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Introduction 86 

Landslide monitoring provides strong technical support for understanding landslide evolution 87 

processes and is an important approach for disaster prevention and reduction (Whiteley et al. 2020; Xu 88 

et al. 2021; Lollino et al. 2020; Schlgel et al. 2015). Currently, information from different subject levels 89 

and fine-scale knowledge related to landslide monitoring research are being obtained; additionally, key 90 

technologies and disaster-causing factors are being in landslide monitoring to provide a reference for 91 

scientific analyses, disaster prevention and mitigation, and disaster monitoring. 92 

Landslide monitoring is a popular topic in the field of landslide research, and there are several ways 93 

to discover landslide monitoring knowledge. One way involves literature reviews of landslide monitoring 94 

studies, equipment, methods and technologies from a qualitative perspective (Solari et al. 2020; Whiteley 95 

et al. 2019; Aubaud et al. 2013). In addition, on-site investigations can be used to obtain actual surveys 96 

of landslide and deformation characteristics (Angeli et al. 2010; Zhang et al. 2018). Another less common 97 

approach involves summarizing the monitoring strategies used by landslide warning systems through 98 

various statistical methods (Pecoraro et al. 2018). However, these studies are based on classic literature 99 

and seldom involve quantitative analyses of landslide monitoring research or fine-scale knowledge. 100 

A keyword co-occurrence network is a network formed by keywords and their co-occurrence 101 

relationships in the field of bibliometrics; such networks can quantitatively reflect the development 102 

process of scientific knowledge and corresponding structural relationships (Small 1973; Forliano et al. 103 

2021; Weeds et al. 2005; Kessler 1963). In recent years, keyword co-occurrence networks have been 104 
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widely used in various fields, such as stem cell research (Yang et al. 2020), epilepsy genetics (Gan et al. 105 

2019), crop gene information mining based on the basic characteristics of soil and plants (Li et al. 2020), 106 

and malaria research (Fu et al. 2015). The Louvain algorithm is a computationally expensive and time-107 

consuming algorithm (Blondel et al. 2008; Orman et al. 2011; Meo et al. 2011) that is suitable for the 108 

division of small and medium-sized networks. Rich text semantic relations can produce dense topics for 109 

knowledge discovery (Daud et al. 2012). For some networks with small numbers of nodes, the topic 110 

hierarchy can be effectively determined with the Louvain algorithm, but for networks with abundant 111 

information or unclear expressions, pruning is needed to determine and display the topic hierarchy. 112 

Previous studies (Xiao et al. 2016; Kadi et al. 2017; Zhao et al. 2014) generally set thresholds to screen 113 

keywords according to the word frequency or edge weights, but these methods did not consider the 114 

possible effect of semantic association between two keywords. Seidman (1983) proposed the K-core 115 

approach to express the specific hierarchical structure properties and hierarchical characteristics of 116 

networks, and this method has been widely applied to hierarchical decomposition networks (Zhang et al. 117 

2008; Kong et al. 2019; Kitsak et al. 2010; Orman et al. 2009). Notably, the K-core approach can be used 118 

to decompose core co-occurrence relationships and can be combined with the Louvain algorithm to 119 

efficiently detect the community structure and explore the subject-level and fine-scale information related 120 

to landslide monitoring. 121 

This paper presents a combined quantitative and qualitative method to explore the subject hierarchy 122 

and fine-scale knowledge in the research field of landslide monitoring and to analyse the degree, density 123 

and community division results for the resulting subnetworks. The remainder of this paper is organized 124 

as follows. In the first section, the methods, including the overall research concept, are introduced, and 125 

the extraction of subgraphs and process of community detection are discussed. The second section 126 

provides an analysis of the experimental results, and the data sources and experimental environment are 127 

introduced; additionally, a comparison of methods is performed. The final section discusses the study 128 

conclusions and future research prospects. 129 

Section 1: Method 130 

1.1 Overall research concept 131 

The technical route of knowledge discovery in the field of landslide monitoring is shown in Fig. 1. 132 

