nimh.nih.gov37). A single transformation matrix was constructed, incorporating all the 

steps from the raw data to the cortical surface model to reduce the number of interpolation 

steps to one. A T1 image with the same resolution, position and orientation as the functional 

data was first used to determine the transformation to a higher resolution (1 mm isotropic) 

whole-brain T1 image (3dUnifize, 3dAllineate). For the fMRI data, we first applied motion 

correction to two series of images that were acquired using opposing phase-encoding 

directions (3dvolreg). Subsequently, we determined the distortion transformation between the 
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average images of these two series (3dQwarp). We then determined the transformation in 

brain position between and within functional scans (3dNwarpApply). Then we determined 

the transformation that co-registers this functional data to the T1 acquired in the same space 

(3dvolreg). We applied the product of all these transformations to every functional volume to 

transform our functional data to the whole-brain T1 anatomy. We repeated this for each fMRI 

session to transform all their data to the same anatomical space. 

The resulting data was imported into Vistasoft’s mrVista framework 

(github.com/vistalab/vistasoft). For timing response data, we identified the parts of each 

scanning run where each stimulus configuration was presented and averaged these fMRI 

responses together across all runs and sessions14. We also separately averaged data from odd 

and even runs to allow cross-validation in subsequent modelling. For visual field mapping 

data, we averaged all scan runs together. 

 

Visual field mapping analysis and visual field map definitions 

We analyzed visual field mapping data following a standard pRF modelling procedure26,27. 

We identified visual field map borders based on reversals in the cortical progression of the 

polar angle of voxels’ visual field position preferences, manually identifying these on an 

inflated rendering of each participant’s cortical surface (Fig. 2 and Supplementary Figs. 2 and 

3). These formed our main regions of interest (ROIs). As well as the early visual field maps 

(V1, V2, V3), we identified higher visual field maps in the lateral/temporal occipital (LO1-

LO2, TO1-TO2), parietal association (V3A/B, IPS0-IPS5), and frontal (sPCS1-sPCS2, iPCS) 

cortices with reference to landmarks identified in previous studies31,38-40. 

 

Timing response models 
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The current study compared the fits of established monotonic13 and tuned14 models of neural 

responses to visual event timing in different brain areas (Fig. 1 and Supplementary Fig. 1). 

Each of these models describes a particular relationship between event timing and the neural 

response amplitude to every event. We predict response amplitudes on a per-event basis, but 

these responses accumulate over a few seconds due to fMRI’s measurement of slow changes 

in blood flow and oxygenation. The models predicted neural response amplitudes at the offset 

of events, since this is when the information about duration and period of the events was 

completely available to the participants.  

These predictions were then convolved with a standard hemodynamic response 

function (HRF) to construct a prediction for the fMRI response. Then, any free parameters 

were fit to maximize the correlation between the predicted response and the actual, recorded 

data (variance explained), giving a fit neural response model. Since HRF parameters 

substantially differ between participants, the resulting neural response model was used to 

determine participant-specific HRF parameters as described elsewhere27. Using these 

participant-specific HRF parameters, the neural response model’s free parameters were refit. 

Given that tuned response model has more free parameters than the monotonic 

response model, both model fits were cross-validated before comparison. This cross-

validation was achieved by fitting each response model’s free parameters on the even or odd 

scans and evaluating the resulting model’s fit on the complementary half. Because fMRI 

response amplitudes change arbitrarily between scans and sessions41, the scaling between the 

predicted fMRI time course and complementary scan data was refit during cross-validation. 

 

Monotonic response model 

The monotonic response model has been demonstrated to capture effects of event timing on 

fMRI responses in early visual areas. This model has two components that scale 
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independently with event duration and frequency (1/period)12. The frequency and duration 

components were each scaled by free compressive exponent parameters13. The neural 

response amplitude to each event was given by equation (1): 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∝ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝐷𝑢𝑟 ×  𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑅𝑎𝑡𝑖𝑜 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑒𝑥𝑝𝐹𝑟𝑒𝑞𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦    (1) 

Where expDur and expFreq are the compressive exponent on duration and frequency 

respectively, in the range 0-1. AmplitudeRatio captures the relative amplitudes of the 

duration and frequency components, and was linearly solved by dividing the duration 

component’s response amplitude by the frequency component’s response amplitude from a 

general linear model. The compressive exponents were fit by testing a large set of candidate 

values to find the parameter combination that best predicted the measured response of each 

voxel. 

