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Abstract
Background: We aimed to validate the performance of an MRI-based machine learning derived
Alzheimer’s Disease-resemblance atrophy index (AD-RAI) in detecting preclinical and prodromal AD.

Methods: A total of 62 subjects (mild cognitive impairment [MCI]=25, cognitively unimpaired [CU]=37)
underwent MRI, 11C- PIB, and 18F-T807 PET. We investigated the performance of AD-RAI at the pre-
specified cutoff of ≥ 0.5 in detecting preclinical and prodromal AD and compared its performance with
that of visual and volumetric hippocampal measures.

Results: AD-RAI achieved the best metrics among all subjects (sensitivity 0.73, specificity 0.91, accuracy
87.10%) and among MCI subgroup (sensitivity 0.91, specificity 0.79, accuracy 84.00%) in detecting A+T+
subjects over other measures. Among CU subgroup, hippocampal volume (sensitivity 0.75, specificity
0.88, accuracy 86.49%) achieved a higher sensitivity than AD-RAI (sensitivity 0.25, specificity 0.97,
accuracy 89.19%) in detecting preclinical AD.

Conclusions: AD-RAI aids the detection of early AD, in particular at the prodromal stage.

Background
Detection of subjects at risk of developing dementia associated with Alzheimer’s disease (AD) and
intervention at the early stage provides the greatest opportunity in reducing the increasing dementia
burden associated with AD, which is the commonest cause for dementia worldwide. The latest 2018
National Institute on Aging and Alzheimer’s Association (NIA-AA) research framework defined
AD biologically by the presence of 2 core pathologic molecular biomarkers, beta-amyloid (A+) and
neurofibrillary tau (T+), rather than by the presence of cognitive impairment (1). With this definition,
subjects harboring A+T+ may exhibit a continuum of severity of cognitive impairment, ranging from
cognitively unimpaired (CU) (i.e. preclinical AD), to mild cognitive impairment (MCI) (i.e. prodromal AD), to
dementia (i.e. AD with dementia). The evolution from preclinical to prodromal AD, or from prodromal AD
to AD with dementia may take several years and this slow transition provides an excellent window to
implement strategies that may prevent conversion to dementia.

This shift in paradigm (i.e. from reliance on clinical symptoms to molecular biomarkers, from focusing on
dementia to pre-dementia stage) makes having an accurate in-vivo method in detecting AD biomarkers to
be of great importance. At present, accurate in-vivo detection of beta-amyloid and neurofibrillary tau is
feasible with positron emission tomography (PET) and cerebrospinal fluid (CSF) analysis. Studies
comparing antemortem amyloid and tau PET and CSF analysis of beta-amyloid1-42 and phosphorylated
tau showed excellent correlation with post-mortem amyloid and tau burden (2-4). Both PET and/or CSF
are currently considered as the gold standard in-vivo diagnostic tests for preclinical and prodromal AD.

Apart from beta-amyloid and neurofibrillary tau, the 2018 NIA-AA research framework also considers
neurodegeneration (N) as another biomarker for AD (1). However, neurodegeneration is considered a
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downward and relatively more advanced event in the biological cascade of AD progression and is also
non-specific, as many other brain diseases may also cause neurodegeneration. Neurodegeneration in AD
is currently captured in-vivo by Fluorodeoxyglucose (FDG) PET hypometabolism, CSF total-tau, and
atrophy on magnetic resonance imaging (MRI). Despite being considered as an advanced event in the
biological cascade of AD, previous studies suggested that subtle yet characteristic pattern of
neurodegeneration could still be detected by FDG PET, CSF total -tau, or MRI at the preclinical or
prodromal stage of AD (5-8). Moreover, subjects with A+T+(N)+ are at higher risk of future cognitive
decline than those with A+T+(N)- (9, 10). Hence, detection of characteristic pattern of neurodegeneration
may have a role in the detection or prognostication for preclinical and prodromal AD.

Pattern of brain atrophy associated with AD is more prominent in the medial temporal lobe (e.g.
hippocampus) initially, and then spread throughout the entire temporal lobe, parietal lobe, and frontal
lobe (5, 8, 11). Medial temporal lobe atrophy (MTA) or hippocampal volume (HV) as determined by MRI is
the commonest imaging biomarker used for the diagnosis of AD with dementia or as a prognostic
biomarker predicting conversion from MCI to AD with dementia (12, 13). With the advancement of MRI-
based automated brain segmentation tools, global and regional brain volumes (e.g. HV) can now be
quantified accurately, reliably, easily, and quickly. In addition, several studies attempted to combine multi-
region brain atrophy features on MRI in the form of a single severity index as derived from machine
learning method and investigated its accuracy in predicting risk of conversion from CU to MCI or from
MCI to AD with dementia at an individual-level (14-19). We recently showed that an MRI-based machine
learning derived AD-resemblance atrophy index (AD-RAI) had the best prognostic performance over other
regional volumetric measures in predicting conversion from CU to MCI and from MCI to AD with dementia
using subjects from the AD neuroimaging initiatives (ADNI) (19). This index indicates the similarity in
atrophy pattern between the subject’s brain and those with AD with dementia. It ranges from 0 to 1.0 and
value closer to 1 implies greater similarity. The optimal AD-RAI cutoff of differentiating converters from
non-converters derived from subjects recruited from ADNI was ≥ 0.5 (19).

