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ABSTRACT

Background

COVID–19 continues to disrupt social lives and the economy of many countries and challenges their healthcare capacities. In

Germany, the number of cases increased exponentially in early March 2020. As a political reaction, social restrictions were

imposed by closing e.g. schools, shops, cafés and restaurants, as well as borders for travellers. This reaped success as the

infection rate descended significantly in early April. In mid July, however, the numbers started to rise again. Of particular

reasons was that from 15 June onwards, the travel ban has widely been cancelled or at least loosened.

Methods

Here, we present an extended susceptible–exposed–infected–recovered–deceased (SEIRD) model to describe the disease

dynamics in Germany, taking into account German travellers which returned infected from abroad. Epidemiological parameters

like transmission rate, lethality or detection rate of infected individuals, as well as a rate measuring the impact of these travellers,

were estimated by fitting the model output to available data. Parameter estimation was performed via Bayesian inference with

the aid of the Monte–Carlo–based Metropolis algorithm.

Results

We found that travellers had a strong impact on the overall infection cases. Until the end of August, roughly 50,000 cases

directly or indirectly related to travellers were estimated. These obviously caused even higher infection cases later on, which

among other causes lead to a second wave of infection cases in late 2020.

Conclusions

We conclude that travel restrictions are an important tool for controlling infection cases during pandemics which can still have

an impact on the upcoming summer in case the currently high vaccination rates can not prevent further infection waves.

Introduction

The COVID-19 disease in Germany started with a first infection case on 26 January 2020 in Bavaria1. In March, the number of
cases grew rapidly (with a maximum of 6933 cases on 27 March), and various social restrictions were imposed as an active
intervention of the disease2, 3. On June 10, only 16 new infections with the virus were detected2. In mid June, travel restrictions
were relaxed for travels within Europe4. However, the pandemic continues to spread worldwide and by the end of August,
new maxima for the daily cases worldwide set another record5. After or towards the end of the summer holidays in the first
German states in mid to end of August, a second rise of infection cases could also be seen, with around or more than 1,000 new
infections per day2. Fig. 1 shows the temporal evolution of COVID-19 cases in Germany from 26 January until 31 August.

According to the Robert Koch Institute (RKI) in Germany, many of the cases from June onwards were directly related to
German travellers returning home6. The impact of travellers to the disease epidemics is a part of ongoing research. Berestycki
et al. investigate diffusion effects, especially along major roads7. Siegenfeld et al. studied the impact of region-to-region
travelling8. Chinazzi et al. regarded the impact of travel restrictions in China on the worldwide disease spread9. Our study
makes use of a susceptible–exposed–infected–recovered–deceased (SEIRD) model introduced in the previous work of Heidrich
et al.10 to model the confirmed cases for several countries worldwide, adding relevant numbers of German travellers. We
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estimate model parameters by using the available data from the Johns-Hopkins University (JHU)2. The estimation itself is
based on a least–squares fit between the model output and the reported data. Here, both the reported infections and fatalities are
taken into account. As a next step, we update the SEIRD model for Germany, including travellers, and estimate not only the
"classic" parameters as of10 but also the impact of the infected travellers to the overall epidemics.
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Figure 1. Number of COVID-19 confirmed cases (left) and daily cases (right) in Germany from January 26 until August 31,
2020 according to Johns Hopkins University.

Model

In the previous work we investigated the dynamics of COVID-19 disease until early May 202010; this study builds up on this
approach. Again we use a variation of the SIR–model introduced by McKendrick11; see also Martcheva 12 for an overview of
mathematical models in epidemiology. It builds up on delayed differential equation (DDE) system to describe the behaviour of
the disease in Germany in summer 2020. The entire population N is subdivided into five compartments: susceptible S, exposed
E, infected I, recovered R, and deceased D. The virus is transmitted from infected persons to susceptible persons at a piecewise
constant rate β . After an incubation duration κ−1 exposed individuals become infective. Loss of infectivity is gained after
an average duration γ−1; the death rate µ describes the fraction of persons dying from the disease. A time lag τ between the
infected and the deceased state accounts for the fact that the number of people dying from the disease is attained from the
infected number τ days earlier. Here, we also introduce an additional compartment: travellers Et which have been exposed to
the disease abroad. Values for the fixed model parameters in Germany are given in Tab. 1.

Parameter Value Reference
N 83,019,213 13

κ (3 d)−1 14

γ (10 d)−1 14

Table 1. Used parameter values.

