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Abstract
Identifying the source population of invasive species is important to assess the distribution and potential
effects in the invaded area. The araneid spider Cyrtophora citricola is widely distributed in Europe, Asia,
and Africa; however, in the last twenty years, it has been reported in several countries across the
Americas. To date, the geographic origin of the populations established in America remains unclear, but
considering the successful colonization after its recent arrival, a high environmental similarity between
the invaded and native geographic distributions is expected. In this study, we compared the
environmental characteristics of two possible native regions (southern Africa and the Mediterranean) and
the invaded region (America), to determine the more likely origin for the populations established in
America. We found that the South African populations of C. citricola occupy environments with similar
climatic conditions to those of the American populations, and these similarities are greater than the ones
shared with the Mediterranean populations. Therefore, our results support a Southern African, rather than
a Mediterranean origin for the populations established in America. In addition, our results also show that
populations in America are expanding to environments that differ from those of the native populations.
Further studies, assessing intrinsic (e.g. physiological tolerances, plasticity, behavior, reproduction) and
extrinsic (physical barriers, predator release) factors could provide further information to disentangle the
mechanisms behind this expansion.
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Introduction
The arrival and establishment of any species on a recipient area is a process that depends primarily on
the species’ dispersal capacity, the propagule pressure (Simberloff 2009), and the environmental
similarity between original and recipient areas (Brown et al. 1996; Peterson 2003). In general, the
probability of a species establishing in a new area increases with the similarity of the environmental
conditions between the original and new areas (Peterson 2003; Wiens and Graham 2005). In the new
establishing areas, the interactions with the local biota are unpredictable, but knowing the interactions
and ecological requirements of species in their original area could provide useful insights of their
possible effects with the native biota in the new regions (Peterson 2003; Wiens and Graham 2005).

Biological invasions are common in nature, but long-distance dispersal events are rare, because they are
often restricted by physical and climatic barriers (Diamond 1984; Peterson 2003; Wiens and Graham
2005). However, in recent years, physical barriers have been easily overcome through human
transportation – whether intentionally or not – causing a rapid increase in the rate of long-distance
invasion events (Brown et al. 1996; Kobelt and Nentwig 2008; Peterson 2003). The successful
establishment of an invasive species in a new area depends on several species intrinsic features such as
tolerance to long periods of starvation and desiccation, high reproductive rate, and high dispersal
capacity (Foelix 2011; Nedvěd et al. 2011). Spiders are characterized by having these features (Foelix
2011) making them well suited for invading new and distant geographical areas. 

Examples of trans-oceanic spider invasions in the Neotropics are scarce (Garb et al. 2004; Laborda and
Simó 2008), but there are two well known cases: the recently documented invasion of Latrodectus
geometricus from South Africa (Garb et al. 2004; Taucare-Ríos et al. 2016) and the invasion of the
araneid Cyrtophora citricola (Forsskål 1775) (sensu lato), which is the focus of the present study (Levi
1997). Cyrtophora citricola is reported as native to the Old World (Levi 1997) –  ranging from  Africa,
Europa to part of Asia –  with extensive desert regions separating each group of populations between
Europe and Africa. This species has recently invaded the American continent, with the first report in 1996
(Levi 1997). It has now been recorded in several countries of the Americas, ranging from Brazil to Florida
in the United States (Alayón-García 2003; Edwards 2006; Levi 1997; Martín-Castejón and Sánchez-Ruiz
2010; Sánchez-Ruiz and Teruel 2006; Víquez 2007). However, the specific region from which this species
migrated to America currently remains unknown. Given the environmental differences between the
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regions of its native distribution (Cowling et al. 1996; Köppen et al. 2011; Peel et al. 2007), identifying
from which geographical native region the New World populations of C. citricola more likely originated,
provides information for a better understanding of its expansion and impact in the Americas.