In this study, we aimed to validate the performance of AD-RAI at the cutoff of ≥ 0.5 obtained from the
derivation study (19) in the detection of preclinical and prodromal AD among MCI and CU subjects
recruited from another prospective cohort, and to compare its performance with that of traditional MRI-
based measures, namely visual MTA rating and HV measures.

Methods
Participants

Participants of this study were recruited from an on-going CU-SEEDS (The Chinese University of Hong
Kong - Screening for Early AlzhEimer’s DiseaSe) study, which aimed to validate biomarkers (e.g. retinal
imaging, brain MRI, plasma) for detection of AD. The study aimed to initially recruit 100 subjects (40 CU,
40 MCI, 20 mild AD with dementia) from the community and Cognitive Disorder Clinic of the Prince of
Wales Hospital, Hong Kong SAR. Inclusion criteria were (1) Chinese ethnicity; (2) age between 50 to 80-



Page 5/18

year-old; and (3) a primary language of Cantonese. Exclusion criteria were (1) known diagnosis of non-AD
dementia; (2) known history of stroke, parkinsonism, major psychiatric disease, or any significant
neurological diseases (e.g. brain tumor); and/or (3) contraindication for MRI/PET. An experienced
dementia specialist (L.W.C.A.) examined all potential subjects for eligibility of this study.

Syndromal staging of cognitive continuum

We defined CU and MCI according to the 2018 NIA-AA research framework (1). We used the Chinese
Abbreviated Memory Inventory (CAMI) to define the presence of memory complaints(20). Subjects having
one or more “Yes” to the 5 questions in CAMI were classified as having subjective memory complaints.
We performed Hong Kong List Learning Test (HKLLT) (21) and the Hong Kong version of Montreal
Cognitive Assessment (HK-MoCA) (22) for all subjects. We defined MCI as the presence of subjective
memory complaints that represented a decline from baseline, objective memory impairment as defined by
a z-score adjusted by age in Trial 4 (i.e. 10 min-delayed recall) of HKLLT of ≤-1 standard deviation (SD)
(23), and the cognitive impairment has no major impact in daily function as defined by a clinical
dementia rating scale (CDR) of ≤0.5. We defined CU as having a z-score adjusted by age in Trial 4 of
HKLLT >-1SD and a CDR of 0. All participants provided written informed consent and this study was
approved by the local ethics committee.

MRI

MRI was performed at Prince of Wales Hospital using a 3.0 Tesla scanner (Achieva TX; Philips Medical
Systems, Best, Netherlands). The scanning protocol included a 3D T1-weighted MPRAGE sequence
acquired at a resolution of 1.1mmx1.1mmx1.2mm which was used for visual assessment and volumetric
analysis, as well as standard T2-weighted and FLAIR sequences to assess for other structural
abnormalities including strategic infarcts and significant white matter hyperintensities.

PET

We performed 11C- PIB and 18F-T807 PET/CT to quantify beta-amyloid and tau deposition, respectively at
the Department of Nuclear Medicine & PET of Hong Kong Sanatorium & Hospital, Hong Kong SAR. All
subjects received 11C-PIB intravenously and were scanned at 35 min post injection. Within one week, they
underwent 18F-T807 PET/CT at 85 min post IV injection. 11C-PIB and 18F-T807 uptake were quantified by
the “global cortical to cerebellum Standard Uptake Value ratio (SUVR)”. The calculation of SUVR included
13 target regions of interest contoured automatically: frontal gyrus, gyrus rectus, lateral temporal lobe,
medial temporal lobe, posterior cingulate gyrus, precuneus, putamen, thalamus, superior parietal lobe,
occipital lobe, head of the caudate, cerebellar vermis and brainstem.

We defined A+ if (1) increased 11C-PIB uptake was visually observed in regions known to have beta-
amyloid deposits in patients with AD dementia, e.g. frontal lobe, parietal lobe, lateral temporal lobe,
posterior cingulate, precuneus and/or caudate; and/or (2) global retention ≥1.42. We defined T+ if (1)
increased 18F-T807 uptake was visually observed in regions known to have tau deposits in AD dementia,
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e.g. medial temporal lobe, inferior and middle temporal lobe, medial and lateral parietal lobe, occipital and
frontal lobe (24); and/or (2) SUVR ≥1.14. CU and MCI subjects who had A+T+ were diagnosed as having
preclinical and prodromal AD, respectively (1). All PET imaging data was interpreted by an experienced
nuclear medicine specialist (E.Y.L.L.) who was blinded to subjects’ cognitive and structural imaging data.