These assumptions lead us to the following five–dimensional ODE system:

S′ =−
β

N
SI −ET (t) S(t0) = S0 = N −E0 − I0 −R0 −D0 > 0 (1a)

E ′ =
β

N
SI +ET (t)−κE E(t0) = E0 ≥ 0 (1b)

I′ = κE − γ
(

(1−µ)I +µI(t − τ)
)

I(t0 − τ ≤ t ≤ t0) = ϕ(t)> 0 (1c)

R′ = (1−µ)γI R(t0) = R0 ≥ 0 (1d)

D′ = µγI(t − τ) D(t0) = D0 ≥ 0 (1e)
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The function ϕ : [t0 − τ, t0]→ R+ denotes the initial history of the infected required for the well–posedness of the above DDE.
Also, the number of travellers which have been exposed to the disease is defined as

ET (t) = α(t)∑
j

·
β j(t)

N j

·TGermany↔ j(t) · I j. (2)

The values I j and N j are defined by the number of infected people and respectively the resident population in country
j 6= Germany at time t. The parameter TGermany↔ j(t) describes the number of travellers from Germany to country j. Due to
monthly available travelling data, α(t) quantifies the special risk of getting infected as a traveller, as this should obviously differ
from the average inhabitant. If α ≡ 1, the transmission rate for travellers is equal to the country’s specific transmission rate
β j(t). This rate is piecewise constant with switching returned from imposition or relaxation of certain measures. No inclusion
of travellers due to bans or closed borders are identical to α ≡ 0.

The parameters of β j(t) as well as I j and N j are estimated by using the SEIRD model without a traveller compartment:

S′j =−
β j(t)

N j

S jI j S j(t0) = S j,0 = N j −E j,0 − I j,0 −R j,0 −D j,0 > 0 (3a)

E ′
j =

β j(t)

N j

S jI j −κE j E j(t0) = E j,0 ≥ 0 (3b)

I′j = κE j − γ
(

(1−µ j)I j +µ jI j(t − τ j)
)

I j(t ≤ t0) = ϕ j(t)> 0 (3c)

R′
j = (1−µ j)γI j R j(t0) = R j,0 ≥ 0 (3d)

D′
j = µ jγI j(t − τ j) D j(t0) = D j,0 ≥ 0 (3e)

The values for κ and γ are assumed to be independent of country j. The reasons of the higher infection rate are not relevant
for the infection process in the main model. Instead of a raising number of travellers, we therefore impose two different
transmission rates β0 and β1 for the various countries:

β j(t) :=

{

β j,0, t ≤ 19 July

β j,1, 20 July ≤ t
(4)

The starting point t0 is chosen as 1 June because of travel restrictions being relaxed as of 15 June15, so that the transmission rate
β is not correlated to the travel impact rate α during the optimization process. The end date is fixed to 31 August because of
the available data and new restrictions in other countries from September onwards, e.g. a travel warning for Spain4, which will
affect the transmission parameters.

The parameters N j reflect the current total populations in all regarded countries which are the destination or origin of
travellers from and to Germany; the population data is taken from13. We only include European countries with available
traveller statistics and countries outside of Europe with a total sum of more than 5,000 travellers in the travelling statistics.
For the close European countries, the number of travellers is estimated by the travel statistics of 2019 for German travellers16

and hospitality statistics in Germany for foreign travellers17. The number of travellers from and to farther and non-European
countries is gained from analysis of the flight passengers from the respective country18. For larger countries like USA, Russia,
China and Japan the estimations were problematic (mainly due to a high number of non-direct flight routes), so we assumed
them to be the same as the number of travellers from the respective country to Germany, for which data is available. The
populations and amount of travellers per month of this total of 55 countries is presented in Tab. 2.

By using this table, we can compute the daily value for TGermany↔ j by the number of travellers divided by the days in the
respective month. E.g., for June, only the 16 days from 15 June to 30 June are considered. Average time of spending time
here is 12 days so e.g. for July, TGermany↔Spain = 331,894 · 12

31d ≈ 128,475 d−1. The uncertainty in the value of 12 days for the
average travel length is mitigated by the estimation of α , as these two values are directly multiplied and thus only the product
of those two values is important.

In a first model, α(t) is assumed to be constant over time as soon as the travel ban is loosened:

α(t) :=

{

0 t ≤ 14 June

α 15 June ≤ t ≤ 31 August
(5)
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In the second model, we define a piecewise constant α(t) as follows:

α(t) :=



















0 t ≤ 14 June

α0 15 June ≤ t ≤ 30 June

α1 1 July ≤ t ≤ 31 July

α2 1 August ≤ t ≤ 31 August

(6)

This way, we are able to identify temporal differences in the travelling compartment, e.g. caused by a different social behaviour
or loosened restrictions.

