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Key Points: 9 

• Self-consistent grain size evolution according to the paleowattmeter is coupled to a 2D 10 

thermo-mechanical numerical model of the upper mantle 11 

• Mantle rheology is represented by a coupled grain-size-dependent diffusion and grain-12 

size-independent dislocation creep flow law 13 

• Strain localization along lithospheric shear zones leads to reduced grain sizes and 14 

diffusion creep becomes the dominant deformation mechanism  15 
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Abstract 16 

Geodynamic numerical models often employ solely grain-size-independent dislocation 17 

creep to describe upper mantle dynamics. However, observations from nature and rock 18 

deformation experiments suggest that shear zones can transition to a grain-size-dependent creep 19 

mechanism due to dynamic grain size evolution, with important implications for the overall 20 

strength of plate boundaries. We apply a two-dimensional thermo-mechanical numerical model 21 

with a composite diffusion-dislocation creep rheology coupled to a dynamic grain size evolution 22 

model based on the paleowattmeter. Results indicate average olivine grain sizes of 3–12 cm for 23 

the upper mantle below the LAB, while in the lithosphere grain size ranges from 0.3–3 mm at the 24 

Moho to 6–15 cm at the LAB. Such a grain size distribution results in dislocation creep being the 25 

dominant deformation mechanism in the upper mantle. However, deformation-related grain size 26 

reduction below 100 μm activates diffusion creep along lithospheric-scale shear zones during 27 

rifting, affecting the overall strength of tectonic plate boundaries. 28 

 29 

Main 30 

 The Earth’s lithosphere is defined by its mechanically rigid behavior in contrast to the 31 

relatively weak underlying asthenosphere. This rheological stratification, which ultimately 32 

allowed for the emergence of plate tectonics, primarily results from the apparent thermal gradient 33 

across the crust and upper mantle and the temperature-dependent activation of dislocation- and 34 

diffusion-related crystal-plastic creep of rocks and minerals1,2. Scaling of such experimentally-35 

derived creep laws to natural strain rates allows us to estimate viscosities and strength of the 36 

lithosphere. Geophysical constraints on the elastic thickness of the continental lithosphere, that is 37 

a proxy for its strength3, led to contrasting conclusions on the uppermost mantle being either 38 



 

 

strong and best represented by dry dislocation creep of olivine4 or weak according to a wet 39 

olivine rheology5,6. 40 

Whether deformation within the upper mantle is dominated by dislocation creep or 41 

diffusion creep is still a matter of debate. The observation of crystallographic preferred 42 

orientation (CPO) in mantle xenoliths7 and evidence of strong seismic anisotropy8 has long been 43 

interpreted as an indicator for dislocation creep as the dominant deformation mechanism1. 44 

However, there is reported evidence that CPO, and therefore seismic anisotropy, may also 45 

develop as a result of diffusion creep of olivine-rich aggregates9,10. In contrast to dislocation 46 

creep, the relationship between stress and strain rate for diffusion creep is dependent on grain 47 

size, which is a crucial parameter when considering the dominant deformation mechanism in the 48 

upper mantle11-14. A transition from dislocation to diffusion creep at depths greater than ~250 km 49 

was proposed by Hirth and Kohlstedt12 based on theoretical estimations that olivine grain size in 50 

the upper mantle is on the order of 10 mm15. Numerical experiments of mantle convection have 51 

since implemented a composite diffusion-dislocation creep rheology and constant mantle grain 52 

size, which may result in dramatic convective instability and thermal erosion of the lithosphere16. 53 

However, the assumption of a constant upper mantle grain size is an oversimplification that 54 

appears contradictory to several observational and experimental datasets. Experimental data on 55 

wave speed and attenuation of olivine, for example, fits best with a seismological model that 56 

implies an increase in grain size from ~1 mm to ~5 cm between depths of 100–200 km17. 57 

Furthermore, natural samples of exhumed lithospheric mantle rocks show a large variety of grain 58 

sizes ranging from tens to hundreds of microns in olivine mylonites and tectonites to the 59 

centimeter-scale in weakly deformed or annealed xenoliths18-21. 60 



 

 