Visual ratings of MTA

An experienced neuroradiologist (J.A.) rated MTA using Scheltens’s scale (25). 10 individuals were
randomly selected and rated again by the same neuroradiologist to obtain intra-rater reliability. We took
the average of the left and right MTA scores as the final MTA score. We used the cutoff of ≥ 1 to define
prodromal AD (26). We also explored the performance using other pre-specified cutoffs (i.e. ≥1.5 (27, 28)
and age-adjusted: 1.5 for <75-year-old, and 2 for ≥75-year-old (29)) which have been used for the
diagnosis of AD at the dementia stage.

MRI post-processing

All the MRIs were processed using AccuBrain® IV 1.1 (BrainNow Medical Technology Company Ltd.) that
performs brain structure and tissue segmentation and quantification using 3D T1-weighted MR image
(30). We used the summation of the volume of both sides in milliliter (mL) as the final raw HV.
Accubrain® also generated the hippocampal fraction (HF) (bilateral absolute HV/intracranial volume).
AccuBrain® also generated AD-RAI to indicate the similarity in atrophy pattern between the subject’s brain
and those with AD with dementia (ranging from 0 to 1.0).

We investigated the performance of AD-RAI in detecting subjects with A+T+ using an index of ≥ 0.5, as
obtained from the derivation study that was found to be the optimal cutoff in differentiating between
“converters” and “stable” using ADNI database(19). Note that in our derivation study, we did not obtain
the optimal cutoffs of HV and HF in differentiating between “converters” and “stable”. In order to compare
AD-RAI with conventional imaging measures (i.e. HV and HF) in detecting A+T+ subjects in the present
validation study, we further generated receiving operating curve (ROC) among all subjects and among
MCI and CU subgroups for the differentiation between “converters” and “stable” subjects. The derived
optimal cutoffs were as follows: all subjects - HV: 6.44mL, HF: 0.42%, MCI subjects - HV: 6.07mL, HF:
0.41%, and CU subjects - HV: 6.64mL, HF: 0.44%. The performance metrics (sensitivity, specificity, positive
predictive values, negative predictive values, accuracy) using the optimal cutoffs of AD-RAI, HV, and HF in
differentiating converters and stable subjects from ADNI database can be found in supplemental material
(Appendix I to III). We also compared pre-specified cutoffs (HV: 5.91mL, HF: 0.39%) used for the detection
of AD with dementia (30). MRI of the 10 individuals who were randomly selected for evaluation of intra-
rater reliability for visual MTA rating were processed again by AccuBrain® to test/re-test precision of the
tool in generating HV, HF, and AD-RAI.

Statistical analyses
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Continuous variables were presented as means (SD), whilst categorical variables were presented as
numbers (percentage). The p-values representing the group difference were derived from independent-
samples t-test. Intra-rater reliability was assessed with the weighted Cohen’s kappa test (31). Sensitivity
and specificity with 95% confidence intervals (CI), positive and negative prediction values (PPV, NPV), and
accuracy were employed to evaluate the performance of different measures in the identification of A+T+
subjects. We also explored the metrics of various imaging measures in the detection of A+ with or without
T+ (i.e. Alzheimer’s continuum). Statistical analyses were performed using SPSS version 25.0 for IOS.

Results
We recruited 62 patients altogether, 25 had MCI and 37 subjects were CU (Table 1). Intra-rater reliability
for visual MTA rating showed a weighted Kappa of 0.74. The test/re-test precision of AccuBrain® in
generating repeated measures was perfect (i.e. 100%) for AD-RAI, HV, and HF. Among all recruited
subjects, 15 subjects (24.2%) were A+T+. Number (percentage) of subjects who were A+T+ among MCI
and CU were 11 (44%) and 4 (10.8%), respectively.

Table 1. Demographic and clinical characteristics of subjects

  All subjects
(n=62)

MCI subgroup
(n=25)

CU subgroup
(n=37)

P-
value

Age (years), mean (SD) 66.77 ± 7.10 69.80 ± 6.49 64.73 ± 6.83 0.005*

Male (n [%]) 26 (41.9) 11 (44.0) 15 (40.5) 0.791

Education (years), mean (SD) 9.32 ± 4.41 8.64 ± 4.64 9.78 ± 4.26 0.321

HK-MoCA, mean (SD) 24.28 ± 4.80 20.76 ± 4.70 26.72 ± 3.06 <
0.001*

HKLLT z-score in Trial 4, mean
(SD)

-0.51 ± 1.22 -1.72 ± 0.59 0.31 ± 0.76 <
0.001*

A+T+ (n [%]) 15 (24.2) 11 (44.0) 4 (10.8) 0.006*

A+T- (n [%]) 3 (4.8) 2 (8.0) 1 (2.7) 0.348

MCI=mild cognitive impairment; CU=cognitively unimpaired; MoCA=Hong Kong version of Montreal
Cognitive Assessment; HKLLT=Hong Kong List Learning Test; A+T+=subjects harboring beta-amyloid and
tau. The p-values represent the group difference in each variable between MCI subgroup and CU
subgroup derived from independent-samples t-test. * represents significant difference between MCI
subgroup and CU subgroup at p < 0.05.