Parameter estimation

Likelihood function
The unknown parameter set u will be estimated using a least squares fit of the model output with respect to the given data. Let
Y = (Yi) and Z = (Zi) denote the accumulated confirmed cases and deaths related to COVID-19 in Germany. The subscript i

serves to point out the measurement at time point ti. Also, let Y j = (Y j
i ) and Z j = (Z j

i ) denote the infection and death cases
in the destination country as reported by the JHU2. The reported cases Y and Y j consist of the currently infected cases, the
recovered, and deceased cases. Not all infections are by nature detected, from which case we introduce detection rates δ for
Germany and δ j for the destination country, respectively. For the persons which are currently infected or have recovered,
we assume that only this proportion δ or δ j is tested and detected and hence appears in the statistics; however, we assume
no undetected deceased cases. We assume that the proportion of detected cases versus real infections is constant over the
whole time interval, so that no temporal change of the detection rate is needed in our model. Hence we compare the data Y to
δ · (I +R)+D :=C and Y j to δ j · (I j +R j)+D j :=C j from the model output. The initial value of the infected cases at the
starting date 1 June and 15 June is later on subject of the estimation procedure. Therefore, we use the infected data as the real
data divided by the detection rate, for Germany and destination countries, respectively:

ϕ(t) :=
interp{(Yi)}(t)

δ
t0 − τ ≤ t ≤ t0, (7)

ϕ j(t) :=
interp{(Y j

i )}(t)

δ j

t0 − τ j ≤ t ≤ t0. (8)

At time ti, our model validation is subject to measurement error, which is assumed to be of degenerate multivariate Gaussian
distribution with mean (Yi,Zi) or (Y j

i ,Z
j
i ) and covariance matrix Σ or Σ j, where one covariate corresponds to the measurement

error from confirmed cases and the other to the deceased cases. The time invariance of the covariance matrix was opted only
for the sake of simplicity. Further simplification may assert prior assumption that the covariance terms in the measurement
error are zero, meaning that each error is an independent process. This leads us to Σ = diag(σY ,σZ) or Σ j = diag(σ j

Y ,σ
j

Z). Our
likelihood function to be maximized for only time point ti reads as

Li(u) :=
1

2πσY σZ

exp

(

−
(δ [I(ti)+R(ti)]+D(ti)−Yi)

2

σ2
Y

−
(D(ti)−Zi)

2

σ2
Z

)

. (9)

Assuming iid processes for all measurements at all time points, Kalbfleisch in19 pointed out a constant K that serves to simplify
the joint likelihood function

L(u) := K ∏
i

Li(u) =
K

(2π)N
·

1

σN
Y σN

Z

exp

(

−∑
i

(δ [I(ti)+R(ti)]+D(ti)−Yi)
2

σ2
Y

+
(D(ti)−Zi)

2

σ2
Z

)

. (10)

Typically the constant is specified as K = (2π)N . Our study designates the standard deviations as to approximate the means of
confirmed and deceased cases, σY := ‖Y‖/N and σZ := ‖Z‖/N. Hence, the likelihood and log-likelihood function read as

L(u) =
N2N

‖Y‖N‖Z‖N
exp

(

−∑
i

(δ [I(ti)+R(ti)]+D(ti)−Yi)
2

‖Y‖2/N2
+

(D(ti)−Zi)
2

‖Z‖2/N2

)

, (11)

logL(u) = log

(

N2N

‖Y‖N‖Z‖N

)

−∑
i

(δ [I(ti)+R(ti)]+D(ti)−Yi)
2

‖Y‖2/N2
+

(D(ti)−Zi)
2

‖Z‖2/N2
. (12)
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Country Population Travellers Transmission
June July August β j,1 β j,2