The Web of Science preprocesses data through data filtering to reduce invalid data and noise in the 133 

original product. According to the word frequency and co-occurrence relationships among the extracted 134 

keywords, the co-occurrence matrix is obtained, and a co-occurrence network of weighted keywords 135 

related to landslide monitoring is constructed. The pruning index is defined, and a co-occurrence network 136 

subgraph is generated based on the structure of the peripheral nodes; the core nodes are retained, and 137 

some nodes are removed according to their K-values. The degree and density of subcommunities are 138 

analysed, and the threshold value of ΔQ is set; this value increases the degree of tightness in some 139 

communities. Finally, the community structure of the subgraph is determined with the Louvain algorithm 140 

to analyse the subject-level and fine-scale knowledge in the landslide monitoring field, and the 141 

modularity, partitioning time and hierarchy results are compared for different high-frequency keyword 142 

subgraphs. 143 

 144 
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Fig. 1 Technical research route 146 

1.2 Construction of the K-sub map of the co-occurrence network of landslide monitoring 147 

1.2.1 Calculation of the pruning standard based on the K-core 148 

If the number of network nodes is large, it can be difficult to clearly display knowledge and identify 149 

and extract information at the theme level in the field of landslide monitoring. Additionally, the Louvain 150 

algorithm is characterized by high complexity when detecting network community structures, so it is 151 

necessary to prune the network. We retain the main structure of the co-occurrence network through 152 

pruning to reduce time and ensure quality, and this process includes three steps. First, the K-value of the 153 

entire network node is calculated. Second, the K-value is used to define the pruning subgraph evaluation 154 

function and identify the core nodes in the network. Finally, the hierarchical structure based on the K-155 

values of nodes is used to simplify the network. The graph G= (V, E) is obtained, where node n=|V| and 156 

edge m=|E|. If a subgraph S satisfies S= (W, E|W) and any node degree value V (V belongs to S) =k, S 157 

is the K-shell of graph G. We assess the pruning standard by measuring the strength of the K-value in the 158 

main part of the network. The K-value can be calculated as shown in Eq. 1. 159 

� =
∑ ��� ��

�
      

 
(1) 

where �� represents the K value of each shell, �� is the number of shells, M is the total number of 160 

nodes, and i is the shell for each k value. When the value of node k is less than K, some of the nodes can 161 

be deleted; otherwise, all nodes should be reserved. As shown in Fig. 2, the network consists of three 162 

shells that contain 12 nodes. Eq. 1 shows that some nodes in shell 1 need to be removed. By defining the 163 

K-value, the standard of the pruning generation subgraph is defined. In the next section, the process of 164 

generating K-core subgraphs for landslide monitoring is introduced. 165 
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Fig. 2 Decomposing the keyword network based on K (k>K) 167 

1.2.2 Generating a K-core map for landslide monitoring 168 

The process of decomposing the keyword co-occurrence network according to the K-value is shown 169 
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in Fig. 3. The K-core subgraph is the union of all shells with k-values greater than or equal to K. 170 

According to the K value of each node, the relationship between the node and the co-occurrence matrix 171 

of landslide monitoring is assessed, and some nodes can be removed. In this study, we briefly discuss the 172 

influence of the proposed method and the high-frequency nodes on the community structure detection 173 

algorithm applied to the landslide monitoring co-occurrence network. For networks with the same 174 

amount of node information and fewer edge connections than k-subgraphs, the proposed method can 175 

significantly reduce the run time while ensuring high quality. 176 

3-core

2-core

1-core

 177 

Fig. 3 The process of generating K-subnets by pruning 178 

1.3 Community topic hierarchy and fine-scale knowledge discovery 179 

1.3.1 Knowledge detection among landslide monitoring communities 180 

Communities are characterized by very close relationships among internal nodes and relatively 181 

sparse relationships with other communities. Therefore, communities in landslide monitoring keyword 182 

co-occurrence networks represent a collection of closely related words with the same cognitive structure 183 

related to the same topic. Based on the Louvain algorithm, this paper studies community division and 184 

topic detection for landslide monitoring keyword co-occurrence networks. The objective of the algorithm 185 

is to first treat a single node as a community and then continuously move the nodes among communities 186 

to increase the Q value of the modularity function (Blondel et al. 2008). In the iterative process of the 187 