Among all recruited subjects (Table 2a), AD-RAI (≥ 0.5) yielded the best sensitivity (0.73) and accuracy
(87.10%) over other measures, as well as a high specificity of 0.91 in detecting AD (A+T+) subjects. HV (≤
6.44mL) yielded a fair sensitivity of 0.67, with a specificity of 0.85 and an accuracy of 80.65%. HF (≤
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0.42%) had the highest specificity of 1.00, yet with a very low sensitivity of 0.27. Sensitivity, specificity,
and accuracy of MTA (≥ 1) were 0.53, 0.91, and 82.26%, respectively.

Table 2a. Performance metrics of AD-RAI, HV, HF and MTA among all subjects (n=62)

Measures Sensitivity
(95% CI)

Specificity
(95% CI)

Positive
predictive value

Negative
predictive value

Accuracy

AD-RAI
(≥0.5)

0.73 (0.45-
0.91)

0.91 (0.79-
0.97)

73.33% 91.49% 87.10%

HV

(≤
6.44mL)

0.67 (0.39-
0.87)

0.85 (0.71-
0.93)

58.82% 88.89% 80.65%

HF

(≤ 0.42%)

0.27 (0.09-
0.55)

1.00 (0.91-
1.00)

100.00% 81.03% 82.26%

MTA

(≥ 1)

0.53 (0.27-
0.78)

0.91 (0.79-
0.97)

66.67% 86.00% 82.26%

AD-RAI=Alzheimer’s disease resemblance atrophy index; HV=hippocampal volume; HF=hippocampal
fraction; MTA=medial temporal lobe atrophy; CI=confidence interval.

Among MCI subgroup (table 2b), AD-RAI (≥ 0.5) yielded the best metrics over other measures, with an
excellent sensitivity of 0.91, acceptable specificity of 0.79, and an accuracy of 84.00% in detecting
prodromal AD. HV (≤ 6.07mL) also yielded a high accuracy of 84.00%. Despite the specificity was high
(1.00), the sensitivity was only fair (0.64). HF (≤ 0.41%) yielded a very low sensitivity of 0.27, high
specificity of 1.00, and an accuracy of 68.00%. Sensitivity, specificity, and accuracy of MTA (≥ 1) were
0.64, 0.79, and 72.00%, respectively.

Table 2b. Performance metrics of AD-RAI, HV, HF and MTA among MCI subgroup (n=25)
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Measures Sensitivity

(95% CI)

Specificity

(95% CI)

Positive predictive
value

Negative predictive
value

Accuracy

AD-RAI

(≥ 0.5)

0.91 (0.57-
1.00)

0.79 (0.49-
0.94)

76.92% 91.67% 84.00%

HV

(≤
6.07mL)

0.64 (0.32-
0.88)

1.00 (0.73-
1.00)

100.00% 78.78% 84.00%

HF

(≤
0.41%)

0.27 (0.07-
0.61)

1.00 (0.73-
1.00)

100.00% 63.63% 68.00%

MTA

(≥ 1)

0.64 (0.32-
0.88)

0.79 (0.49-
0.94)

70.00% 73.33% 72.00%

AD-RAI=Alzheimer’s disease resemblance atrophy index; HV=hippocampal volume; HF=hippocampal
fraction; MTA=medial temporal lobe atrophy; MCI=mild cognitive impairment; CI=confidence interval.

Among CU subgroup (table 2c), AD-RAI yielded a fair sensitivity (0.5), a high specificity (0.97) and a high
accuracy of 89.1% in detecting preclinical AD. HV (≤ 6.64mL) yielded a higher sensitivity (0.75) than AD-
RAI, along with a good specificity (0.88) and accuracy (86.49%). HF (≤ 0.44%) and MTA (≥ 1) yielded
metrics identical to that of AD-RAI.