Decimal Power / Unit 106 1 1 1 10−1d−1 10−1d−1

Albania 2.88 945 3,366 9,505 1.20 1.19
Austria 8.90 312,364 636,414 782,818 1.35 1.36
Belarus 9.45 1,595 1,985 3,102 0.38 0.65
Belgium 11.51 36,210 155,295 92,495 1.17 1.60
Bosnia and Herzegovina 3.30 2,811 2,849 6,702 1.54 1.10
Brazil 211.05 6,715 4,366 3,778 1.22 1.12
Bulgaria 6.95 11,562 42,552 74,363 1.24 1.06
Canada 37.41 4,746 9,778 8,368 0.31 1.33
China 1,433.78 3,711 5,921 7,077 1.55 1.05
Croatia 4.06 66,029 84,952 150,790 0.31 1.10
Cyprus 0.89 360 7,191 14,049 0.42 1.89
Czech Republic 10.69 51,518 130,651 148,353 0.84 1.41
Denmark 5.81 48,986 395,924 571,649 0.77 1.70
Egypt 100.39 2,542 5,134 7,790 0.65 0.36
Estonia 1.33 1,006 3,380 5,967 0.23 2.00
Ethiopia 112.08 1,431 2,089 2,066 1.84 1.45
Finland 5.53 4,624 12,134 19,074 0.31 1.74
France 67.20 105,905 326,298 345,913 0.95 1.96
Greece 10.7 15,930 179,531 372,892 1.41 1.75
Hungary 9.77 30,154 53,080 71,577 0.36 1.71
Iceland 0.34 889 7,892 13,718 1.66 1.56
Ireland 4.97 4,892 8,965 9,065 0.43 2.20
India 1,366.42 5,168 8,676 14,046 1.39 1.25
Israel 88.52 2,455 2,693 797 1.65 1.23
Italy 60.29 126,855 272,324 415,581 0.21 1.75
Japan 126.86 1,457 2,340 3,292 1.78 1.29
Kosovo 1.72 586 7,341 18,626 1.59 1.10
Latvia 1.91 5,936 12,637 20,798 0.31 1.52
Lebanon 6.87 167 1,699 5,298 1.09 1.94
Lithuania 2.79 1,203 1,787 2,415 0.49 1.89
Luxembourg 0.63 4,562 4,466 2,946 2.54 0.51
Malta 0.51 261 9,338 16,974 1.16 1.95
Mexico 127.58 2,079 2,726 2,253 1.70 0.69
Montenegro 0.63 728 2,490 4,118 3.75 0.54
Moldova 4.04 972 1,728 3,815 0.85 1.30
Netherlands 17.40 188,840 721,721 1,592,831 1.04 1.72
Northern Macedonia 2.08 0 3,486 9,875 0.89 1.02
Norway 5.37 8,326 42,589 64,125 0.74 1.70
Poland 27.94 95,372 171,127 268,559 0.52 1.51
Portugal 10.29 17,659 63,369 111,867 0.51 0.81
Qatar 2.83 6,063 8,336 6,747 0.79 1.00
Romania 19.36 5,702 32,822 41,255 1.18 1.35
Russia 145.87 3,550 6,017 7,324 0.61 1.03
Serbia 8.77 5,164 5,577 9,672 1.62 0.61
Slovakia 5.46 19,372 31,161 56,401 1.16 1.54
Slovenia 2.07 3,759 5,361 5,987 1.44 1.14
Spain 47.32 22,209 331,894 436,624 1.19 1.86
Sweden 10.32 9,050 39,584 46,878 0.38 0.55
Switzerland 8.50 102,698 272,121 388,971 1.49 1.35
Tunisia 11.69 644 2,709 11,292 1.09 2.12
Turkey 83.43 36,986 144,350 343,972 0.77 1.14
United Kingdom 66.43 17,026 29,925 32,969 0.92 1.16
Ukraine 43.99 3,020 8,934 14,759 0.77 1.44
United States of America 329.06 24,123 42,409 41,613 0.81 1.62
United Arab Emirates 9.77 3,231 9,394 6,856 0.59 1.10

Table 2. Fixed parameter values for the population N j as well as the (estimated) number of travellers per month TGermany↔ j in
summer 2020 and the transmission parameters β j,1/2 by application of model (3).
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We denote J(u) as the least square error of the estimation with respect to the data

J(u) =−∑
i

(δ [I(ti)+R(ti)]+D(ti)−Yi)
2

‖Y‖2
+

(D(ti)−Zi)
2

‖Z‖2
.

Then it holds

logL(u) = N(2logN − log‖Y‖− log‖Z‖−NJ(u)). (13)

Note that the same calculation can be done for the destination countries logL j(u).

Model specification
We researched variable choices for model specification, especially for the fitting of German data. The criterion is based on fit
and complexity (information-type criterion). We opt for a minimal value of the Bayesian Information Criterion

BIC =−2logL+ logN · |u| (14)

according to20, whose first term represents maximal likelihood function and second term measures complexity represented by
the observation size N and the number of parameters |u|. This BIC penalizes the number of parameters more than the Akaike
Information Criterion (AIC)21, where the latter would have replaced the factor log(N) by 2. As far as model specification is
concerned, our aim will be to choose between three models toward cutting down BIC as well as amending the question if the
role of travellers is significant.

