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Abstract
Background: Previous authors have evidenced the relationship between air pollution-aerosols and
meteorological variables with the occurrence of pneumonia. Forecasting the number of attentions of
pneumonia cases may be useful to optimize the allocation of healthcare resources and support public
health authorities to implement emergency plans to face an increase in patients. The purpose of this
study is to implement four machine-learning methods to forecast the number of attentions of pneumonia
cases in the �ve largest cities of Colombia by using air pollution-aerosols, and meteorological and
admission data.

Methods: The number of attentions of pneumonia cases in the �ve most populated Colombian cities was
provided by public health authorities between January 2009 and December 2019. Air pollution-aerosols
and meteorological data were obtained from remote sensors. Four machine-learning methods were
implemented for each city. We selected the machine-learning methods with the best performance in each
city and implemented two techniques to identify the most relevant variables in the forecasting developed
by the best-performing machine-learning models.

Results: According to R2 metric, random forest was the machine-learning method with the best
performance for Bogotá, Medellín and Cali; whereas for Barranquilla, the best performance was obtained
from the Bayesian adaptive regression trees, and for Cartagena, extreme gradient boosting had the best
performance. The most important variables for the forecasting were related to the admission data.

Conclusions: The results obtained from this study suggest that machine learning can be used to
e�ciently forecast the number of attentions of pneumonia cases, and therefore, it can be a useful
decision-making tool for public health authorities.

Introduction
Pneumonia is an acute respiratory infection that affects the lungs. In a person affected by pneumonia, its
alveoli are �lled with pus and �uid, which makes breathing painful and limits the exchange of gas [1].
Viruses, bacteria, and fungi can cause pneumonia [2]. Depending on the severity, signs and symptoms
may include coughing, shortness of breath, fever, sweating and shaking chills, fatigue, chest pain,
nausea, vomiting, or diarrhea [3]. The etiologic agents may spread via airborne droplets from a cough or
sneeze. Additionally, this disease can be transmitted via blood, especially during and shortly after birth
[4].

According to the World Health Organization, 808,694 children aged 5 and younger died to pneumonia in
2017. This disease accounts for 15% of all deaths of children under �ve [1]. In 2017, the average death
rate by pneumonia in Latin America was estimated to be 86.5 per 100,000 inhabitants, but this rate raises
to 344.1 per 100,000 among people aged 70+ [5]. In Colombia, in this same year, the average death rate
was estimated to be 37.9 per 100,000 inhabitants, whereas for individuals aged 70+, the rate was 140.7
per 100,000 [5].
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Previous research showed the positive relationship between air pollutants such as particulate matter of < 
2.5 micrometers [6,7], sulfate [8,9] and nitrogen dioxide [10,11] and the incidence of pneumonia. Similarly,
meteorological variables have been associated to the disease, mainly temperature, relative humidity, and
rainfall [12–14].

Most of these previous works have focused on implementing time series analysis to assess the
relationship between air pollutants and meteorological variables with the occurrence of pneumonia.
However, forecasting the number of cases using multivariate time series is often limited and not
su�ciently accurate because these methods have di�culties to handle the multiple complex nonlinear
relationships between environmental variables and the incidence of pneumonia. Machine-learning
methods are an alternative to forecasting the number of cases of pneumonia from environmental data
[15].

On this paper, we shall implement four methods of machine-learning to forecast the number of medical
attentions of pneumonia cases in the �ve most populated cities of Colombia based on air pollution-
aerosols, meteorological and admission variables. Additionally, we shall implement two techniques to
identify relevant variables in the forecast developed by the machine-learning methods. Our results are to
show the potential of machine-learning methods in forecasting the attentions of pneumonia cases, and in
monitoring environmental and admission variables in Colombia.