Table 2c. Performance metrics of AD-RAI, HV, HF and MTA among CU subgroup (n=37)

Measures Sensitivity

(95% CI)

Specificity

(95% CI)

Positive predictive
value

Negative predictive
value

Accuracy

AD-RAI

(≥ 0.5)

0.25 (0.01-
0.78)

0.97 (0.82-
1.00)

50.00% 91.43% 89.19%

HV

(≤
6.64mL)

0.75 (0.22-
0.99)

0.88 (0.71-
0.96)

42.86% 96.67% 86.49%

HF

(≤
0.44%)

0.25 (0.01-
0.78)

0.97 (0.82-
1.00)

50.00% 91.43% 89.19%

MTA

(≥ 1)

0.25 (0.01-
0.78)

0.97 (0.82-
1.00)

50.00% 91.43% 89.19%
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AD-RAI=Alzheimer’s disease resemblance atrophy index; HV=hippocampal volume; HF=hippocampal
fraction; MTA=medial temporal lobe atrophy; CU=cognitively unimpaired; CI=confidence interval.

Comparison of performance between other cutoffs can be found in Supplemental Material (Appendix IV
and V). Overall, cutoffs used for detecting AD with dementia had lower sensitivity and higher specificity
when compared with cutoffs used in the present cohort.

The metrics of various imaging measures in detecting subjects harboring A+ with or without T (i.e. A+T+
and A+T-) can be found in Supplemental Material (Appendix VI to VIII). Overall, taking account into all A+
subjects, almost all imaging measures had lower sensitivity and accuracy when compared to that among
subjects harboring A+T+.

Discussion
In the present validation study, using the cutoff derived from the ADNI database (i.e. ≥ 0.5) (19), AD-RAI
achieved the best performance (sensitivity 0.73, specificity 0.91, accuracy 87.10%) in identifying AD
subjects (i.e. A+T+) when compared with HV measures (i.e. raw HV, HF) and visual MTA ratings among all
subjects with either mild or no cognitive impairment. Among MCI subgroup, AD-RAI also yielded the best
metrics when compared with other measures in detecting prodromal AD. Among CU subgroup, HV
achieved a higher sensitivity than AD-RAI, while maintaining a good specificity and accuracy, in detecting
preclinical AD. Overall, this study validated the performance of AD-RAI at the pre-specified cutoff of ≥ 0.5
in detecting early AD, in particular at the prodromal stage. HV may be useful in the detection of preclinical
AD. To date, this is the first study exploring the performance of machine learning methods in detecting
preclinical and prodromal AD as defined by the 2018 NIA-AA research framework, i.e. by the presence A+
and T+. Previous studies mainly investigated the ability of MRI-based machine learning methods in
differentiating between converters and non-converters without knowledge of subjects’ amyloid and tau
status (14-18).

Although there is still no pharmacological treatment approved for preventing subjects with prodromal AD
from progressing to AD with dementia, making a diagnosis of prodromal AD among subjects with MCI is
at least important for recruiting prodromal AD subjects into preventive clinical trials. Recent trials for AD
have shifted to targeting subjects from the dementia stage to the prodromal or even preclinical stage
(32). Although PET or CSF analyses are now available to detect A+T+ at the early stage and have been
used to recruit prodromal or preclinical AD subjects into clinical trials, availability of an easier method in
detecting A+T+ subjects will help to reduce the cost of conducting clinical trials. Among MCI subjects, AD-
RAI (≥ 0.5) achieved a high NPV of 91.67%, hence a “negative” AD-RAI will first help to rule out subjects
without AD. For subjects with a “positive” AD-RAI, although the PPV was acceptable (76.92%), it will still
be important to arrange further investigations (i.e. PET or CSF analyses) in order to confirm the diagnosis
of prodromal AD and/or to quantify the amyloid/tau burden. Moreover, using MRI as an initial
investigation in MCI is also useful in ruling out other common brain lesions, e.g. cerebral small vessel
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disease (Figure i), or other rare yet potential reversible causes, e.g. normal pressure hydrocephalus, brain
tumor.

Noteworthy is that among our 25 MCI subjects, only less than half of them (44%) had A+T+. This
frequency is very similar to a meta-analysis showing that prevalence of amyloid positivity in MCI subjects
at age of around 70-year-old (i.e. age similar to our MCI subjects) was around 50% (33). Overall, the
prevalence of amyloid positivity ranges from about 30% at age 50-year-old to 60% at age 80-year-old in
MCI subjects (33). This highlights the need of having additional tool to aid the detection of A+T+ among
subjects presenting with MCI syndrome.

Among CU subjects, although AD-RAI obtained an excellent specificity (0.97) and accuracy (89.19%) in
the detection of preclinical AD, its sensitivity was very low (0.25). In comparison, HV achieved a more
balanced metrics (sensitivity 0.75, specificity 0.88, accuracy 86.49%) than AD-RAI in the detection of
preclinical AD. A recent study also showed that HV measure had acceptable accuracy in predicting
conversion from normal to MCI (34). Note that in our recent study (19), although AD-RAI achieved the best
specificity (0.98) and accuracy (79.45%) over other measures, its sensitivity was also lower (0.39) than
that of HV (0.70) (see Supplemental Material). Overall, the relative superiority of HV over AD-RAI is
consistent with our current understanding on the temporal evolution of brain atrophy in AD, which is most
apparent mainly in the hippocampus at the very early stage (e.g. preclinical stage), followed by spreading
to other regions as disease progresses (e.g. prodromal stage). Hence, measure that focuses only at the
hippocampus is probably more appropriate than AD-RAI at the preclinical stage, as multi-region atrophy is
probably negligible at this stage. Given the very high NPV of HV (96.67%), it may be useful in ruling out
AD among CU subjects. Confirmatory diagnostic test (e.g. PET, CSF analyses) can then be arranged for
those with a “positive” HV. It must be stressed that given that there were only 4 A+T+ subjects among CU
subgroup in the present study, a larger study is needed to confirm the validity of HV (or AD-RAI) in
detecting preclinical AD subjects.