Active plate tectonics requires mechanical weakening and strain localization along 61 

lithospheric shear zones at the plate boundaries22,23. Several studies suggest that grain size 62 

reduction and the consequent activation of diffusion creep is a viable process to initiate 63 

localization of deformation in the lithosphere24-29, perhaps complementary to other potential 64 

weakening mechanisms such as shear heating30,31, reaction-induced weakening32, or the presence 65 

of preexisting weak zones or viscous anisotropy33,34. Here, we present a 2D thermo-mechanical 66 

numerical model with a composite diffusion-dislocation creep flow law coupled to a self-67 

consistent grain size evolution model based on the paleowattmeter35. Such a model allows us to 68 

estimate apparent grain size distribution and the dominant deformation mechanism within the 69 

upper mantle, and to investigate the importance of grain size evolution for strain localization in 70 

the lithosphere during continental rifting. We test the influence of water content in the mantle 71 

which affects both its viscosity and rate of grain growth. Furthermore, the effect of localized 72 

grain-size-dependent weakening on the long-term strength and elastic thickness of continental 73 

lithosphere is investigated and compared to pure dislocation creep experiments. 74 

 75 

Coupled grain size evolution thermo-mechanical model of upper mantle dynamics 76 

We apply a finite difference thermo-mechanical numerical model36,37 of the upper mantle 77 

and crust with an Eulerian domain of 1000 x 670 km that undergoes horizontal divergence at a 78 

constant total rate of 1 cm/yr. The model employs a visco-elasto-plastic rheology where the 79 

viscous strain rate is composed of both dislocation and diffusion creep for constant water 80 

content12 and stresses are capped depending on the Drucker-Prager yield criterion (see Methods 81 

and Supplementary Methods). The applied fluid contents in the mantle are COH = 50–2500 82 

H/106Si, which cover the range of estimated values obtained from experimental studies38,39. 83 



 

 

Olivine grain size is calculated based on the paleowattmeter35, which introduces a grain size 84 

evolution rate composed of independent growth and reduction terms (see Methods). Grain size 85 

reduction occurs by the process of dynamic recrystallization during dislocation creep, whereas 86 

grain size during diffusion creep is controled by the process of grain growth40. Based on grain 87 

sizes from experimentally deformed olivine aggregates, the fraction of work that goes into grain 88 

size reduction during dynamic recrystallization is estimated to be λ = 0.01 (see Supplementary 89 

Methods). The grain growth parameters we implement are derived from experiments on natural 90 

olivine aggregates with in-situ water contents41 that predict significantly slower grain growth 91 

than previous constraints from experiments on water-saturated, synthetic olivine42. Due to high 92 

temperatures and thus fast growth rates, the initial grain sizes in the lower part of the model 93 

domain rapidly adjust to a steady-state grain size. On the other hand, initial grain sizes within the 94 

lithosphere are mainly driven by the reduction term due to lower temperatures and higher 95 

deviatoric stresses. 96 

 97 

Rheological implications and formation of lithospheric shear zones 98 

 Composite diffusion-dislocation creep numerical experiments were conducted with 99 

variable water content in the mantle (COH =  50, 175, 600, and 2500 H/106Si) that affect both 100 

viscous creep and grain growth. Mantle viscosities of the reference model (COH = 600 H/106Si) 101 

show values of 1019–1021 Pa·s for the asthenosphere after 5 Myr of divergence (Fig. 1a). At 10 102 

Myr, lithospheric thinning and related temperature increase below the rifted region lead to 103 

viscosities as low as 5·1017 Pa·s, relatively fast velocities, and gravitationally-induced 104 

lithospheric dripping. After 15 and 20 Myr of divergence, asthenospheric viscosities remain 105 

within 1018–1021 Pa·s, with lower values where fast velocities occur due to thermally- and 106 



 

 

gravitationally-induced lithospheric erosion (Fig. 1a). Away from the rift, the lithosphere 107 

remains intact and strong. 108 

Illustrations of the dominant deformation mechanism (dislocation vs. diffusion creep) and 109 

contours of grain size in the mantle demonstrate that localization of stress in the centre of the 110 

model domain leads to grain size reduction and the activation of diffusion creep along large-scale 111 

lithospheric shear zones (Fig. 1b). The large shear zones retain relatively small grain sizes and 112 

remain dominated by diffusion creep even after 15 to 20 Myr of divergence, when a mid-ocean 113 

spreading centre is established, consuming most of the extensional velocity. 114 

 For all experiments, grain sizes vary spatially throughout the model domain; furthermore, 115 

their values are strongly sensitive implemented mantle water content. Vertical grain size profiles 116 

along the side of the domain (at 5 Myr), away from the extensional zone, show values of 0.3–3 117 

mm at the Moho (depending on COH) that increase to 6–15 cm at the LAB, and decrease to 2–7 118 

cm at the base of the upper mantle (Fig. 2a). Grain sizes within localizing shear zones in the 119 

uppermost lithosphere at 40 km depth (y = 50 km) show a rapid initial decrease to 60–250 μm 120 