Louvain algorithm, the most time-consuming step is to divide a single node into communities (i.e., the 188 

first stage). Therefore, the K-core algorithm is needed to prune and retain the main community structure. 189 

After pruning, the process of knowledge discovery based on the corresponding landslide monitoring co-190 

occurrence network is as follows. 191 

The first stage involves calculating the modularity Q according to the input node and edge set. The 192 

calculation for initial modularity is shown in Eq. 4. Each key node in the network is regarded as an 193 

independent community, and the weight of a community and the weighted sum of the connecting edges 194 

of the nodes inside the community are calculated. In the second stage, the change in modularity is 195 

calculated, and this value is used to adjust the community ownership of nodes. Additionally, the threshold 196 

t is determined according to the degree of network analysis. The corresponding formulas are as follows. 197 

�� =  
��,��

2�
−

������

2��   
 

(2) 

 198 

�(�) = ��� > 0

�� > �   (3) 

where ��,�� is the sum of the edge weights of nodes in the community, m is the number of edges, 199 

and ��  is the sum of the weights of all the edges connected to node i . Σtot is the sum of the weights 200 

of the links among nodes in the community. If two nodes share an edge, they should be grouped into the 201 

same community. Then, the modularity is calculated, and the modularity gain values are compared. If 202 
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ΔQ is greater than the threshold, the result is divided into one class; if the modularity result is less than 203 

the threshold, no division occurs. The selection of the threshold value should be based on the number of 204 

community divisions and the changes in modularity. Finally, a community network with a smaller size 205 

than the original is reconstructed, and the community partition state when the Q value is optimal and the 206 

modularity value are output. By setting the critical value of network modularity, the degree of internal 207 

contact among some communities can be increased. 208 

1.3.2 Evaluation index modularity Q 209 

Modularity is used to measure the effect of community division and is applied in the comparison of 210 

algorithms in different fields (Orman et al. 2009; Karimi-Majd et al. 2015; Yuan et al. 2020). Notably, 211 

modularity is the difference obtained by subtracting the expected value of the proportion of the edges of 212 

keyword nodes in a community for a network with a uniform community structure and that for another 213 

network with random vertices. The corresponding calculation is shown in Eq. 4. 214 

Q =
1

2n
�[A��,�� −

k��k��

2n
]δ(c�� , c��)

����

  (4)

where n is the total number of edges in the network, A��,��represents the weight of an edge between 215 

keyword nodes, and k��  and k�� denote the total weights of all the edges associated with the two 216 

keywords. c��  is a Boolean function that depends on the keyword nodes in the current community. 217 

Generally, the larger the modularity value is, the better the division result. The range of modularity is [-218 

0.5, 1); when this value is between 0.3 and 0.7, the clustering effect is good. Thus, modularity can be 219 

used reflect the community division effect for a landslide monitoring keyword co-occurrence network 220 

based on K-core decomposition and the corresponding high-frequency co-occurrence network. 221 

Section 2: Experiments and analysis of results 222 

2.1 Data collection and preprocessing 223 

This study uses the Web of Science (http://isiknowledge.com/wos) as a data source and "landslide 224 

monitoring" as the subject. The selection period was from 1950 to 2020, and a total of 6212 search results 225 

were obtained. The search results were sorted, and newspaper articles, conference notices, book reviews 226 

and other irrelevant literature types were removed. A total of 5165 valid literature records were obtained. 227 

Then, 12193 keywords were obtained by extracting author keywords, which were used to construct a 228 

keyword co-occurrence network. As shown in Table 1, since the total number of co-occurrence 229 

relationships between 12193 keywords is 148669249, it is difficult to create a huge data set, and many 230 

single-frequency keywords are not associated with other keywords in the co-occurrence relationship set. 231 

Therefore, this paper selects 2589 keywords with frequencies greater than or equal to 2 to construct a 232 

keyword co-occurrence network for analysis, and a total of 19305 co-occurrence semantic relationships 233 

are obtained. 234 

2.2 Experimental environment 235 

The experiment was run and tested on a desktop terminal. The terminal was equipped with an AMD 236 

