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Abstract
Background:

To selectively identify men with clinically signi�cant prostate cancer (sPC) is pivotal issue. To develop a
risk model for detecting sPC based on Prostate Imaging Reporting and Data System (PI-RADS) for bi-
parametric magnetic resonance imaging (bpMRI) and clinical parameters in a Japanese cohort is
expected bene�cial.

Methods

Between January 2011 and December 2016, we retrospectively analyzed clinical parameters and bpMRI
�ndings from 773 biopsy-naïve patients. A risk model was established using multivariate logistic
regression analysis and was presented on a nomogram. Discrimination of the risk model was compared
using the area under the receiver operating characteristic curve. Statistical differences between the
predictive model and clinical parameters were analyzed using DeLong’s test.

Results

sPC was detected in 343 men (44.3%). In the multivariate logistic regression analysis to predict sPC, age
(P=0.002), log prostate-speci�c antigen (P<0.001), prostate volume (P<0.001) and PI-RADS scores
(P<0.001) contributed signi�cantly to the model. The risk model showed a higher area under the curve
(0.862), than age (0.646), log prostate-speci�c antigen (0.652), prostate volume (0.697) and imaging
scores (0.822). DeLong test results also showed that the novel risk model performed signi�cantly better
compared with those parameters (P<0.05).

Conclusions

This novel risk model performed signi�cantly better compared with PI-RADS scores and other parameters
alone, and is thus expected to provide bene�ts in making decisions to biopsy on suspicion of sPC.

Introduction
Prostate cancer is the most commonly diagnosed cancer in Japan. The incidence of prostate cancer is
rapidly increasing, with over 90,000 males newly diagnosed in 2017. Over 12,000 males died of prostate
cancer in 2018, representing the 6th -most frequent cause of cancer-related death among men in Japan
[1]. Population-based prostate-speci�c antigen (PSA) screening tests can increase early detection of
prostate cancer and thus lead to declines in prostate cancer related-mortality [2]. However, these tests
simultaneously lack speci�city, resulting in increased numbers of unnecessary prostate biopsies, which in
turn are associated with risks of rectum bleeding and sepsis. The risk of over-treatment leading to
adverse impacts on quality of life without improving survival is a concern. Randomized controlled clinical
studies that evaluated the e�cacy of prostate cancer screening have highlighted the need to reduce over-
diagnosis of clinically insigni�cant prostate cancer. A new diagnostic pathway is thus needed to
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selectively identify men with clinically signi�cant prostate cancer (sPC), while reducing the number of
unnecessary biopsies and over-detection and over-treatment of clinically insigni�cant prostate cancer [2,
3].

The use of multi-parametric magnetic resonance imaging (mpMRI) of prostate incorporating anatomical
and functional imaging (T2-weighted imaging, diffusion-weighted imaging (DWI) and dynamic contrast
enhancement (DCE)) has been bene�cial to detect sPC. However, mpMRI has been criticized for its widely
variable reported diagnostic performance across different institutions. In 2012, Prostate Imaging
Reporting and Data System (PI-RADS) was introduced to facilitate standardized interpretation of mpMRI
�ndings [4]. In PI-RADS, a score for suspecting the presence of sPC was assigned on a 1- to 5- point scale
on mpMRI sequence. PI-RADS has shown high diagnostic accuracy for detecting sPC by means of
targeted biopsies [5, 6].

The use of clinical data with mpMRI �ndings has become signi�cantly important for urologists to better
stratify individuals who may warrant prostate biopsy. Multivariable prediction models are superior to
conventional decision-making based solely on PSA testing or digital rectal examination (DRE) in
predicting the outcome of prostate biopsies. Previous multivariable prediction models for detecting sPC
were structured from clinical parameters including various combinations of age, PSA, prostate volume
(PV), DRE �ndings and others. MRI �ndings were also utilized as a parameter of prediction models, but
without a standardized reporting system [7, 8]. The usefulness of an individualized risk calculator and a
multivariable nomogram including data from mpMRI using PI-RADS score for detecting sPC have been
reported [9–11]. Furthermore, the use of bi-parametric MRI (bpMRI) of prostate incorporating anatomical
and functional imaging (T2-weighted imaging and DWI not containing DCE) has maintained high
diagnostic accuracy [12, 13]. The predictive model based on bpMRI �ndings and clinical parameters for
risk assessment and selection of sPC have also recently been reported [14, 15].

However, epidemiologically, the characteristics of prostate cancer exhibit regional and ethnic differences
[16]. While the risk calculator and nomogram ideally should be structured from the same cohorts with
good validation, no reports have described a risk calculator and nomogram using PI-RADS scores
combined with other clinical parameters from a Japanese-only cohort [6]. The aim of the present study
was to develop the �rst risk model and nomogram using PI-RADS score among Japanese males for
detecting sPC and reducing over-detection and over-treatment of clinically insigni�cant prostate cancer.