Materials And Methods

Attentions Data
Daily attentions of pneumonia cases were obtained from the individual reports provided by healthcare
provision systems from January 2009 to December 2019. The daily data were grouped by
epidemiological week to obtain weekly cumulative attentions. The �ve most populated cities in Colombia
were selected for the study. The cities selected were Bogotá, Medellín, Cali, Barranquilla, and Cartagena.

Aerosols Data
Data on air pollution-aerosols corresponded to aerosol optical depth measured by the Moderate
Resolution Imaging Spectroradiometer, a space-borne instrument [16]. Daily data on air pollution-aerosols
are available on the NASA product: Modern-Era Retrospective Analysis for Research and Applications,
Version 2 [17]. The air pollution-aerosols included in this study were Black Carbon Surface Mass
Concentration (BCSMASS), Dimethylsulphide Surface Mass Concentration (DMSSMASS), Dust Surface
Mass Concentration of 2.5 μm in diameter (DUSMASS25), SO4 Surface Mass Concentration
(SO4SMASS), and Sea Salt Surface Mass Concentration of 2.5 μm in diameter (SSSMASS25). All data
were converted to μg/m3. Daily data were grouped by epidemiological week to obtain weekly average
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data. Spatial matching between the values of air pollution-aerosols and the cities included in the study
was performed using the raster package of R [18].

Meteorological Data
Daily data on rainfall and temperature were obtained from Modern-Era Retrospective analysis for
Research and Applications, Version 2 [19]. The daily data were grouped by epidemiological week to
obtain weekly cumulative rainfall and weekly average temperature data. Spatial matching among the
weekly values of rainfall and temperature and the �ve cities being evaluated was performed using the
raster package [18] of R.

We included lags of up to 4 weeks for air pollution-aerosols and meteorological variables, which we
considered su�cient to capture the necessary time for the period of incubation of the disease and the
time to visit a healthcare facility, and the report of a new pneumonia case.

Admission Data
In the models, we included the following as admission data: The year (2009 to 2019), the epidemiological
week (Epiweek) with values from 1 to 52 or 53 for each year, and the week consecutive (Consweek), with
values ranging from 1 to 573 for the entire study period.

Machine-learning Methods
Four machine-learning methods were implemented to forecast the number of attentions of pneumonia
cases in each city. The methods implemented were Extreme Gradient Boosting (XGBoost), Random Forest
(RF), Support Vector Machines (SVM), and Bayesian Adaptive Regression Trees (BART).

XGBoost is used to implement gradient boosted decision trees. The method is an approach where new
models that predict the residuals or errors of prior models are created and then added together to make
the �nal prediction [20]. RF combines several randomized decision trees and aggregates to do their
predictions by averaging [21]. The objective of SVM is to �nd a hyperplane in an N-dimensional space
that distinctly classi�es the data points [22]. BART is a nonparametric Bayesian regression approach
which uses dimensionally adaptive random basis elements [23].

In each city, the response variable was the number of attentions of pneumonia cases per week. We used,
as predictor variables in the machine-learning methods, the air pollution-aerosols and meteorological
variables with lags of up to 4 weeks, as well as the year, the Epiweek and the Consweek.

Each machine-learning method was trained and tested on a partitioned 70/30 percentage split of the
dataset by strati�ed random sampling for each city. The method of 10-fold cross-validation was used for
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training the dataset. Additional �le 1 shows the parameters of each machine-learning method
implemented. The performance of the forecasting was evaluated with the R2 metric. We used the package
caret [24] of R to implement the machine-learning methods.

Machine-learning Model Interpretation
We implemented the techniques of permutation feature importance and feature interaction to provide
explanations and to analyze the behavior and forecasting of the best-performing machine-learning model
in each city.

The permutation feature importance is an approach that classi�es the contribution of each variable
based on its precision. This means that a variable can be signi�cantly important if changing its values
(permutation) increases the model error, which means that the model needs this variable to perform more
accurate forecasting. On the other hand, if the model error shows no change when varying the values, the
variable does not contribute or in�uence the model when making the forecast [25]. The permutation
feature importance was estimated with 500 iterations.