Considering the disjunct native distribution of this species, we hypothesize the Southern African region
and the Mediterranean region as the two possible origins for the American invasion. Preliminary
molecular phylogenetic analyses suggest a closer relationship between the American and the South
African populations than to the Mediterranean populations, although this remains unresolved (Agnarsson
et al. unpubl.). The Mediterranean origin is considered as another possible scenario given the higher
similarity in morphology and behavior between Mediterranean and American populations, than between
the South African and American populations (Y. Lubin pers. comm.). Additionally, there is more intense
maritime, commercial trade between the Mediterranean region and America (38542 Twenty-foot
Equivalent Units (TEU) in 2016; the American Association of Port Authorities -AAPA) compared to the
trading with South Africa (2770 TEU,~7% of the Mediterranean trade). Considering that many populations
of C. citricola in the Mediterranean and southern African regions occur near coastal areas (Blanke 1972),
and that this species has a long-lasting web, there is a high chance that this species was introduced to
America via the merchant marine vessels. 

In this study, we first assessed the set of environmental variables that best explain the distribution of C.
citricola spiders in the Mediterranean and southern African regions. Then, to provide support for the
geographic origin of the invasion of C. citricola in the Americas, we applied different geographic and
environmental approaches to test which of these two sets of climatic information (Mediterranean or
southern African) predict more precisely the current distribution of this spider in America. Considering
that the invasion of C. citricola in America is very recent, we expect that established populations occupy
habitats with similar environmental conditions to those of the native region (Peterson 2003; Peterson
2011). Therefore, the environmental variables of the region occupied by C. citricola in America will have a
higher overlap with the set of variables from the native region than with the non-native region.  

Methods
Study species

Cyrtophora citricola is an orb-weaving spider that builds a dense, sheet web (Eberhard 2020) (ca. 30-40
cm in diameter, Leborgne et al. 1998), with an irregular tangle above and below it (Wheeler 1926) (Fig.
1a). C. citricola is a gregarious species that occurs in both colonial (Fig. 1b) and solitary webs, built on
diverse plant species and human-constructed structures (Chauhan et al. 2009; Johannesen et al. 2012;
Lubin 1980; Madrigal-Brenes 2012; Rypstra 1979; Teruel et al. 2014). Colonies can be massive and often
cover the entire crown of bushes and medium-size trees (Barba-Díaz et al. 2014; Chauhan et al. 2009;
Edwards 2006; Martín-Castejón and Sánchez-Ruiz 2010; Rao and Lubin 2010). 

Species occurrences
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We compiled 2795 geo-referenced occurrence points of C. citricola from five different sources. We
obtained 258 data points from the Global Biodiversity Information Facility (GBIF.org; accessed on March
29th 2018https://doi.org/10.15468/dl.hi6ahq), 18 from SpeciesLink (http://splink.cria.org.br/, accessed
on April 4th, 2018), and 662 from the Royal Museum of Central Africa database. We also obtained 78
records from different literature sources (Online Resource 1) and collected 13 points in the field in Costa
Rica that we geo-referenced using Google Earth. Additionally, our colleague Angela Chuang kindly
provided 1574 data points from USA, collected as part of her own research.

We removed duplicated and inaccurate data points (e.g. points that fell in the ocean) from the database
prior to conducting the analyses by projecting all points on a global map. Then we filtered the remaining
data using the R package spThin (Aiello-Lammens et al. 2015) to remove all data points having less than
a distance of 5 km from any other point and guarantee one record maximum per cell according to the
resolution of our climatic layers (Online resource 2). With this procedure, we generated 32 data points for
South Africa and the Southeastern part of Mozambique (hereafter, the South African region), 108 for the
Mediterranean Region and 122 for America (Fig. 2).

Environmental information

To quantify environmental conditions throughout C. citricola’s distribution range, we used the 19
Wordlclim’s bioclimatic variables for all analyses. We used data from the WorldClim database Version 2
(Fick and Hijmans 2017, http://www. worldclim.org), at a 2.5 arcmin resolution (approximately 20 km²
near the Equator). Additionally, we constructed other three environmental grids using information on
monthly precipitation, minimum temperature and wind speed from the same climatic database (Fick and
Hijmans 2017). We obtained the mean value from the monthly precipitation layers and then calculated
the Average Annual Precipitation (hereafter AAP). We extracted the minimum temperature value for each
raster cell within the 12-month layers of minimum temperature to get the Minimum Annual Temperature
(hereafter MinAT). Finally, we constructed a Maximum Annual Wind Speed (hereafter MWS) layer, by
extracting the maximum speed values for each cell layer within the monthly layers of wind speed. We
included this last variable as new-born spiderlings of this species are known to disperse by wind
(Johannesen et al. 2012).