Results
In total, sPC was detected in 343 men (44.3%). The demographics, MRI and biopsy data of both groups
are given in Table 1. Men in the sPC group were older (69 vs 65 years, P < 0.001), had higher PSA (9.01 vs
6.72 ng/ml, P < 0.001), lower PV (29.6 vs 39.85 ml, P < 0.001), and a greater number of biopsy cores
(range 8–14 cores, P = 0.021). The proportion of borderline and malignant lesions on mpMRI (PI-RADS
scores 3, 4 or 5) was signi�cantly higher in the sPC group (93.59 vs 65.46%, P < 0.001).
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In the multivariate logistic regression analysis to predict sPC, age (P = 0.002), logPSA (P < 0.001), PV (P < 
0.001) and PI-RADS score (P < 0.001) contributed signi�cantly to the model (Table 2). Multicollinearity
was tested between all variables by the individual variance in�ation factor and no multicollinearity was
found. The nomogram of the risk model and the regression equation are shown in Fig. 1.

The novel risk model was internally validated by bootstrapping. Discrimination of the risk model was
compared using parameters included in ROC analyses (Fig. 2, Table 3). The risk model reached a higher
AUC (0.862), compared with age (0.646), PV (0.697), logPSA (0.652) and PI-RADS score (0.822). DeLong’s
test results also showed that the novel risk model performed signi�cantly better compared with those
parameters including PI-RADS score alone (Table 3). Table 4 shows TPR, FPR, PPV and NPV at exemplary
probability thresholds of this risk model and best PIRADS score cutoff. At a probability threshold of 10%,
the net reduction in biopsies taken based on the risk model was 43.0%, while the rate of missing sPC was
2.3%. Bootstrapped calibration plots of the risk model demonstrated no untoward deviations of predicted
risk from observed risk of sPC over the entire range (Fig. 3).

In bootstrapped DCA, the risk model showed a higher net bene�t in terms of accurately detecting patients
with sPC, compared with PI-RADS score and other parameters alone (Fig. 4). The risk model showed a
bene�t for sPC threshold probabilities larger than 10%.

Discussion
Because of the high diagnostic accuracy for sPC detection, upfront mpMRI has been recommended as a
triage test to indicate the need for biopsy among biopsy-naïve men in whom sPC was suspected due to
high PSA [17-19]. As a result of the high negative predictive value, men with no suspected evidence of
sPC on MRI may defer systematic biopsy [20]. Moreover, to improve predictive values, new multivariate
risk prediction tools have recently been constructed using the mpMRI suspicion score [9,10,21].

Recently, performing prostate MRI without DCE, a procedure termed “bi-parametric MRI” (bpMRI) garners
bene�cial results.  The effectiveness of bpMRI for the detecting sPC in biopsy-naïve patients has been
reported.  And the bpMRI has the advantage that there are no adverse events that have been associated
with some gadolinium-based contrast agents, shortened examination time and reduced costs [22]. On the
other hand DCE MRI has been reported to improve the sensitivity of MRI for the detecting sPC. But at the
same time the predictive models based on bpMRI �ndings and clinical parameters for risk assessment
and selection of sPC have also recently been reported [14,15,23,24].

In a Japanese cohort, the e�cacy of mpMRI and bpMRI for detecting sPC as a triage test was also
reported [25-27]. However, no multivariate risk prediction models for detecting sPC based on PI-RADS
scores of mpMRI or bpMRI as ordinal variables among Japanese populations have been reported
previously.

The characteristics of our novel risk model were as follows. First, in all cases, bpMRI were performed on
the pre-biopsy setting, because biopsy artifacts could affect bpMRI �ndings and this model was
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constructed to reduce unnecessary biopsy. Second, a variable of DRE used in other nomograms was not
included in this study. Because anterior prostate cancer is less commonly palpable, if DRE is used as a
variable in the prediction model, the dataset of the model should ideally be divided into two groups
according to whether DRE �ndings are positive, and each model should be constructed independently
[28]. The small size of our dataset could not be divided into groups.