Feature interaction explains the interaction between variables. The technique states that the effect that a
variable can have on the forecast is probably in�uenced by other variables. Therefore, this method
recognizes that variables can be interconnected and that not only does a variable by itself have an
in�uence on the machine-learning model, but that the interaction between variables can also have an
effect on how the model is making its forecast [26].

The package iml of R [25] was used to implement the techniques of permutation feature importance and
feature interaction.

Results

Attentions of Pneumonia Cases
Between 2009 and 2019, a total of 1,199,890 attentions of pneumonia cases were reported in the �ve
cities selected for the study. Bogotá was the city with the highest number of attentions with 457,343
attentions reported, whereas Cartagena, with 88,164 attentions, was the city with the lowest number of
attentions. Every city, except for Bogotá, showed an evident incremental tendency in the number of
attentions of pneumonia cases (Fig. 1), with a reduction in the number of attentions in 2015 (Fig. 1b, 1c,
1d and 1e).

Forecast Performance
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The R2 metric was estimated using the test dataset to evaluate the performance of the forecast
developed by the machine-learning methods. In average, the RF method had the best performance for the
�ve cities (R2 = 0.80 sd = 0.03) and the worst average performance was observed in SVM (R2 = 0.50 sd =
0.11). As for Bogotá, Medellín, and Cali, the best performance was achieved through RF, for Barranquilla,
BART had the best performance, and for Cartagena, the best performance corresponded to XGBoost (Tab.
1). In average, the best performance, according the R2 metric, was observed in Cali and Barranquilla.
Bogotá was the city where the performance was the lowest for the four machine-learning methods
implemented.

Table 1
Performance values using R2 metric and testing dataset

  XGBoost RF SVM BART

Bogotá 0.74 0.79 0.36 0.76

Medellín 0.75 0.76 0.51 0.72

Cali 0.82 0.83 0.67 0.79

Barranquilla 0.83 0.83 0.52 0.84

Cartagena 0.80 0.79 0.45 0.69

Average (sd) 0.79 (0.04) 0.80 (0.03) 0.50 (0.11) 0.76 (0.06)

sd = standard deviation. Note that a value of R2 =1.00 corresponds to a perfect performance, and a value
of R2 =0.00 corresponds to a worst performance.

Machine-learning Method Interpretation
We implemented two techniques to analyze the behavior of the machine-learning model with the best
performance in each city. The techniques of permutation feature importance and feature interaction
showed that the Consweek and Epiweek variables were the most important variables in the machine-
learning methods with the best performance for each city (Fig. 2). According to the technique of
permutation feature importance, the rest of variables had low contribution to the forecast (Fig. 2a, 2c, 2e,
2g, 2i), with values of mean squared error after 500 permutation reaching < 2.5.

Most variables interacted with each other, since few interactions had a zero value of interaction strength
(Fig. 2b, 2d, 2f, 2h and 2j). The Consweek variable had the highest degree of interaction with the other
variables in the �ve cities, and therefore, this is the interaction with the largest in�uence in the forecast
developed by the best-performing methods in each city (RF, BART and XGBoost).

The interaction between Consweek and the rest of variables in�uenced, in every city, the forecast obtained
by > 0.10, reaching values of > 0.35 in Cartagena (Fig. 2j). Other variables such as Epiweek (Fig. 2b, 2f
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and 2j), SO4MASS with lag = 3 (Fig. 2d), year (Fig. 2f and 2h), Temperature with lag = 1 (Fig. 2h),
DUSMASS25 with lag = 2 (Fig. 2h), and Rainfall (Fig. 2j) had interaction values relatively high in some
cities.

Discussion
Four machine-learning methods were implemented to forecast the weekly attentions of pneumonia cases
in the �ve largest cities of Colombia, and as result, the method with the best performance was identi�ed
for each city. To the best of our knowledge, no previous studies have implemented machine-learning
methods in the forecasting of the number of attentions of pneumonia cases. This is the �rst work to
implement and compare various machine-learning methods with the purpose of forecasting the number
of attentions of pneumonia cases using air pollution-aerosols, meteorological and admission data.