In this study, sensitivity of visual MTA rating in detecting AD at an early stage was low, which might partly
be explained by the fact that the current visual grading has a floor effect (Figure ii). However, devising a
finer visual scale may be challenging as detecting small volumetric change by human vision may not be
possible and is also not reliable. Moreover, the intra-rater reliability is likely to be lower if a finer visual
scale is used. Note that the current machined-based automated tool has a test/re-test precision of 100%.

Among subjects having A+ with or without T+, the imaging measures had poorer performance when
compared to that among subjects having both A+T+. This is expected because brain atrophy is likely
absent or negligible when only beta-amyloid is present. Therefore, assessing brain atrophy using MRI is
unlikely to identify the earliest stage of the Alzheimer’s continuum, i.e. A+T-.

Limitations

A strength of our study was that all our subjects received comprehensive clinical and imaging
assessment, including both amyloid and tau PET, hence allowing accurate classification on the cognitive,
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amyloid, and tau status of each individual. However, the sample size was relatively small. Hence, a larger
study is needed to confirm the results of this study, in particular those that were generated from the CU
subgroup. Last, although 18F-T807 PET is commonly used for in-vivo clinical research in AD, off-target
18F-T807 bindings unrelated to tau in the basal ganglia (35, 36) or in some tau-negative conditions (37,
38) were reported. Note that in our study, we did not label subjects with 18F-T807 uptake at basal ganglia
as T+. Ideally, the performance of automatic volumetric segmentation tool needs to be validated against
brain pathology.

Conclusions
The current study validated an MRI-based machine learning derived AD-RAI at the cutoff of ≥ 0.5 in the
detection of early AD, in particular at the prodromal stage. Given the validity, reliability, and ease of use,
AD-RAI may provide additional information in guiding physicians or researchers of selecting who should
receive further confirmatory investigations for the diagnosis of early AD as defined by the presence of A+
and T+ among subjects with MCI.

Declarations
Ethics approval and consent to participate

This study protocol was approved by The Joint Chinese University of Hong Kong – New Territories East
Cluster Clinical Research Ethics Committee (CUHK-NTEC CREC). The design and performance of the
current study involving human subjects were clearly described in a research protocol. All participants
completed informed consent in writing before participating the current study.

Consent for publication

Not applicable

Availability of data and materials

All datasets used or analyzed in the current study are available from the corresponding authors on
reasonable request.

Competing interests

L.S. is the director of BrainNow Medical Technology Limited. Y.L. is now employed by BrainNow Medical
Technology Limited. V.C.T.M. is the Chief Medical Advisor of BrainNow Medical Technology Limited. All
other authors report no financial relationships with commercial interests.

Funding

This research was funded by the Seeds Foundation Limited.



Page 13/18

Author’s contributions

Acquisition of clinical data (W.L., L.W.C.A., J.A.; P.W.L.K., H.W.M., A.Y.T.N., S.C., E.Y.L.L., C.L.H.), imaging
and statistical analysis (Y.L., L.S., J.A. W.L.), manuscript preparation (W.L., V.C.T.M.), study conception
and design (W.L., V.C.T.M., L.S., A.W.), technical assistance (A.W., B.Y.K.L., X.F., S.H.M.W., W.C.W.C., H.K.,
A.Y.L.L.), and study coordination (W.L., V.C.T.M., L.S., A.Y.L.L.). All authors read and approved the final
manuscript.

Acknowledgements

We are grateful to all the subjects for their participation in the study.

Authors’ information

1 Division of Neurology, Department of Medicine and Therapeutics, Therese Pei Fong Chow Research
Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong SAR, China. 2 Gerald
Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong
Kong, Hong Kong SAR, China. 3 Department of Imaging and Interventional Radiology, The Chinese
University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China. 4 BrainNow Research Institute,
Hong Kong Science and Technology Park, Hong Kong SAR, China. 5 Department of Nuclear Medicine &
PET, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China. 6 Medhealth Diagnostic MRI Centre,
Hong Kong SAR, China. 7 Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences, Faculty
of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.

References
1. Jack CR, Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research

Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement.
2018;14(4):535-62.

2. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET
with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta
plaques: a prospective cohort study. The Lancet Neurology. 2012;11(8):669-78.

3. Lowe VJ, Lundt ES, Albertson SM, Min HK, Fang P, Przybelski SA, et al. Tau-positron emission
tomography correlates with neuropathology findings. Alzheimers Dement. 2020;16(3):561-71.

4. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, et al. Cerebrospinal fluid
{beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain.
Archives of neurology. 2009;66(3):382-9.

5. den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, et al. A 10-year
follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive
decline. Brain. 2010;133(Pt 4):1163-72.



Page 14/18

6. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds
atrophy in presymptomatic early-onset familial Alzheimer's disease. Journal of nuclear medicine :
official publication, Society of Nuclear Medicine. 2006;47(11):1778-86.

7. Park JE, Choi KY, Kim BC, Choi SM, Song MK, Lee JJ, et al. Cerebrospinal Fluid Biomarkers for the
Diagnosis of Prodromal Alzheimer's Disease in Amnestic Mild Cognitive Impairment. Dementia and
geriatric cognitive disorders extra. 2019;9(1):100-13.

8. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in
Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proceedings of the National
Academy of Sciences of the United States of America. 2002;99(7):4703-7.

9. Jack CR, Jr., Wiste HJ, Therneau TM, Weigand SD, Knopman DS, Mielke MM, et al. Associations of
Amyloid, Tau, and Neurodegeneration Biomarker Profiles With Rates of Memory Decline Among
Individuals Without Dementia. JAMA. 2019;321(23):2316-25.

10. Yu JT, Li JQ, Suckling J, Feng L, Pan A, Wang YJ, et al. Frequency and longitudinal clinical outcomes
of Alzheimer's AT(N) biomarker profiles: A longitudinal study. Alzheimers Dement. 2019.

11. Dickerson BC, Stoub TR, Shah RC, Sperling RA, Killiany RJ, Albert MS, et al. Alzheimer-signature MRI
biomarker predicts AD dementia in cognitively normal adults. Neurology. 2011;76(16):1395-402.

12. Clerx L, van Rossum IA, Burns L, Knol DL, Scheltens P, Verhey F, et al. Measurements of medial
temporal lobe atrophy for prediction of Alzheimer's disease in subjects with mild cognitive
impairment. Neurobiol Aging. 2013;34(8):2003-13.

13. Jack CR, Jr., Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, et al. Steps to standardization
and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for
Alzheimer's disease. Alzheimers Dement. 2011;7(4):474-85.e4.

14. Casanova R, Barnard RT, Gaussoin SA, Saldana S, Hayden KM, Manson JE, et al. Using high-
dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease
across imaging databases. Neuroimage. 2018;183:401-11.

15. Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, et al. Alzheimer's disease risk
assessment using large-scale machine learning methods. PLoS One. 2013;8(11):e77949.

16. Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer's-like patterns of
atrophy in normal older adults: the SPARE-AD index. Brain. 2009;132(Pt 8):2026-35.

17. Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and
their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage.
2009;44(4):1415-22.

18. Spulber G, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, et al. An MRI-based index to
measure the severity of Alzheimer's disease-like structural pattern in subjects with mild cognitive
impairment. J Intern Med. 2013;273(4):396-409.

19. Zhao L, Luo Y, Lew D, Liu W, Au L, Mok V, et al. Risk estimation before progression to mild cognitive
impairment and Alzheimer's disease: an AD resemblance atrophy index. Aging. 2019;11(16):6217-36.



Page 15/18

20. Lam LC, Lui VW, Tam CW, Chiu HF. Subjective memory complaints in Chinese subjects with mild
cognitive impairment and early Alzheimer's disease. International journal of geriatric psychiatry.
2005;20(9):876-82.

21. Chan AS. Hong Kong List Learning Test, 2nd Edition. Hong Kong: Department of Psychological and
Integrative Neuropsychological Rehabilitation Center. 2006.

22. Wong A, Yiu S, Nasreddine Z, Leung KT, Lau A, Soo YOY, et al. Validity and reliability of two alternate
versions of the Montreal Cognitive Assessment (Hong Kong version) for screening of Mild
Neurocognitive Disorder. PLoS One. 2018;13(5):e0196344.

23. Association AP. Diagnostic and Statistical Manual of Mental Disorders. Edition t, editor. Washington,
DC: American Psychiatric Association; 2013.

24. Maass A, Landau S, Baker SL, Horng A, Lockhart SN, La Joie R, et al. Comparison of multiple tau-PET
measures as biomarkers in aging and Alzheimer's disease. Neuroimage. 2017;157:448-63.

25. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal
lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and
neuropsychological correlates. Journal of neurology, neurosurgery, and psychiatry. 1992;55(10):967-
72.

26. Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, et al. 24-month intervention
with a specific multinutrient in people with prodromal Alzheimer's disease (LipiDiDiet): a randomised,
double-blind, controlled trial. The Lancet Neurology. 2017;16(12):965-75.

27. Schoonenboom NS, van der Flier WM, Blankenstein MA, Bouwman FH, Van Kamp GJ, Barkhof F, et
al. CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease. Neurobiol
Aging. 2008;29(5):669-75.

28. Tian JZ, Xie HG, Qin B, Fan DS, Shi J, Xiao WZ, et al. [The diagnostic framework for screening
Alzheimer's disease in the Chinese population]. Zhonghua nei ke za zhi. 2019;58(2):91-101.

29. Pereira JB, Cavallin L, Spulber G, Aguilar C, Mecocci P, Vellas B, et al. Influence of age, disease onset
and ApoE4 on visual medial temporal lobe atrophy cut-offs. J Intern Med. 2014;275(3):317-30.

30. Abrigo J, Shi L, Luo Y, Chen Q, Chu WCW, Mok VCT. Standardization of hippocampus volumetry using
automated brain structure volumetry tool for an initial Alzheimer's disease imaging biomarker. Acta
radiologica (Stockholm, Sweden : 1987). 2019;60(6):769-76.

31. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics.
1977;33(1):159-74.

32. Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting
therapies for Alzheimer disease. Nature reviews Neurology. 2019;15(2):73-88.

33. Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, et al. Prevalence of cerebral
amyloid pathology in persons without dementia: a meta-analysis. Jama. 2015;313(19):1924-38.

34. Albert M, Zhu Y, Moghekar A, Mori S, Miller MI, Soldan A, et al. Predicting progression from normal
cognition to mild cognitive impairment for individuals at 5 years. Brain. 2018;141(3):877-87.



Page 16/18

35. Baker SL, Maass A, Jagust WJ. Considerations and code for partial volume correcting [(18)F]-AV-
1451 tau PET data. Data in brief. 2017;15:648-57.

36. Choi JY, Cho H, Ahn SJ, Lee JH, Ryu YH, Lee MS, et al. Off-Target (18)F-AV-1451 Binding in the Basal
Ganglia Correlates with Age-Related Iron Accumulation. Journal of nuclear medicine : official
publication, Society of Nuclear Medicine. 2018;59(1):117-20.

37. Lockhart SN, Ayakta N, Winer JR, La Joie R, Rabinovici GD, Jagust WJ. Elevated (18)F-AV-1451 PET
tracer uptake detected in incidental imaging findings. Neurology. 2017;88(11):1095-7.

38. Tsai RM, Bejanin A, Lesman-Segev O, LaJoie R, Visani A, Bourakova V, et al. (18)F-flortaucipir (AV-
1451) tau PET in frontotemporal dementia syndromes. Alzheimer's research & therapy.
2019;11(1):13.

Figures

Figure 1

Clinical utility of AD-RAI in MCI subjects
i. A 68-year-old man with 11 years of education had complaints
of memory decline for over 3 years. Z-score in Trial 4 of HKLLT was -1.94 SD (≤ -1 SD, i.e. MCI). Visual
MTA rating score on MRI was 1 (≥ 1), (A) which was suggestive of AD. However, HV measures yielded
conflicting results, with HF of 0.47% (> 0.41%) and raw HV of 7.38ml (> 6.07mL) suggestive of non-AD.
FLAIR and T2-weighted sequences showed periventricular white matter hyperintensity and two
subcortical lacunes (red arrows) (B, C, D). AD-RAI was only 0.11 (< 0.5) also suggestive of non-AD.
Subsequent PIB PET (E) and T807 PET (F) showed negative results (i.e. A-T-), supporting the finding of
AD-RAI. The MCI syndrome and mild MTA might be associated with cerebral SVD (i.e. vascular MCI
associated with SVD).
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Figure 2

A 66-year-old man with 6-year education had complaints of impaired short-term memory for several
years. Z-score in Trial 4 of HKLLT was -1.65 SD (≤ -1 SD, i.e. MCI). The average visual MTA rating score
was 0.5 suggestive of non-AD (A). HV measures also suggested non-AD, with a normal raw HV of 7.38mL
(> 6.07mL) and HF of 0.43% (> 0.41%). However, AD-RAI was 0.74 (> 0.5) suggestive of AD. Subsequent
PIB PET (B) and T807 PET (C) confirmed PIB and T807 retention, respectively (red arrows). The final
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diagnosis of this subject was prodromal AD. Abbreviations: AD-RAI=Alzheimer’s disease resemblance
atrophy index; MCI=mild cognitive impairment; MTA=medial temporal lobe atrophy; HKLLT=Hong Kong
List Learning Test; SD=standard deviation; MRI=magnetic resonance imaging; HV=hippocampal volume;
HF=hippocampus fraction; PET=positron emission tomography; SVD=small vessel disease.
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