PI-RADS score contributed signi�cantly to the model, like other parameters from multivariate logistic
regression analysis. Interestingly, the odds ratio of PI-RADS score 2 compared to score1 was 0.292
(P=0.098) and PI-RADS score 3 compared to score 1 was 2.005 (P=0.332) (Table 2). PI-RADS score 1 and
score 2 indicated normal prostate gland and benign prostate disease (in�ammatory and/or  hyperplasia)
respectively. In a proportion of cases with PI-RADS score 2, PSA was elevated because of in�ammation
and hyperplasia. Therefore, among high-PSA cases, PI-RADS score 1 might carry a higher risk of sPC than
PI-RADS score 2 in real clinical practice. Moreover, because of the low number of PI-RADS score 1 (only
11 cases (1.42%)), the odds ratio for PI-RADS score 2 to score 1 might not reach statistical signi�cance.
This also explained why lower PV cases tended to carry a higher risk of sPC. This was presumably
because multicollinearity among parameters could not be excluded completely even if multivariate
analysis was performed.

Low PI-RADS score harbors a 5–10% risk of sPC, allowing biopsy to be potentially avoided [29,30]. ROC
analysis revealed this novel model offered a high AUC (c index=0.862) approximately equivalent to
previous reports, although this novel model lacked external validation and should not be compared to
other risk models constructed from different regional and ethnical cohorts [9]. The risk model enable
avoidance of unnecessary biopsies in more patients without increasing the risk of missing a diagnosis of
sPC at an arbitrary probability threshold. More speci�cally, at probability thresholds of 10% and 20% in
this model and with a cut-off PI-RADS score between 2 and 3, the net reductions in biopsies were 43.0%,
57.0% and 57.0% while the rates of missing sPC were 2.3%, 6.4% and 6.4%, respectively. Using DCA, the
present study showed that the risk model using PI-RADS scores improved clinical decisions for biopsy of
patients with suspected sPC, as compared with clinical parameter models or PI-RADS score alone. The
risk model provided bene�ts in the decision to biopsy patients for sPC at probability thresholds exceeding
10%. From a practical perspective, at various probability cutoffs, the combined models demonstrated the
best performance among all prediction parameters. Although cost-effectiveness remains an issue due to
differences in social insurance situations and the high penetration rate of MRI in other countries, a
protocol for biopsy indications for MRI in cases with high PSA value should be considered.

The present �ndings should be interpreted in the context of some limitations. First, this study represented
a retrospective analysis that elevated the risk of selection biases. Second, inter-reader agreement on
bpMRI was not evaluated in the present study. Third, low numbers of systemic biopsy cores were
collected in our cohort. The number of sPC lesions detected by systemic biopsy was thought to be lower
and could have improved model accuracy and internal validation. Last, no external validation was
performed. If the excellent results obtained with bpMRI and other clinical parameters from a single
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institution like this study are not reproduced in other hospitals, the broad use of the novel risk model will
lead to patient mismanagement in a substantial proportion of cases.

To the best of our knowledge, this represents the �rst report of a risk calculator and nomogram using PI-
RADS version 2 score of bpMRI among Japanese males for detecting sPC in pre-biopsy settings. On the
other hand, recent risk models have been reported to detect sPC using quantitative mpMRI, which may
also help standardize mpMRI and bpMRI interpretation and image recognition using new statistical tools
(machine learning, deep learning and neural network analysis) [31,32]. Risk models using genetic
elements and molecular markers rather than image variables are also being reported [33]. Lastly,
prospective and multi-centric risk models for sPC risk prediction including such new biochemical
parameters, �nancial aspects and novel MRI fusion biopsy data are expected to be established in the
future.

Methods

Study population
Between January 2011 and December 2016, a total of 773 biopsy-naïve patients suspected to have
localized prostate cancer based on abnormal PSA levels were analyzed retrospectively from a single
institution, Toranomon hospital, Tokyo, Japan. Indications for biopsy were high PSA level (≥4.0 ng/ml),
abnormal DRE or suspicious lesions for prostate cancer on bpMRI images. Exclusion criteria were
previous prostate surgery, previous diagnosis of prostate cancer and administration of 5-alpha-reductase
inhibitor or anti-androgen, as agents that affect PSA values. Full data on PI-RADS scores of bpMRI before
prostate biopsy, biopsy outcome, PSA, age and PV were available for all patients. Those samples were
used for risk model development and internal validation. The study was approved by Toranomon
Hospital Ethics Committee (approval no.1573). And all methods were conducted in accordance with the
relevant local guidelines and regulations.  All the patients provided an informed consent or was informed
by this hospital internet web page including an opt-out option approved by Toranomon Hospital Ethics
Committee.

Imaging
All bpMRI was performed using a 1.5- or 3.0-T system (Magnetom; Siemens, Erlangen, Germany) using a
multichannel body surface coil. The bpMRI protocol included axial, coronal and sagittal turbo spin echo
T2-weighted sequences and axial DWI with apparent diffusion coe�cient (ADC) calculation
(Supplementary Table S1). A 1.5 T system was generally used for the �rst bpMRI and a 3.0 T system was
used for the second and subsequent bpMRI. All image analyses were performed according to PI-RADS
version 2.0 on a scale from 1 to 5, with higher numbers indicating a greater likelihood of sPC [34].
Analyses were performed by or under the supervision of a few expert uroradiologists. Overall, PI-RADS
scores for each lesion were determined and entailed assignment of a separate score for each of the T2-
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weighted and DWI sequences. PV was calculated on T2-weighted imaging, calculated as multiplication of
0.52, length, width and height.