(A) without usage of an additional travel impact parameter, but with a time-dependent transmission rate β2 as of equations (3)

(B) using a constant travel transmission parameter α from 15 June onwards as of equations (1), (2) and (5)

(C) using a piecewise linear travel transmission function α(t) starting 15 June and jumps on 1 July and 1 August as of
equations (1), (2) and (6)

Bounds and initial values
The parameters to be estimated in models (1) and (3) are transmission rate, detection rate, lethality, time lag, travel impact rate
and numbers of exposed on 1 June 2020 (Germany) respectively 15 June 2020 (all other countries), i.e.

u = (β ,δ ,µ,τ,α,E0) ∈ R
6, (15)

u j =
(

β j,0,β j,1,δ j,µ j,τ j,E0, j
)

∈ R
6. (16)

The optimal parameters u∗ are determined by solving the following minimization problem:

max
u

L(u) subject to ODE (1), (17)

max
u j

L(u j) subject to ODE (3). (18)

Tab. 3 shows the planned simulations including constraints for the optimized parameters in u, which can also be used for u j

(with the starting value for the recovered as listed in2).

β0/1 δ µ τ α j N0 E0 I0 R0 D0

> 0.05 0.05−1 ≤ 0.1 3−40 > 0 82,846,340 > 0 9,407/δ 165,632/δ 8,555

Table 3. Simulations with the respective constraints of the fitted parameters. The starting values for R0 is only updated in the
first two simulations by division with δ in each iteration.

Previous investigations in22 and10 already give us orders of magnitude for the initial values of the optimization for βi and δ .
The order of magnitude of the time interval between the onset of infectiousness and death is derived from the investigations
in14. We allow a larger span in τ and τ j than in10 because the onset between infection and death is also dependent of the
date on which the death case is transmitted, where significantly different values depending on the country can be seen. The
starting values for I0 and R0 can be taken from the statistics. Depending on the value of the detection rate, the actual number is
calculated by dividing the measured values for the infected and recovered cases by δ . Regarding an estimate of the exposed
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individuals E0 at time t0, we use a derivation using the Basic Reproduction Number R0, which indicates how many new
infections an infected individual causes on average during its illness in an otherwise susceptible population. In our model, the
infected persons I0 are at different time stages during their infectiousness. As a mean value we assume the middle of this time
interval. Thus, up to this point in time they could infect about I0R0/2 persons on average. Depending on the assumed Basic
Reproduction Number, this results in different starting values for E0. Here, we assume that the initial basic reproductive number
is approximately R0 ≈ 1 because of the stagnation of cases on a low level at the beginning of June. Also, the initial number of
infected is defined as I0 = (Y0 −R0 −Z0)/δ .

param. β0/1 δ µ τ α j E0

init. val. 0.1 0.3 0.005 20 1 I0/2

Table 4. Orders of magnitude of the initial values for adapting the model to the available data

Metropolis algorithm

In our study, we use a Metropolis algorithm (cf.23–25) for estimation of parameters in models (1) and (3) according to the
procedure described in26 and10. Using the parameter set u0 as of Table 4 as starting conditions, we assign random draws unew

from a normally distributed (and thus symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.
Using the previously defined J(u) as the target distribution, we calculate the approximative distribution by

π(u) = c · exp

(

−
J(u)2

2σ2

)

, (19)

whereby c is an arbitrary real value. For the acceptance probability, it follows

p(unew|ui−1) = min

{

1,
π(unew) ·q(ui−1|ui)

π(ui) ·q(ui|ui−1))

}

= min

{

1,
π(unew)

π(ui)

}

. (20)

In eq. (20) we can see that the value of c is redundant as it cancels out in the division. If the sample is accepted with the
probability p, we set ui = unew; with the probability 1− p, the sample is declined, meaning u = ui−1 according to26, 27.

Confidence intervals of the parameters
Considering that the observation size N and the number of parameters |u| hold the relation N ≫ |u|, we adopt the idea of
asymptotic confidence interval proposed in28. Together with29, these authors suggest that the asymptotic confidence interval
can be a good approximation of the uncertainty in the optimal parameters u∗ providing that, besides the aforementioned relation,
the measurement error is relatively small as compared to the data. The formula of the confidence interval for each parameter u∗k
is given by CIk :=

[

u∗k −ψ,u∗k +ψ
]

, with ψ being defined as

ψ :=
√

2χ2(q,d f ) · (∇−2(− logL(u∗)))kk. (21)

The operator ∇−2 denotes the inverse of the Hessian while χ2(q,d f ) denotes the q quantile of the χ2 distribution with the
degree of freedom d f . The degree of freedom can be chosen between two that further determines the type of confidence
interval: d f = 1 gives pointwise asymptotic confidence interval (PACI) that works on the individual parameter, d f = |u| gives a
simultaneous asymptotic confidence interval (SACI) that works jointly for all the parameters28.

Numerical results

The number of iterations for Germany using the Metropolis algorithm, as well as for the preprocessing in each country should
be a high number to prevent the algorithm from local minima. As of10 we set this number to 20,000.