(Fig. 2b). Depending on the water content in the mantle, they are able to recover after ~15 Myr 121 

(COH = 2500 H/106Si) or ~20 Myr (COH = 600 H/106Si). Lower water content hampers 122 

substantial grain growth within previously active shear zones before 40 Myr. Average upper 123 

mantle grain sizes below 300 km depth establish within ~2 Myr and range in between 3–12 cm 124 

(Fig. 2c). Further undulations in average mantle grain size result from the downwelling of small-125 

grain-size lithospheric dripplets. 126 

 Figure 3 shows the portions of accumulated finite viscous strain within the mantle 127 

accommodated by diffusion and dislocation creep after 20 Myr of divergence. Dislocation creep 128 

is the dominant deformation mechanism in large parts of the upper mantle, independent of water 129 



 

 

content. Diffusion creep dominates within lithospheric shear zones that form in the early stages 130 

of rifting (Fig. 1b) and assist in lithospheric dripping (Fig. 3b-d). The continental lithospheric 131 

thickness defined by its viscosity varies between 90–150 km, depending on water content (Fig. 132 

3). 133 

 134 

Effects of grain size on lithospheric strength  135 

The importance of a self-consistent grain size distribution for upper mantle dynamics 136 

becomes evident when comparing our results to numerical experiments with pure dislocation 137 

creep of olivine or composite diffusion-dislocation creep with a constant grain size throughout 138 

the entire upper mantle. Experiments with dry dislocation creep result in extensive brittle-plastic 139 

deformation of the lithosphere43,44. Experiments with composite diffusion-dislocation creep and 140 

small constant grain size (1 mm) results in a lithosphere thinned by convective erosion (<90 km) 141 

driven by low asthenosphere viscosities of <1018 Pa·s16,45. For constant grain sizes larger than 1 142 

cm, dislocation creep becomes the main deformation mechanism throughout the entire upper 143 

manlte16. These numerical experiments fail to match the effective elastic lithospheric thicknesses 144 

necessary to sustain orogens4, while brittle deformation in the lithosphere remains absent6. On 145 

the other hand, our implementation of a self-consistent grain size evolution is able to resolve this 146 

obstacle. Observed lithospheric thicknesses vary between 90–150 km (Fig. 3), while localization 147 

of deformation in the lithosphere rapidly leads to grain size reduction, diffusion creep activation, 148 

and related stress drop below the frictional yield, omitting failure. The diffusion-creep-related 149 

stress drop furthermore reduces and replaces the importance of shear heating along lithospheric 150 

shear zones30,46. 151 



 

 

The temporal evolution of the vertically integrated strength illustrates that experiments 152 

with composite diffusion-dislocation creep coupled to a self-consistent grain size evolution show 153 

a decrease of boundary forces below 5 TN/m within 1–2 Myr, while pure dislocation creep 154 

experiments remain above 10 TN/m for at least ~15 Myr (Fig. 4a). Typical forces along plate 155 

boundaries are on the order of 1–5 TN/m47,48, which is sufficient to initiate continental rifting if 156 

the grain size is small enough and diffusion creep dominates deformation26. Vertical strength 157 

profiles indicate that most of the strength of coupled experiments remains within the crust with 158 

maximal values of ~200 MPa, while pure dislocation creep experiments exhibit at least 10 km of 159 

brittle-plastic mantle lithosphere with differential stresses up to ~600–700 MPa (Fig. 4b). 160 

Differential stresses of ~200 MPa close to the Moho in composite diffusion-dislocation creep 161 

experiments stand in contrast to significantly lower strength along a lithospheric shear zone after 162 

5 Myr (Fig. 4c). There, values of 1–10 MPa are defined by grain sizes as small as 100 μm and 163 

diffusion creep as the consequent deformation mechanism, efficiently weakening the entire 164 

lithospheric rift system. 165 

Water content in the upper mantle has important implications for the relationships 166 

between viscous flow and seismic anisotropy39, hydrous melting49, and the distribution of 167 

geochemical reservoirs50. The strength of olivine in the presence of water is significantly 168 

reduced38,51, as expressed in the flow law we apply here12. Furthermore, increased water content 169 

results in faster olivine grain growth41. The combined increase in grain growth rate and decrease 170 

in flow stress associated with higher water contents in our experiments leads to lower 171 

asthenospheric viscosity and increased thermal erosion of the lithosphere driven by diffusion 172 

creep (Fig. 3). 173 



 