For the analyses described below, we created a subset of environmental variables. For each Species
Distribution Model (SDM) and the respective multivariate environmental similarity surface (MESS)
analyses (Online Resource 3), we selected the subset of variables with the lowest collinearity. For this, we
used the step-wise approach coded by M. W. Beck and available at
https://gist.github.com/fawda123/4717702, which calculates the Variance-Inflation Factors (VIF). 

Analyses

Model calibration

http://splink.cria.org.br/
https://gist.github.com/fawda123/4717702
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To obtain the possible native region of the American C. citricola, we created three sets of candidate
models: one set for each of the two potential native regions (South Africa, Mediterranean) and one for the
invaded region (America). We generated the sets of several candidate SDMs with different
parameterizations using the ENMeval R package (Muscarella et al. 2014)⁠. We generated each model
using variations of two different parameters: (1) regularization multipliers that generate penalty values
which help to select more simple models (see Elith et al. 2011; Phillips et al. 2017) (these values range
from 0.5 to 5, at intervals of 0.5) and (2) different feature classes (transformations of the environmental
variables values, see Elith et al. (2011)): Linear (L), Quadratic-Linear(QL), Hinge (H), and their
combinations with Product and Threshold (LQHP y LQHPT) (Phillips et al. 2006; Phillips and Dudík
2008). 

We calibrated all candidate models by delimiting an area of 1000 km around the presence points of each
region, so that the calibration area would include enough background area containing both environments
where the species could be present and environments where the species is likely absent. To avoid the
spatial autocorrelation between testing and training points, we used two different data partitioning
methods implemented by Muscarella et al. (2014). For the South African Model, we used the Blocks
method, which divides the data in four bins with an equal number of occurrences but allows bins to vary
in geographic size (Muscarella et al. 2014). This method has been recommended in cases where spatial
extrapolation is needed (Muscarella et al. 2014) such as the case of this region which presents few
occurrences that also tend to be grouped (Fig. 2). For the Mediterranean and American models, we used
the Checkerboard 2 partitioning method, which, as the blocks method, divides the data in four bins, but
facilitates the inclusion of isolated occurrences without altering the geographical size of the bin
(Muscarella et al. 2014). Therefore, we considered this method appropriate for the scattered occurrences
we have for these two regions.

We selected the model with the best evaluation metric from each set of candidate models and this was
the model used for the projections on other regions. To determine the accuracy with which each native
model predicted the real known occurrences of spiders in the invaded region, we projected each of the
two native models on America. Then we created a third model – the one calibrated on the invaded
environmental conditions – and projected it onto the two possible native regions, to cross validate the
accuracy of our native models. 

To evaluate the performance of each set of models created and select the best fitted for each native
region, we used four selection criteria with the following priority order: (i) the lowest ‘Minimum training
presence’ omission rate (ORMTP), (ii) the highest Area Under the Curve (AUCTEST), (iii) the lowest value of
10% Training omission rate (OR10), and (iv) the lowest number of parameters. For details regarding these
criteria, see Muscarella et al. (2014). The model that best fitted the criteria mentioned, was selected as the
model to run the posterior projections and analyses.

Geographic and environmental similarity
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We extracted the suitability values assigned by each selected native model to the occurrences of C.
citricola in America. These values were generated by each model for each cell in the region where it was
projected, after correlating and fitting the environmental variables to the occurrences included for the
region used for calibration (Warren and Seifert 2011)⁠. We compared the suitability values of both native
models using a T-test.

To analyze the climatic niche overlap among each native region and the invaded region, we used
Schoener’s D index (Schoener 1968; Broenniman et al. 2012) and Hellinger’s I index (Warren et al. 2008;
Broenniman et al. 2012). These indices range from 0 (no niche overlap) to 1 (total niche overlap). We
used the same criteria proposed by Rodder and Engler (2011) to interpret the index obtained: values
between 0-0.2 indicate no or limited overlap, 0.2-0.4 indicates low overlap, 0.4-0.6 for moderate overlap,
0.6-0.8 represents high overlap and 0.8-1 very high overlap. 