Our results showed that, in Bogotá, the average performance for the four machine-learning methods
implemented is lower than in the other cities. We believe that this fact may be related to the seasonal
pattern of the time series of attentions of pneumonia cases in this city. The time series of attentions in
Bogotá showed a seasonal pattern with peaks in the months of April and May, which coincide with the
�rst rainfall season in the region [27]. This seasonal pattern suggests the necessity of using other
methods to forecast the number of attentions of pneumonia cases in this city. Some possible methods in
the time series approach include multivariate vector autoregression models [28] or Bayesian structural
time series models [29], and machine-learning methods such as recurrent neural networks [30].

Comparing the most important predictor variables in our results to most previous works [31–34] shows
no coincidences, and that circumstance is related to the pattern of the time series and the approach
implemented in this paper. Firstly, the week consecutive was the most important variable in the machine-
learning methods with the best performance in each city, which seems to be associated to the
incremental tendency observed in the time series of attentions, including Bogotá in particular since 2016
[Additional �le 2]. Similarly, the epidemiological week was the most important variable in Bogotá
according to the technique of permutation feature importance, which may be explained by the seasonal
pattern of the time series of attentions in this city, along with the study period.

On the other hand, while our approach consisted of implementing several machine-learning models to
forecast the number of attentions of pneumonia cases based on air pollution-aerosols, meteorological
and admission data, previous authors focused on exploring the relationship between air quality and
meteorological data and the occurrence of pneumonia by using, in most cases, statistical methods such
as generalized linear models [31,35–37], generalized additive models [33,38–42], or autoregressive
integrated moving average [34,43–45]. This difference in approaches illustrates the dissimilarities
between predictive models, which generally provide high precision but low explicability, and explanatory
models that generally provide high explicability but low precision [46–48].

Every city included in the study showed a decrease in the number of attentions of pneumonia cases in
2015. This fact was observed even in Bogotá in spite of the seasonal pattern in the time series of
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attentions in this city [Additional �le 2]. This reduction in the number of attentions in 2015 coincided with
a decrease in the gross domestic product of Colombia and it is consistent with the relationship observed
by other authors between pneumonia and economic growth measured as gross domestic product [49,50].
In the case of Colombia, the country experienced a contraction of its economy in 2015 as result of the
reduction in oil prices [51], the country’s main export.

Our study has some limitations that are worth mentioning. Firstly, we assumed that all attentions of
pneumonia cases reported to the individual reports from the healthcare provision system corresponded to
community-acquired pneumonia and it was not possible to exclude hospital-acquired pneumonia or other
forms of pneumonia from the database. Secondly, our data on air pollution-aerosols corresponded to
remote sensor data of aerosol optical depth captured by the Moderate Resolution Imaging
Spectroradiometer and not in-situ measurements for each city. This approach seems to be proper,
considering the source of data (NASA’s satellites) and that, in Colombia, there is not a reliable network to
monitor air quality in main cities. However, the DMSSMASS variable showed atypical data for Bogotá (a
unique value of 0.00) and Medellín (two unique values of 0.00 and 0.01). The cause of these atypical
values is not fully clear, but it might suggest that there are limits in the use of aerosol optical depth
method for this air pollutant, particularly in tropical cities with an altitude of over 1,500 meters above sea
level.

Conclusions
In this study, we implemented four machine-learning methods to forecast the number of weekly
attentions of pneumonia cases in �ve Colombian cities based on air quality, meteorological and
admission data. The results obtained show that RF, XGBoost and BART can accurately forecast the
number of attentions of pneumonia cases.