Constant travel impact rate
For Model B with a constant value for α from 15 June onwards, Tab.5 shows the mean and standard deviations for the estimated
parameters of the above explained model, starting values and methods. Additionally, the pointwise asymptotic confidence
interval and simultaneous asymptotic confidence interval are shown by ψ as of eq.(21).
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Parameter mean value σ of Metropolis ψ of PACI ψ of SACI
β 3.06 ·10−2d−1 0.03 ·10−2d−1 0.03 ·10−2d−1 0.20 ·10−2d−1

δ 6.29 ·10−1 0.09 ·10−1 0.02 ·10−1 0.42 ·10−1

µ 6.74 ·10−3 0.12 ·10−3 0.01 ·10−3 0.20 ·10−3

τ 2.62 ·101d 0.05 ·101d 0.0001 ·101d 0.003 ·101d
E0 3.36 ·103 0.06 ·103 0.07 ·103 1.39 ·103

α 2.96 0.05 0.06 0.06

Table 5. Numerical Results for Model B using a constant value of α

Fig.2 shows the estimated disease dynamics in comparison to the registered cases using the parameters as of Tab.5..
Additionally, the uncertainty range raised by the confidence intervals of the simultaneous asymptotic confidence interval (SACI)
is provided. For this, we use both the maximal and the minimal values of the SACI to show the highest and lowest possible
values of the registered cumulative infected persons. The range of the pointwise asymptotic confidence interval (PACI) is
comparatively low and almost no differences could be detected in the graphic. Another interesting aspect is to observe on how
large the infected cases and fatalities in this model had been if α = 0, i.e. the travel ban had not ended and travellers had no
impact on the disease dynamics whatsoever; this is also included in the figure.

Figure 2. Estimation of infections in Germany compared to Johns Hopkins University from 1 June to 31 August with a
constant impact rate α , on the left side the cumulative number of infections, on the right side the cumulative death cases. The
shaded area represents the range of the solutions from the SACI and the dashed line describes the simulation with α = 0, i.e.
either no travelling is allowed or the traveller compartment had been completely free of the disease.

The left graphic in Tab.5 shows that for our estimated parameter set, around 50,000 less infections with COVID–19 had
been registered if the travel compartment had not been active. In the right figure concerning the death cases would make
significant changes only from the end of July, resulting in a difference of roughly 150 death cases. The raised infection data
obviously also has a major impact on the disease dynamics from September onwards.

Time-dependent travel impact rate
For Model C, we now assume that α is not constant over the whole time from June to August, but rather time-dependent. With
α(t) being piecewise constant for 15–30 June, July and August, the parameter estimation for model 3 yields the following
results as to be seen in Tab.6 and Fig.3. In this figure, similar to above, we also show the range with respect to the SACI of the
parameters and the scenario if no travelling had been allowed.
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Parameter mean value σ of Metropolis ψ of PACI ψ of SACI
β 4.76 ·10−2d−1 0.09 ·10−2d−1 0.003 ·10−2d−1 0.08 ·10−2d−1

δ 5.39 ·10−1 0.08 ·10−1 0.0003 ·10−1 0.18 ·10−1

µ 5.65 ·10−3 0.19 ·10−3 0.003 ·10−3 0.09 ·10−3

τ 2.67 ·101d 0.06 ·101 d 0.009 ·101 d 0.24 ·101 d
E0 2.33 ·103 0.03 ·103 0.002 ·103 0.05 ·103

α0 2.15 0.04 0.002 0.05
α1 2.43 0.06 0.003 0.09
α2 3.29 0.04 0.005 0.12

Table 6. Numerical Results for piecewise constant values of α

Figure 3. Estimation of infections in Germany compared to Johns Hopkins University from 1 June to 31 August with a
piecewise constant travel impact rate α , on the left side the cumulative number of infections, on the right side the cumulative
death cases. The dashed line describes the simulation with α = 0, i.e. either no travelling is allowed or the traveller
compartment had been completely free of the disease.

Comparison
For the Bayesian analysis, we can now compare the BIC values of the three models computed by equation (13) and (14). The
results for Model A were gained by applying eqs. (3), i.e. the model we used to estimate the disease behaviour in all other
countries, to Germany.

J(u) # of Parameters BIC
Model A 6.1304 ·10−5 6 3,955.8
Model B 2.1473 ·10−5 6 3,955.1
Model C 1.2504 ·10−5 8 3,964.0

Table 7. Values for the least-square value J(u and the BIC for the various models.

Tab.7 shows that in terms of the least-square output, the model with time-dependent, piecewise constant values of α (Model
C) shows the best results. However, due to the penalization of complexity with two more parameters, the BIC is higher, which
according to20 indicates a "strong" evidence that Model B using a constant value for α is to be preferred.