Additionally, we calculated the environmental niche overlap using a PCA-env following the approach
described by Broennimann et al. (2012). This approach includes three metrics that allowed us to compare
the environmental conditions of the American region with those present in each native region. The most
relevant parameters in this approach are “Stability”, which measures the proportion of environmental
conditions shared between two regions (Petitpierre et al. 2012)—in our case the invaded versus each of
the two native regions; “Expansion” that refers to the proportion of conditions in which the species is
present in the new environment but not in the native environment; and “Unfilling” that shows the
proportion of the native niche that do not overlap with the niche occupied in the new environment
(Petitpierre et al. 2012; Tingley et al. 2014). 

We performed some supplementary analyses, including (i) a multivariate environmental similarity surface
(MESS) (Elith et al. 2010) to measure the amount of extrapolation the prediction of each distribution
model (SDM) is inferring when projected on a different region (Saupe et al. 2012); (ii) density curves for
all the 22 environmental characteristics associated with the occurrences of the three regions, and (iii) a
Principal Component Analyses to compare the overall overlap of the three niches. For details of these
analyses (i-iii), see Online Resource 3. To estimate the D and I indices, as well as the PCA-env and PCA we
used all 22 variables.

Results
The parameters and evaluation metrics of the three models selected showed an overall good
performance, with omission rates below 0.09 and 0.13, and AUC above 0.8 (Table 1). The projection of
the South African model predicted a larger environmental suitability for C. citricola across America
compared to the prediction of the Mediterranean model (Fig. 3). The suitability values obtained for the
occurrence points in America from the South African model were slightly higher (0.86 ± 0.10 SD), than
those obtained from the Mediterranean model (0.82 ± 0.32 SD), however, this difference is not
statistically significant (t = -1.53, gl = 141.38, p=0.13, Fig. 4a).  It is worth noting that the MESS map
analysis showed that the South African model produces higher extrapolation values than the



Page 8/19

Mediterranean model when projected to America (Online Resource 3, Fig. S.2a). The variables that had
the highest contribution for each model are shown in Table S1 (Online Resource 4).

Nonetheless, the projections of the American model to each native region (Figs. 4-5) show that the
suitability values assigned by the American Model to the South African occurrences were significantly
higher than those assigned to the Mediterranean occurrences (t=-4.01, gl = 31.19, p=0.0003, Fig. 4b), with
an average suitability value of 0.13 (±0.16, SD) for the South African occurrences and 0.01 (±0.02, SD)
for the Mediterranean occurrences. The extrapolation values of the American model projected to the two
native regions were not particularly different between each other (Online Resource 3 Fig. S.2b).  

The climatic niche overlap between the South African and American populations is moderate to low
(D=0.29, I=0.44), but is higher than the overlap between the Mediterranean and American populations
(D=0.12, I=0.20).  Additionally, according to the PCA-env analysis, the environmental characteristics of the
geographic distribution occupied by C. citricola in South Africa had a greater overlap (Stability 58%) with
the characteristics of its distribution in America, than to those of the Mediterranean distribution (Stability
20%) (Fig. 6). This result also indicates that this spider has occupied new environmental combinations
(Expansion) in America in relation to the conditions existing in the native regions — at least 42% based on
the South African model, and 80% based on the Mediterranean Model. The first axis of the PCA-env
comparing the Mediterranean with America (Fig. 6) was mostly explained by Precipitation variables
(Precipitation of the driest month =19.91%, Precipitation of the warmest quarter=17.80%, and
Precipitation of coldest quarter=17.12%) while the second axis was represented by annual climatic
variation (Precipitation seasonality=51.09%, Temperature annual range=15.59%, and Maximum Wind
Speed=15.21%). In the PCA-env illustrating the relationship between South Africa and America (Fig. 6),
the variables with the highest contribution for the first axis were Precipitation of the driest month
(20.67%), Mean diurnal range (19.47%), and Precipitation of coldest quarter (18.88%). For the second
axis, the variables with the highest contribution were the same as for the Mediterranean (Precipitation
seasonality=32.43%, MWS= 28.91% and Temperature annual range=27.42%)

The supplementary analyses also showed greater similarities in the environmental conditions between
the American and the South African regions, than between American and the Mediterranean region. For
instance, the overlap in the distribution of each of the 22 variables (Online Resource 3, Fig. S.3-4), as well
as the overlap obtained with the PCA (Online Resource 3, Fig. S.5) also showed a larger similarity of
America with the South African region, than with the Mediterranean region.