The results show that the percentage of variance in the weekly attentions of pneumonia cases
(dependent variable) can be explained by over 76% (R2 metric) by the machine-learning methods
implemented when the method with the best performance is selected for each city. These �ndings show
that machine-learning methods have potential in forecasting the number of attentions of pneumonia
cases in Colombia.

Abbreviations
XGBoost = Extreme gradient boosting; RF = Random Forest; SVM = Support Vector Machines; BART =
Bayesian Adaptive Regression Trees; Epiweek = Epidemiological week; Consweek = Week consecutive;
Temperature_1 = Temperature with lag = 1; Temperature_2 = Temperature with lag = 2; Temperature_3 =
Temperature with lag = 3; Temperature_4 = Temperature with lag = 4; Rainfall_1 = Rainfall with lag = 1;
Rainfall_2 = Rainfall with lag = 2; Rainfall_3 = Rainfall with lag = 3; Rainfall_4 = Rainfall with lag = 4;
BCSMASS = Black Carbon Surface Mass Concentration; BCSMASS_1 = Black Carbon Surface Mass
Concentration with lag = 1; BCSMASS_2 = Black Carbon Surface Mass Concentration with lag = 2;
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BCSMASS_3 = Black Carbon Surface Mass Concentration with lag = 3; BCSMASS_4 = Black Carbon
Surface Mass Concentration with lag = 4; DMSSMASS = Dimethylsulphide Surface Mass Concentration;
DMSSMASS_1 = Dimethylsulphide Surface Mass Concentration whit lag = 1; DMSSMASS_2 =
Dimethylsulphide Surface Mass Concentration whit lag = 2; DMSSMASS_3 = Dimethylsulphide Surface
Mass Concentration whit lag = 3;DMSSMASS_4 = Dimethylsulphide Surface Mass Concentration whit lag
= 4; DUSMASS25 = Dust Surface Mass Concentration of 2.5 μm in diameter; DUSMASS25_1 = Dust
Surface Mass Concentration of 2.5 μm in diameter with lag = 1; DUSMASS25_2 = Dust Surface Mass
Concentration of 2.5 μm in diameter with lag = 2; DUSMASS25_3 = Dust Surface Mass Concentration of
2.5 μm in diameter with lag = 3; DUSMASS25_4 = Dust Surface Mass Concentration of 2.5 μm in
diameter with lag = 4; SO4SMASS = SO4 Surface Mass Concentration; SO4SMASS_1 = SO4 Surface
Mass Concentration with lag = 1; SO4SMASS_2 = SO4 Surface Mass Concentration with lag = 2;
SO4SMASS_3 =  SO4 Surface Mass Concentration with lag = 3; SO4SMASS_4 = SO4 Surface Mass
Concentration with lag = 4; SSSMASS25 = Sea Salt Surface Mass Concentration of 2.5 μm in diameter;
SSSMASS25_1 = Sea Salt Surface Mass Concentration of 2.5 μm in diameter with lag = 1;
SSSMASS25_2 = Sea Salt Surface Mass Concentration of 2.5 μm in diameter with lag = 2;
SSSMASS25_3 = Sea Salt Surface Mass Concentration of 2.5 μm in diameter with lag = 3;
SSSMASS25_4 = Sea Salt Surface Mass Concentration of 2.5 μm in diameter with lag = 4.
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Figure 1

Time series of attentions of pneumonia cases in the top �ve largest cities of Colombia. a = Bogotá, b =
Medellín, c = Cali, d = Barranquilla, and e = Cartagena
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Figure 2

Permutation feature importance (Left) and Feature interaction (Right) ranking for Bogotá (a, b), Medellín
(c, d), Cali (e, f), Barranquilla (g, h) and Cartagena (i, j). The error is expressed as a loss in the precision of
the forecast, mse = mean squared error. Note that permutation feature importance and feature interaction
were calculated for the best-performing machine-learning method for each city (Bogotá, Medellín and Cali
= RF, Barranquilla = BART, and Cartagena = XGBoost).
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