Note that monotonically decreasing responses would imply a response that decreases 

with increasing duration or frequency, so these should not be found in the transient and 

sustained responses of early visual areas. Therefore, we restricted the response amplitudes of 

the duration and frequency components to positive values. If, for a certain voxel, one of the 

components’ scaling factors (e.g. the response amplitude of the duration component) was fit 

as negative, we set this scaling factor to 0 and fit the response amplitude to the other 

component alone. If the other scaling factor (e.g. the response amplitude of the frequency 

component) was positive after any refitting, these scaling factors were used to compute the 

amplitude ratio in the final model. If the other scaling factor (e.g. the response amplitude of 

the frequency component) was negative after any refitting, it was also set to zero and the 

variance explained by the model in this voxel was zero. As a result, the amplitude ratio 

cannot be below zero. Since no monotonically decreasing responses were allowed, the 

monotonically increasing model will be referred to simply as the monotonic response model. 
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Tuned response model 

In the tuned response model, the neural response amplitude to each event is described by a 2-

dimensional anisotropic Gaussian function, whose response is scaled by a compressive 

exponent on frequency. We chose the tuned model response function that best predicted 

neural responses throughout the timing map network14. The function can be described using 

the following equations (2-4): 𝑋 = (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑓) × cos(𝜃) − (𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑃𝑒𝑟𝑖𝑜𝑑𝑝𝑟𝑒𝑓)  × sin(𝜃) (2) 𝑌 = (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑝𝑟𝑒𝑓) × sin(𝜃) − (𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑃𝑒𝑟𝑖𝑜𝑑𝑝𝑟𝑒𝑓)  × cos(𝜃)  (3) 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∝ 𝑒−0.5×(( 𝑌𝜎𝑚𝑎𝑗)2+( 𝑋𝜎𝑚𝑖𝑛)2) × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑒𝑥𝑝𝐹𝑟𝑒𝑞𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦       (4) 

The six free parameters of the model are: the preferred duration (Durationpref) and the 

preferred period (Periodpref) around which the Gaussian function’s mean is centered; the 

standard deviations along its major and minor axes (𝜎maj and 𝜎min); the angulation of its major 

axis (𝜃); and the compressive exponent on frequency to which the response was scaled. The 

fitting procedure consisted of testing a large combination of free parameters, followed by a 

gradient descent between the best-fitting parameter combination and its neighbors. 

After fitting this model, it is possible that some voxels are best described by a 

Gaussian function with a preferred duration and/or period on the boundaries or outside of the 

presented stimulus range (i.e. a duration or period below 60 ms or above 990 ms). However, 

it would be impossible to find the exact preferred duration and/or period belonging to this 

Gaussian26. Also, this would increase the risk that a tuned response model produces 

monotonic-like responses by simply adhering to large values for these free parameters. 

Therefore, the variance explained of the tuned response model in voxels where the preferred 

duration or period was outside the presented stimulus range was set to 0 during cross-

validation. 
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The fit parameters of this tuned response model allowed us to define the borders of 

timing map regions of interest, as previously described14. Here we use the same timing maps 

defined in that study (Supplementary Fig. 4). Briefly, we took the variance explained values 

for each vertex on the cortical surface and performed surface-based clustering on these 

values. In some cases, we merged two adjacent clusters into a single ROI, or split a single 

large cluster into two parts where it contained two contiguous maps (common in 

TTOP/TTOA and TPCS/TPCM). 

 

Model Comparisons 

We removed voxels for which the variance explained of both models was 0.2 or less from 

model comparisons. Then, the model fits were statistically compared to each other in each 

visual field map and timing map ROI. For each hemisphere, the model variance explained 

was averaged across the voxels in each ROI, separately for the two cross-validation splits. If 

a hemisphere did not have any voxels with a variance explained above 0.2 in a specific ROI 

and a specific cross-validation split, that ROI in that hemisphere and cross-validation split 

was excluded from subsequent comparison (n=1038 visual field map measurements; n=606 

timing map measurements).  