 

The numerically predicted olivine grain size in the upper lithosphere away from shear 174 

zones (0.5–10 mm; Fig. 2a) is in agreement with naturally measured values from exhumed 175 

xenoliths18,52-54. Furthermore, recrystallized grain sizes of 10–100 μm from localized lithospheric 176 

shear zones55-58 match the grain sizes established in the diffusion-creep-dominated numerical 177 

shear zones for water contents >175 H/106Si (Fig. 2b).There are only a few constraints on grain 178 

size in the lower part of the upper mantle. However, Faul and Jackson17 suggested that the 179 

seismic signature of the upper mantle low velocity zone (LVZ) may be explained with a grain 180 

size of 5 cm together with the presence of fluids, which is consistent with our numerical results 181 

(Fig. 2a, b). 182 

In summary, presented numerical results are able to reproduce naturally observed 183 

distributions of olivine grain size, which indicate that dislocation creep is the dominant 184 

deformation mechanism in the upper mantle except along lithospheric shear zones, where 185 

diffusion creep is activated as a result of grain size reduction by earlier dislocation creep at high 186 

stress. The intrinsic weakness of such shear zones furthermore reduces the necessary boundary 187 

force to initiate continental rifting. Furthermore, the long-term low viscosity lithospheric shear 188 

zones allows for stretching of the continental crust and the formation of hyper-extended 189 

margins59 (Fig. 1b). 190 

 191 

Methods 192 

Numerical experiments were conducted with a finite difference thermo-mechanical 193 

numerical code with a fully staggered Eulerian grid and a Lagrangian particle field36,37. Initial 194 

particle distribution in the Eulerian domain of 1000 x 670 km describes from top to bottom 10 195 

km of sticky-air, 33 km of continental crust, and 627 km of upper mantle. The viscous part of the 196 



 

 

strain rate is composed of both dislocation and diffusion creep12 (see Supplementary Methods). 197 

We implemented viscous flow laws defined for constant fluid contents and applied values of COH 198 

= 50, 175, 600, or 2500 H/106Si, which represent experimentally observed values38,39. Stresses 199 

are capped depending on the Drucker-Prager yield criterion to mimic brittle processes in the 200 

upper lithosphere (see Supplementary Methods). The initial temperature distribution describes a 201 

linear increase from 0°C at the surface (y = 10 km) to 660°C at the Moho (y = 43 km), and from 202 

there to 1345°C at the thermally-induced lithosphere-asthenosphere boundary (LAB) at 150 km 203 

depth (y = 160 km). Below the LAB, a static temperature increase of 0.5°/km is introduced. 204 

Grain size of olivine is calculated based on the paleowattmeter35, while all other rock 205 

types exhibit a constant grain size of 1 mm. A grain size evolution rate composed of the 206 

independent growth and reduction terms is introduced instead of applying a steady-state grain 207 

size, which would impose an immediate, time-independent equilibration of grain size. If 208 

dislocation creep dominates deformation, grain size is mainly defined by dynamic 209 

recrystallization, whereas grain size during diffusion creep is determined by grain growth40. 210 

Therefore, only mechanical work related to dislocation creep (σε̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) adds to grain size reduction 211 

rate35 212 �̇�𝑑𝑟𝑟𝑟𝑟𝑑𝑑 =  
σε̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑λ𝑑𝑑2𝑐𝑐γ ,          (1) 213 

where σ is stress, ε̇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is dislocation creep strain rate, c is a geometric constant (π for spheric 214 

grains), γ is the grain boundary energy (1.4 for olivine60), and λ denotes the fraction of work that 215 

goes into grain size reduction, whereas the rest of the work goes into the shear heating term61-63. 216 



 

 