Ryzen 7 CPU @ 2.9 GHz with 16 GB of memory and an NVIDIA GeForce RTX2060 GPU with 8 GB 237 

of memory. The software installed on the terminal included a Windows 10 OS, Microsoft Edge, JetBrains 238 

PyCharm 5.0.3 and UCI6. 239 

2.3 Analysis of experimental results 240 

2.3.1 Construction of the K-nucleon diagram 241 

Based on the effective literature data set, the co-occurrence frequencies for keywords can be 242 

calculated, and the co-occurrence matrix can be created. After K-core analysis, the keyword network was 243 
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divided into 25 levels, as shown in Fig. 4. The number of nodes connected to each node is called the node 244 

degree, and the average value of all node degrees is called the network average degree, which is used to 245 

represent the complexity of the network (Freeman 1979). As shown in Fig. 4, the average degree of the 246 

network is approximately 18, which indicates that each node is connected to 18 other nodes on average. 247 

 248 

Fig. 4 K-cores of the keyword network of the landslide monitoring field 249 

According to the Eq. 1, the K value is 5.77. Using the above method, nodes with K-values greater 250 

than or equal to 5 are selected to construct the keyword co-occurrence network subgraph of landslide 251 

monitoring. Shells with K values less than 5 are removed, and the numbers of nodes and connecting 252 

edges are shown in Table 1. Compared with the high-frequency keyword network, the new subnetwork 253 

considers the strong correlations between nodes. In addition, the K-core decomposition network contains 254 

some important keywords with low frequencies, which can be used to comprehensively study landslide 255 

monitoring. 256 

Table 1 Changes in network nodes and edges with the K-value 257 

K-value (≥) Number of keywords Number of links 

0-core 2589 19305 

1-core 2582 19262 

2-core 2541 19009 

3-core 2419 18291 

4-core 2180 16955 

5-core 1782 15317 

The nodes in the K-core subnet are associated with at least k nodes (Kitsak et al 2010). Fig. 5 shows 258 

the changes in the density and degree of different K-core graphs. Among them, the relative run time is 259 

calculated in reference to the detection time for a network community with a K-value of 0. Notably, as 260 

the core value increases, the network degree and density display upward trends, which suggests that 261 

increasingly close relations exist between keyword nodes and core content. The run time of the K-core 262 

subgraph algorithm decreases with the number of cores used, and the modularity is greater than 0.3, 263 

which indicates that the clustering effect is good. When the core value is 5, the modularity/time ratio of 264 

the K-core pruning network community is the highest. 265 
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 266 

   (a) Degree and density                (b) Modularity and relative running time 267 

Fig. 5 Variations in the network with the K-value 268 

2.3.2 Community theme mining 269 

A community can reflect the closeness among nodes and hierarchical relationships among types of 270 

fine-scale knowledge. The 5-core subgraph is selected, and 17 community structures are obtained through 271 

community division, with a modularity of 0.3895. The larger the proportion of community nodes is, the 272 

richer the knowledge is. The community with the largest proportion of nodes is selected for analysis (Fig. 273 

6). The graph contains 263 nodes, accounting for 14.8% of all nodes, and 1850 edges. The network 274 

average degree value is 10.4, the average density is 0.0401, and the node label size is set according to the 275 

node degree as the threshold. The figure indicates that the largest network degree values are associated 276 

with 'landslide monitoring', 'InSAR', 'deformation', 'interaction', and 'synthetic aperture radar'. 277 

 278 

Fig. 6 K-core co-occurrence network subcommunity for landslide monitoring (k ≥ 5) 279 

Ten communities covering 86.5% of all nodes were selected, and the representative keywords of 280 

each community were selected according to the frequency or degree, as shown in Table 2. The results for 281 

community 1 indicate that landslide monitoring uses 'InSAR' and 'Earth observation' techniques and 282 

focuses on 'deformation' and 'offset tracking'. For community 6 and community 8, landslides are related 283 

to 'debris flows', 'earthquakes' and 'tsunamis'. Community 4 focuses on the aspects that affect or lead to 284 

landslides, such as 'heavy rainfall' and 'rainfall information'. The theme of community 3 is slope 285 

engineering and deformation-triggering factors; community 2 is related to the discipline of landslide 286 

monitoring and related fields; community 9 focuses on landslide prediction and analysis technology and 287 

processes; and community 5 mainly encompasses monitoring instruments. Through community division, 288 
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the subject types and fine-scale knowledge associated with landslide monitoring can be clearly obtained. 289 