To assess how model fits differed between ROIs, the average variance explained by 

the two models was then compared using a 3-factor ANOVA (factors: participant, ROI, and 

model; interaction: ROI and model) using MATLAB’s anovan function. The interaction 

factor here demonstrated that different ROIs’ responses were best captured by different 

response models. As the data was normally distributed (Jarque-Bera test with FDR 

correction), post-hoc two-sided paired t-tests with FDR correction were then used to assess 

which model best captured the responses in each ROI, using hemispheres and cross-

validation splits as independent measures. Furthermore, in order to demonstrate the absence 
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of a difference between models, we computed Bayes factors for each of these paired 

comparisons in JASP42 using a Cauchy prior distribution with r = 1/√2. 

 

Progression of model fits within visual field maps 

To study whether the model fits changed throughout the visual field, variance explained was 

plotted against the distance to the center of the visual field (eccentricity), where the stimulus 

was shown. To achieve this, we first grouped all voxels within a map across hemispheres and 

cross-validation splits. For each visual field map, we then binned voxels according to their 

preferred eccentricity. Each bin had a range of 0.2°, centered on eccentricities from 0.1° to 

5.5°. Voxels that did not have a variance explained above 0 for either model were excluded. 

For each bin, the mean variance explained and its standard error were computed for each 

model. Bins with less than 50 voxels were excluded. 

To visualize the progression of model variance explained across eccentricity, we fitted 

a cumulative Gaussian sigmoid function (i.e. greater variance explained at low eccentricities, 

near the stimulus) and a quadratic function (which also allows a maximum variance 

explained at higher eccentricity) to the progression in each visual field map. The free 

parameters for the sigmoid function were point of inflection, slope, maximum, and minimum. 

We computed the 95% confidence interval of this sigmoid from 1000 bootstrap iterations. 

The free parameters for the quadratic function were intercept, slope, and quadratic term. We 

computed the 95% confidence interval of the quadratic function linearly using polyfit and 

polyconf in MATLAB. For visualizing the progression of model fits with eccentricity, we 

chose the function that was best correlated with the eccentricity bin means. 

Note that the quadratic function can also capture a linear relation, so comparing these 

progressions is only useful for plotting the data rather than determining whether fits decrease 

with eccentricity. Therefore, to statistically compare the difference between model fits near 
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and far from the center of the visual field, we computed the average variance explained in 

each hemisphere, each cross-validation split and each map for eccentricities lower than 1° 

and eccentricities higher than 2° for all voxels with a variance explained above 0 for either 

model (n=1088 visual field map measurements). To assess how model fits differed between 

these eccentricity ranges, these averages were then compared using a 3-factor ANOVA 

(factors: participant, ROI, and eccentricity range; interaction: ROI and eccentricity range) 

using MATLAB’s anovan function. The interaction factor here demonstrated that the 

different ROIs had better variance explained in different eccentricity ranges. The differences 

between variance explained at different eccentricity ranges were not normally distributed in 

all ROIs (Jarque-Bera test with FDR correction). Therefore, we used post-hoc two-sided 

Wilcoxon signed-rank tests with FDR correction to assess how variance explained differed 

with eccentricity range in each ROI, using hemispheres and cross-validation splits as 

independent measures. Here, we calculated the effect size as r = Z/√n. Furthermore, in order 

to demonstrate the absence of a difference between eccentricity ranges, we computed Bayes 

factors for each of these non-parametric paired comparisons in JASP42 with 5 chains of 1000 

iterations, using a Cauchy prior distribution with r = 1/√2. 

We also computed the difference in variance explained between the monotonic and 

tuned response models for each voxel (tuned minus monotonic). This quantified the 

component of the voxel’s response that reflects timing tuning and cannot be explained by 

monotonic responses alone. The eccentricity progression of variance explained differences 

across the visual field map was also assessed using the statistical procedure described above. 

 

Data availability 

The data sets generated during the current study are available from the corresponding author 

upon reasonable request. Source data are provided with this paper. 
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Code availability 

The code that supports the findings of this study is available from the corresponding author 

upon reasonable request. 
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