Sensitivity analysis

Posterior to the fitting and parameter estimation, two questions remain that we would like to focus on this section:

(Q1) Which parameters in u need more careful specifications for which the model solutions, as well as the likelihood function,
easily perturb within large orders of magnitude as the parameters slightly change?
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(Q2) Which interventions should be more emphasized for different states of the parameter values that could happen in the
prediction window?

These two different issues are addressed in the framework of sensitivity analysis. Its basic idea lies in the definition of a certain
measure M for variable change that is worth of investigation, especially when one would like to describe its sensitivity with
respect to a parameter ϑ . The sensitivity of M with respect to ϑ in the sense of first-order change can be measured with the
aid of Taylor expansion. Suppose that ϑ is increased up a certain percentage ε from its current value, i.e., ϑ 7→ ϑ + εϑ . This
way, the ratio (ϑ + εϑ)/ϑ = 1+ ε returns the total percentage post perturbation and ε denotes the additional percentage of
gain. Note that imposing ε as the percentage is considered more robust than as simply the increase, considering that different
parameters may live in disparate scales. Now, in the similar manner as for the parameter, the total percentage in M post
perturbation on ϑ is given by

M (ϑ + εϑ)

M (ϑ)
= 1+ εϑ

∂ϑ M (ϑ)

M (ϑ)
+O(ε2) (22)

providing that ε is sufficiently small, i.e., first-order change. Since the percentage of gain is usually considered similar across
parameters, the role of ε in the preceding equation is often neglected. The remaining expression thus provides a measurement of
the sensitivity. Usually, authors refer ∂ϑ M (ϑ) as the sensitivity index and ϑ∂ϑ M (ϑ)/M (ϑ) as the elasticity, cf.30. Between
two parameters ϑ1,ϑ2, it is logical to say that M is more sensitive to ϑ1 than ϑ2 when the absolute normalized sensitivity
indices hold the relation

∣

∣

∣

∣

ϑ1
∂ϑ1M (ϑ1)

M (ϑ1)

∣

∣

∣

∣

>

∣

∣

∣

∣

ϑ2
∂ϑ2M (ϑ2)

M (ϑ2)

∣

∣

∣

∣

. (23)

Time-dependent measures
The question (Q1) conveys the notion of model solution and addresses what our model solutions, especially those excluded
from the measurement or fitting, could have changed as we perturb the optimal parameters Λ = {β ,α,ET ,κ,µ,γ,τ}. Our
interest is now driven by all the measures M that represent model state variables Ψ = {S,E, I,R,D}, which apparently are
time-varying. We then define the sensitivity index of state ψi ∈ Ψ with respect to parameter λ j ∈ Λ as

Si j :=
d

dλ j

Ψi. (24)

We also included the parameters γ and κ from Table 1 although they were not optimized, yet can be assumed to bear uncertainties.
As we do not obtain closed-form solutions of the state equations Ψ̇ = f (t,Ψ,Λ), which could then be derived, an additional set
of |Ψ| first-order differential equations for the sensitivity has to be deduced30:

S′i j = ∑
k

Sk j ·
∂

∂ψk

fi +
∂

∂λ j

fi, Si j(0) = 0 . (25)

In most cases, λi(t)≡ λi is constant, except for ET and in one scenario α , cf. next section. Fig. 4 shows the elasticities λ jSi j/Ψi

around the parameter values given in tables 5 and 6, respectively. Generally ET being the most sensitive parameter through all
compartments, particularly with ongoing simulation time. Additionally, changes in the parameters α and γ would significantly
influence the infected compartment but not the death compartment, in which no parameter shows a higher elasticity than 0.15.
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Figure 4. Sensitivities for the model using a time-independent travel impact rate.

After all, a caveat with these measures remains, as the elasticities are time-varying. Therefore, preference to a certain
parameter for the highest elasticity could change over time.

Time-independent measure
The question (Q2) is concerned more with interventions. In this case, we focus more on parameters that can be changed with
the help of humans. In our context, such parameters could be β and α . The direct transmission rate β has always been related
to the proximity of the susceptible against infected humans and can be reduced with the aid of masks and social/physical
distancing. The parameter α is related additional factors that drive the infection more than it could have been in the origin and
destination country. For example, travellers are more exposed to physical encounters with other humans during flights, in public
transportation, or in touristic areas, whereas locals spend more time at home. More protective apparatuses and educational
campaigns will help reduce α . In this regard, two different measures for the sensitivity can be considered. For the first choice,
we may take, for example, M :=

∫ T
0 I dt, which represents the total number of infected cases over all observations. If α,β > 0,

M is then more sensitive to β rather than α when it holds

β ·

∣

∣

∣

∣

∣

∫ T
0 ∂β I dt
∫ T

0 I dt

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∫ T
0 ∂α I dt
∫ T

0 I dt

∣

∣

∣

∣

∣

. (26)