Discussion
 In this study we focused on identifying the possible geographic origin of the invasion of C. citricola in
America by determining which of two possible native regions share more environmental characteristics
with the invaded region. Our results support that the invasive populations of C. citricola in America
inhabit environments more similar to the South African region than to the Mediterranean region. When we
projected the American model onto the native regions, we obtained a higher suitability for the South
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African region. In addition, both D and I indices, the PCA-env, the density curves, and the PCA also showed
that the environmental conditions occupied by C. citricola in America are more similar to those in the
South African region than to those occupied by this species in the Mediterranean region. 

The successful establishment of a given species in a new geographic area is largely determined by the
environmental features of the recipient area and species-specific life-history traits, such as dispersal
capability, demographic structure (e.g., sex ratio), and adaptability to different environmental conditions
and to novel biotic interactions (e.g., a new set of predators and parasites) (Brown et al. 1996; Guisan and
Zimmermann 2000). After arrival, the environmental conditions could play a fundamental role on species
establishment (Nuñez and Medley 2011; Peterson 2003; van Wilgen and Richardson 2012). Species
arriving to places with similar conditions to those of the native area are more likely to succeed in their
establishment than species arriving to sites with a different combination of environmental conditions
(Peterson 2003). Given that C. citricola is a recent invasion and the significantly higher similarity of the
environmental conditions between American populations and South African populations support the
hypothesis that this species dispersed from the South African Region to America. This is congruent with
preliminary genetic results which also suggest a South African origin for the American populations
(Agnarsson et al. unpubl.), but we can not confidently discard different origins for the recent invasion of
C. citricola in America, until a more extensive phylogenetic study includes populations from a wide range
of the American distribution.

Our analyses also showed that C. citricola has occupied in America, during the last two decades, a new
set of environmental conditions not present in the native regions analyzed (Fig. 6). This is also evident in
the lack of reciprocity between invaded and native regions that resulted in the low suitability values
obtained for the native occurrences when the invaded model was projected on both native regions (Figs.
4b-5). Two possible processes could explain these results. First, C. citricola in America may not be facing
the same environmental and biological constraints as in its native regions (Blanke 1972; Brown et al.
1996). In America, C. citricola could be exploiting resources and tolerating conditions different from those
present in the native regions, likely because those conditions are still within the species physiological
tolerance thresholds. However, such conditions may not be within the geographic reach of the species in
the native regions due to external constraints (e.g. mountain ranges, extensive desert areas, parasites,
predators, etc.) (Broennimann et al. 2007). Second, the populations of C. citricola in America may have
rapidly changed their physiological tolerance thresholds compared to those of native populations, and
therefore, adapted to this new set of environmental conditions due to a change of the intrinsic (rather
than extrinsic) constraints (Yoshida et al. 2007). However, these two possibilities remain to be examined
in further detail, as there are no studies on these issues for this species. 

As other invasive species, C. citricola has several traits that facilitate its expansion. This spider is a
generalist predator, so diet does not represent a major limitation (Chauhan et al. 2009). It has a high
reproductive rate: one female can produce several egg sacs during a single reproductive season
(Chauhan et al. 2009; Leborgne et al. 1998). It has a dispersal method (ballooning) that allows a rapid
expansion into new areas (Teruel et al. 2014), and the species is also highly tolerant of disturbed
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environments — favoring its establishment in open areas around cities (Nedvěd et al. 2011; Sánchez-Ruiz
and Teruel 2006; Teruel et al. 2014). However, dense, tropical forested areas apparently limit the
expansion of this spider species. Several non-systematic samplings in forested areas conducted close to
sites where the species has been observed and over a three-year period showed that the species is absent
in rain-dense forests, and very rare at the edge of tropical dry forests (Sandoval and Barrantes unpubl.). 