Table 2 Keywords associated with the landslide monitoring communities (K ≥ 5) 290 

Community Keywords 

1 'landslide monitoring', 'InSAR', 'deformation', 'interferometry', 'synthetic 

aperture radar', 'persistent scatterers', 'earth observation', 'offset tracking' 

4 'slope stability', 'field monitoring', 'heavy rainfall', 'rainfall infiltration'  

3 'rainfall', 'numerical simulation', 'stability', 'slope engineering', 'groundwater' 

2 'remote sensing', 'lidar', 'risk assessment', 'change detection', 

'photogrammetry' 

0 'early warning system', 'deformation prediction', 'laser scanning', 'forecast' 

6 'debris flow', 'erosion', 'climate change', 'soil moisture', 'permafrost' 

9 'landslide prediction', 'machine learning', 'data processing', 'risk analysis' 

5 'deformation monitoring', 'inclinometer', 'terrestrial laser scanning' 

8 'earthquake', 'tsunami', 'dynamic monitoring', 'volcano', 'outburst flood' 

11 'electrical resistivity tomography', 'time series analysis', 'tomography' 

Based on the critical value of ΔQ, when the parameter t is greater than 0.00003, the nodes can be 291 

split to form more than 17 communities, and the modularity reaches a peak value at 0.000034. Therefore, 292 

the threshold is set to 0.000034, and the result of each iteration varies when the modularity of the newly 293 

divided community is greater than the threshold value. After community division, 21 community 294 

structures are obtained, and the modularity is 0.3807. The community with the largest proportion of nodes 295 

was selected as the representative community (Fig. 7) for analysis. The corresponding graph contains 296 

347 nodes, accounting for 19.5% of all nodes, and 2778 edges. The label size is set according to the node 297 

degree value. The average network degree value is 11.7, and the average density is 0.0338. The nodes 298 

with the largest degree values are 'landslide monitoring', 'InSAR', 'interferometry', 'deformation 299 

monitoring' and 'GPS'. Appropriately setting the ΔQ threshold makes the nodes within the community 300 

closely connected, which is convenient for analyses of landslide monitoring domain knowledge. 301 

 302 
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Fig. 7 Five-core co-occurrence network subcommunities in landslide monitoring 303 

2.3.3 Comparative evaluation of methods 304 

The abovementioned community structure detection method is evaluated through the same high-305 

frequency keyword subnet as the 5-core node. After Louvain community division, 18 community 306 

structures were obtained, with a modularity of 0.3855. Additionally, the community with the largest 307 

proportion of nodes was selected as the representative community (Fig. 8) for analysis. The graph 308 

contains 298 nodes, accounting for 16.7% of all nodes, and 2668 edges. The average network degree is 309 

12.7, and the node label size is set according to the node degree as the threshold. The graph shows that 310 

the largest values of network degree are associated with 'landscape monitoring', 'InSAR', 'interaction', 311 

and 'synthetic aperture radar', and these results are basically consistent with the K-core subgraph results. 312 

 313 

Fig. 8 Subcommunities of the high-frequency co-occurrence network for landslide monitoring 314 

Ten communities encompassing 86.1% of all nodes were selected, and the representative keywords 315 

of each community were selected according to the frequency or degree, as shown in Table 3. Most nodes 316 

in communities 1, 2, 5 and 6 are the same as those in the K-subnet, which indicates that the keyword 317 

structure of the community is closely clustered; the corresponding research topics in landslide monitoring 318 

focus on technologies, disciplines, monitoring instruments and related disasters. The theme of 319 

community 4 is landslide simulations and modelling, the theme of community 3 is slope engineering and 320 

failure mechanisms, and the themes of communities 7 and 8 are monitoring data analysis techniques and 321 

methods involved in landslide prediction. 322 

Table 3 Keywords of the landslide monitoring community (K ≥ 5) 323 

Community Keywords 

1 'landslide monitoring', 'InSAR', 'interferometry', 'subsidence', 'deformation', 