This inequality, however, includes terms |
∫ T

0 ∂β I dt|, |
∫ T

0 ∂α I dt| that do not account for entropy or state of disorder. The term
∂α I that largely fluctuates around zero can sum up to a small number and returns a small sensitivity index rather than ∂β I that
just delineates a “calm” trajectory above zero. To account for entropy, we shall consider the second measure

M :=
∫ β

0

∫ T

0
|∂β I(t,s)|dtds, (27)

which represents the total variation of I with respect to β , evaluated up to the current parameter value. Now, M is said to be
more sensitive to β than α (or vice versa) if

β ·

∣

∣

∣

∣

∣

∫ T
0 |∂β I|dt

∫ β
0

∫ T
0 |∂β I(t,s)|dtds

∣
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∣

∣

> α ·

∣

∣

∣

∣

∣

∫ T
0 |∂α I|dt

∫ α
0

∫ T
0 |∂α I(t,s)|dtds

∣

∣

∣

∣

∣

. (28)

From the computational perspective, one can define a certain grid representing domain of interest for the two parameters, for
example [βmin,βmax]× [αmin,αmax]. The next step follows from computing the sensitivity indices for all grid points and applies
the ratio of actual total variation and accumulated total variation in (28). Therefore, the left-hand side should be done via
stepping α (vertical mode) and the right-hand side via stepping β (right mode). Finally, one may generate a two-color profile
for which the inequality in (28) indeed applies or the other direction does. Fig. 5 shows the comparison of the elasticities in
reasonable ranges of β and α . For our fitted value (α, β ) = (2.96, 0.0306) we find that the measure M as in (27) is more
sensitive to β than α .

11/14



0.02 0.025 0.03 0.035 0.04 0.045

β

2

2.5

3

3.5

4

α

Figure 5. Comparison of the elasticities in a domain of interest for the transmission rate β and the travel impact rate α . The
green dots occupy the region where the elasticity of the measure M as in (27) with respect to β is larger than that with respect
to α , meaning that the condition in (28) is satisfied.

This finding draws forth further practical relevance. Our model can be calibrated with new incidence data on an initial
take-off period in the next winter season, where all parameters except β and α are fixed according to our fitting. At first, the
two parameters can be fitted to these new data. May they locate in one the two regions in Fig. 5, we then acquire knowledge on
which resources should be drawn in order to attack the most sensitive parameter. One can thus wait and see how the deployment
of the resources gives the real-time intervention to the number of infected cases. Re-calibration then follows after some time as
short-term feedback from such an intervention is gained, and the values of optimal β and α can once again be evaluated via
Fig. 5. This process of combining sensitivity-based interventions remains continuous until the ultimate disease eradication is
achieved without having to waste resources.

Conclusion

In this present work we have used several assumptions to show the impact of travellers on the overall disease dynamics in
Germany during summer 2020 using a modified SEIRD–model with a traveller compartment. The sensitivities of the model
with respect to the travel impact rate α were calculated, showing that while the impact is not as large as the transmission
rate β , it can be identified after a certain time delay. Travel rates are found by using international flight and hospitality data.
The infection data of all 55 countries with more than 5,000 German travellers in June, July and August together has been
used to optimise the single-country infections. The estimates for the transmission rates β j,0/1 in those countries are used in a
multi-patch model to estimate the travel impact rate for Germany. Parameter estimation was done using a Metropolis type
algorithm, while other routines like an adjoint based approach are also possible. The numerical estimations match the real
data well, while they can be optimised by using a time-dependent value for the travel impact rate. In these models, the travel
impact rate was estimated to be in the range of 2 ≤ α ≤ 3.5, meaning a two-to three times higher infection possibility as a
traveller than the average inhabitant of the respective country. This depends on the chosen model; we compared models with
constant and piecewise constant travel impact rates. While the second model lead to better values in the L2 norm, the first
model yields better BIC values due to less parameters being used. The raised infection rates by travellers also indirectly causes
even higher cases from September onwards. Among other reasons such as seasonality and opening of schools after the summer
holidays, this lead to a second large wave in late 20202, 6. This shows that travel bans are an important tool for disease control,
especially when the infection cases are otherwise comparatively low. It is up to further research to regard whether a travel
ban or tightening of travel restrictions had prevented this or just postponed this to a later date. Germany has experienced low
infection numbers by the end of May 2021, and it is still uncertain if the high vaccination rates can prevent a potential fourth
wave in autumn 2021; because of this, awareness of the dynamics of the second wave in the previous year are important. Future
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work in this topic might include the impact of foreign travellers in Germany and a international network model including
travellers from and to all investigated regions or countries.
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