The present study is also, to our knowledge, the first to use different methods comparing environmental
conditions to assess the origin of an invasive species. Even though this idea has been previously
proposed (Steiner et al. 2008), this is the first study that deduces the more likely invasion source by
comparing environmental similarities between the possible native and the invaded regions. However, this
approach has some constraints. A general limitation in our results is that the predictions are based on
relatively static climatic conditions (exemplified by the environmental trait means collected in a
determined period), which might not be representative of the niche for dynamic populations (Elith et al.
2010; Elith and Leathwick 2009) – and this could affect the precision of the predictions obtained (Elith et
al. 2010; Guisan and Zimmermann 2000). SDM’s limitations have also been addressed before (Araujo
and Guisan 2006; Elith et al. 2010), and, in particular, the projections of our SDMs based on the native
regions need to be interpreted with caution. Thus, despite that the South African model assigns higher
suitability values – though non-significant – to the occurrences in America, its evaluation metrics are
lower than those of other models, and its predictions tend to overestimate its suitability (as indicated by
the MESS analysis). This is also the region with fewer occurrences recorded, so the distribution of C.
citricola in South Africa might be undersampled in comparison with the other regions. Hence, our results
are not entirely consistent in indicating the most likely native region for the American populations.
However, we consider that using different analyses provides additional information that could more
certainly indicate which was the native region, if most of these analyses converge on similar conclusions.
In this study, most analyses indicate that South Africa is the region of origin of this recent C. citricola
invasion, since South Africa shows a greater environmental similarity with the invaded region. 

The analyses conducted here support the hypothesis that  C. citricola populations in America are more
closely related to those in South Africa  than those in the Mediterranean. Our results also provide
evidence of the expansion of C. citricola into a new set of environmental conditions in America, as a
result of either plasticity allowing its rapid adaptation (Yoshida et al. 2007) or the absence of biological or
physical constraints present in its native range (Broennimann et al. 2007; Roy et al. 2011). Further studies
focusing on physiological performance, adaptation strategies, and biological constraints for the species
in both native and invasive populations may help to better understand the processes driving its rapid
expansion in the tropical areas of the invaded region.
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Tables
Table 1. Parameters and evaluation metrics of the models selected for each region analyzed.

The variance for each value is shown in parenthesis.
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egion South Africa Mediterranean America

ata partition method Blocks Checkerboard 2 Checkerboard 2
eature Classa H LQHP LQ
egularization multiplier  5 2 2.5
RMTP (var) b 0.09 (0.04) 0.01 (0.00) 0.00 (0.00)

UCTEST (var)c 0.82 (0.16) 0.96 (0.00) 0.91 (0.00)

R10 (var)d 0.13 (0.07) 0.10 (0.00) 0.09 (0.00)
arameters 7 24 11

Feature classes: H= hinge, LQH= Linear-Quadratic-Hinge, LQHP=Linear-Quadratic-Hinge-
roduct.
ORMTP: Minimum training presence omission rate.

AUCTEST: Area Under the Curve.

OR10 : 10% Training omission rate.

Figures

Figure 1

a. Sheet web of Cyrtophora citricola. The asterisk indicates to the location of the spider, which is at the
right of the asterisk. b. Colony of C. citricola built between a plant and a sign post
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Figure 2

Invaded and native regions of the araneid Cyrtophora citricola, defined as study regions (a-c) to run the
SDM: a. represents the occurrences recorded in America, b. the occurrences in the South African region
and c. the occurrences for the Mediterranean region

Figure 3
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Predictions of the distribution of Cyrtophora citricola in America projected from the two native niche
models

Figure 4

a. Suitability values obtained by projecting the environmental conditions of the native regions to America.
There is no significant difference between the suitability values of the two regions (t = -1.53, gl = 141.38,
p=0.13). b. Suitability values obtained from projecting the American environmental conditions on each
native region. Suitability is significantly higher for the South African region (t=-4.01, gl = 31.19, p=0.0003).
The asterisk indicates the significant difference in suitability values between the regions
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Figure 5

Projection of the model calibrated in America on the two native regions analyzed. a. Projection on the
Mediterranean. b. Projection on the South African region
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Figure 6

Climatic niches of C. citricola along the first two axes of an environmental principal component analysis.
The left panel shows the comparison of the American and Mediterranean niches, and the right panel
compares the American and South African niches. The red, outer line represents the environmental
conditions available in America, the green line shows the conditions available in each native site. The
pink (towards the right) area represents the environmental conditions where the species has exclusively
established in America, the green area (left) the conditions where the species has exclusively established
in each native site, and the blue, middle area shows the environmental conditions that overlap between
the invaded and the native region
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