'synthetic aperture radar', 'sentinel-1','lidar' 

2 'remote sensing', 'risk assessment', 'change detection', 'photogrammetry' 

4 'slope stability', 'numerical modelling', 'rainfall infiltration', 'pore water pressure' 

3 'rainfall', 'numerical simulation', 'stability', 'failure mechanism' 

0 'early warning system', 'deformation prediction', 'laser scanning', 'forecast' 
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6 'debris flow', 'erosion', 'climate change', 'soil moisture', 'permafrost' 

12 'slope monitoring', 'fiber Bragg grating', 'geotechnical engineering' 

5 'GPS', 'deformation monitoring', 'inclinometer', 'terrestrial laser scanning' 

7 'early warning', 'slope failure', 'real-time monitoring', 'data mining' 

8 'slope engineering', 'groundwater', 'landslide prediction', 'machine learning' 

The results of community detection based on high-frequency keyword pruning and the k-core 324 

method were evaluated based on the relative run time and modularity Q value. The relative run time 325 

refers to the ratio of the community detection time after pruning to that before pruning. The results shown 326 

in Fig. 9 indicate that the overall run time of the K-core pruning method is significantly lower than that 327 

of the high-frequency keyword feature selection method; the modularity of the K-core pruning method 328 

fluctuates, and that of the K-core pruning method is slightly higher than that of the high-frequency 329 

keyword feature selection method. When the core value is 5, the modularity of the K-core pruning 330 

network community structure is higher than that of the high-frequency keyword network structure. 331 

 332 

Fig. 9 Relative run time and modularity 333 

Section 3: Conclusion and Prospects 334 

From the perspective of quantitative analysis, we propose a method of knowledge discovery based 335 

on keyword co-occurrence network community division. By defining the pruning standard K, the 336 

keyword co-occurrence network of landslide monitoring research is simplified, and the degree values 337 

and community density characteristics of subcommunities are analysed. Landslide monitoring research 338 

focuses on related disciplines, technologies, monitoring instruments and related disasters. In general, the 339 

K-core pruning method effectively reduces the run time of the Louvain community partitioning algorithm 340 

and retains the relevant community structure. The main contributions of this paper are summarized as 341 

follows. 342 

(1) To explore the topic hierarchy and fine-scale knowledge in the landslide monitoring field, the 343 

degree value characteristics, subgraph density and community structure of nodes in the keyword co-344 

occurrence network are quantitatively analysed. Compared with existing research, we combine 345 

quantitative research with qualitative analysis, reveal the knowledge structure and theme levels of 346 

landslide monitoring research, explore new statistical analysis methods for theme discovery, and obtain 347 

rigorous and convincing research results. 348 

(2) K-core decomposition is used to generate subgraphs, and the optimal subset is selected by 349 

considering the correlations among nodes through the pruning index value; this approach is convenient 350 

for analysing the subject-level and fine-scale knowledge in the landslide monitoring field. In the process 351 
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of community partitioning, the ΔQ threshold is set according to the resolution degree. During processing, 352 

if the modularity value is greater than the threshold, and community division occurs so that the internal 353 

nodes of the community are composed closely related topic keywords. Compared with methods in 354 

previous studies, such as the high-frequency keyword feature selection method, the proposed method 355 

considers the co-occurrence relationships among keyword nodes and the topic structures and fine-scale 356 

knowledge in different communities, retains the community structure, and reduces the overall run time. 357 

The threshold t is adjustable and needs to be changed according to the modularity and community 358 

division results. In this study, the community division parameters are only applicable to the landslide 359 

monitoring co-occurrence network, and further analyses should be performed with other networks. In 360 

addition, this study focuses on the exploration and analysis of landslide monitoring at the subject level 361 

and fine-scale knowledge discovery methods; some new keywords and topics in the field are worthy of 362 

further discussion. 363 
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