A fitting of experimentally-derived olivine grain sizes versus expected grain size according to 217 

the paleowattmeter resulted in a λ of 0.01 (see Supplementary Methods). 218 

 Grain growth follows a normal relationship with a grain growth rate of 219 �̇�𝑑𝑔𝑔𝑟𝑟 = 𝐾𝐾𝑔𝑔 𝑓𝑓𝐻𝐻2𝑂𝑂 exp�−𝐸𝐸𝑔𝑔+𝑃𝑃∙𝑉𝑉𝑔𝑔𝑅𝑅𝑅𝑅 � 𝑝𝑝−1 𝑑𝑑1−𝑝𝑝,       (2) 220 

where Kg is the rate constant, fH2O is water fugacity (here as constant water content COH), Eg is 221 

the activation energy, Vg the activation volume, P is pressure, T is temperature, R is the gas 222 

constant, d is grain size, and p the growth exponent. We applied experimentally derived olivine 223 

grain growth parameters by Speciale et al.41 that result in significantly slower grain growth than 224 

previous constraints42. 225 

Initial grain size distribution within the mantle logarithmically increases from 5 mm at 226 

the Moho to 10 cm at the LAB, at which size it remains farther down. High temperatures and fast 227 

growth rates in the lower part of the model domain leads to rapidly adjusting grain sizes. 228 

However, grain sizes within the lithosphere are mainly dependent on the reduction term due to 229 

lower temperatures and higher stresses. As a consequence, initial grain sizes in the lithosphere 230 

should be large enough to initially reduce. Several initial grain size distributions were tested. See 231 

Supplementary Methods for details on initial grain size distribution. 232 

 233 
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Figure captions 391 

 392 

Figure 1. Temporal evolution of the experiment with COH = 600 H/106Si. (a) Viscosity of upper 393 

mantle and marker composition of crust. White lines denote isotherms up to 1300°C. (b) 394 



 

 

Deformation mechanism in the uppermost mantle and composition of crust. Red: Diffusion 395 

creep. White: Dislocation creep. Blue contours indicate grain size. 396 

 397 

Figure 2. Grain sizes in the mantle at variable water content. (a) Vertical profile at x = 990 km 398 

after 5 Myr. (b) Temporal evolution lithospheric shear zones at y = 50 km. (c) Temporal 399 

evolution of average lower upper mantle below 300 km depth. 400 

 401 

Figure 3. Percentage of finite strain accumulated by diffusion creep (blue) or dislocation creep 402 

(white) after 20 Myr of divergence. Red: Contour of η = 1021.5 Pa·s indicating thickness of the 403 

elastic lithosphere. (a) COH = 50 H/106Si. (b) COH = 175 H/106Si. (c) COH = 600 H/106Si. (d) COH 404 

= 2500 H/106Si. 405 

 406 

Figure 4. Strength of the lithosphere. (a) Temporal evolution of the laterally averaged integrated 407 

strength (boundary force) of pure dislocation and grain-size-dependent composite diffusion-408 

dislocation creep experiments. (b) Laterally (x = 990–1000 km) averaged lithospheric strength 409 

profiles after 5 Myr. For color code see (a). (c) Strength and grain size profile along lithospheric 410 

shear zone at 5 Myr. Location of profile indicated in Fig. 1b. 411 

 412 



Figures

Figure 1

Temporal evolution of the experiment with COH = 600 H/106Si. (a) Viscosity of upper mantle and marker
composition of crust. White lines denote isotherms up to 1300°C. (b) Deformation mechanism in the
uppermost mantle and composition of crust. Red: Diffusion creep. White: Dislocation creep. Blue
contours indicate grain size.



Figure 2

Grain sizes in the mantle at variable water content. (a) Vertical pro�le at x = 990 km after 5 Myr. (b)
Temporal evolution lithospheric shear zones at y = 50 km. (c) Temporal evolution of average lower upper
mantle below 300 km depth.



Figure 3

Percentage of �nite strain accumulated by diffusion creep (blue) or dislocation creep (white) after 20 Myr
of divergence. Red: Contour of η = 1021.5 Pa·s indicating thickness of the elastic lithosphere. (a) COH =
50 H/106Si. (b) COH = 175 H/106Si. (c) COH = 600 H/106Si. (d) COH = 2500 H/106Si.



Figure 4

Strength of the lithosphere. (a) Temporal evolution of the laterally averaged integrated strength (boundary
force) of pure dislocation and grain-size-dependent composite diffusion-dislocation creep experiments.
(b) Laterally (x = 990–1000 km) averaged lithospheric strength pro�les after 5 Myr. For color code see (a).
(c) Strength and grain size pro�le along lithospheric shear zone at 5 Myr. Location of pro�le indicated in
Fig. 1b.
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