Biopsy protocol
All patients underwent systematic transperineal and transrectal biopsy (mapping 8–14 cores) of the
whole gland in the lithotomy position under local anesthesia, carried out by one of several expert
urologists [35]. If one or more suspicious lesions of prostate cancer were detected on bpMRI ( suspicious
lesions were reported as PI-RADS score ≥3 retrospectively ), transperineal cognitive targeted biopsies
were added for each lesion (2–4 cores of each lesion; median, 2 per lesion). Transrectal ultrasound
echography (ARIETTA; Hitachi Aloka Medical, Wallingford, CT, USA) was used to guide biopsies without
MRI fusion software.

Histopathology
Histopathological analyses from biopsies were performed by or under the supervision of a few expert
uropathologists specializing in prostate assessment according to International Society of Urological
Pathology standards. For all cores, the length of the cancer in millimeters and both primary and
secondary Gleason grade were assigned separately. The study de�ned sPC as grade group ≥3 (Gleason
score ≥4 + 3) or a maximum cancer core length ≥6 mm in any location [5].

Statistical analysis
Patient demographics, MRI and biopsy results (age, PSA, PV, PI-RADS score 1–5 and presence or absence
of sPC) were analyzed descriptively. First, we divided all patients into two groups by pathological
outcome: a sPC group and others group. The others group included patients with clinically insigni�cant
prostate cancer and no cancerous tissue. Clinical parameters were compared between groups using the
Wilcoxon test and Pearson test. Consequently, we performed multivariate logistic regression analysis to
predict the presence of sPC on biopsy. We calculated odds ratios and used multivariate logistic
regression-based coe�cients to develop multivariable nomograms that predict the probability of sPC (a
nomogram is a graphical calculating device, speci�cally the approximate probability of sPC derived by
mathematical logistic function in this study). To avoid linearity assumptions, PSA was transformed into
the logarithmic PSA.

Discrimination of risk models for sPC with or without MRI scoring was compared using the area under the
curve (AUC) of the receiver operating characteristic (ROC) curve. Statistical differences between predictive
models were analyzed using DeLong’s test.

The extent of over- or underestimation of predicted rate relative to observed rate of sPC was explored
graphically using calibration plots, which were internally validated using 1000 bootstrap resamples. The
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intercept indicates whether predictions are systematically too low or too high, and thus should ideally be
zero. The calibration slope re�ects the average effects of predictors in the model and is estimated in a
logistic regression model with the logit of model predictions as the only predictor. For a perfect model, the
slope equals 1 [36].

Last, we assessed the performance of the risk model for its clinical usefulness by using decision curve
analysis (DCA) based on 1000-times repeated bootstrapped validation. These analyses estimate a ‘net
bene�t’ for prediction models by totaling the bene�ts (true-positive biopsies) and subtracting the harms
(false-positives biopsies) [37]. The harms are weighted by the relative harm of a missed sPC compared to
unnecessary biopsy. The weighted rate is derived from the threshold probability of sPC at which a patient
would opt for biopsy. This threshold can vary from patient to patient in clinical settings. The reduction in
number of biopsies using different probabilities was further assessed and related to the number and
percentage of detecting sPC. The interpretation of the decision curve is that the model with the highest
net bene�t at a particular threshold probability is the most useful model for risk and bene�t. To quantify
the potential reduction of unnecessary biopsies and potential over-diagnosis, we calculated true-positive
rate (TPR), false-positive rate (FPR), positive predictive value (PPV) and negative predictive value (NPV) at
exemplary probability thresholds.

All tests performed were two-sided and a P value of  less than 0.05 was considered to indicate statistical
signi�cant. Statistical analyses were performed using R version 4.0.2 (R Foundation for Statistical
Computing, Vienna, Austria). ROC analysis and DCA were performed utilizing the pROC package and
rmda package, respectively. Reporting followed the Standards of Reporting of Diagnostic Accuracy
(Supplementary Table S2, S3).
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Tables
Due to technical limitations, tables are only available as a download in the Supplemental Files section.

Figures

Figure 1

Title: Risk model to predict sPC including Age, PSA, PV and bpMRI PI-RADS score Legend: The regression
equations are as follows. Logiti= -3.576+0.039agei-0.039PVi+0.742log(PSAi)-1.229I(PI-
RADSi=2)+0.696I(PI-RADSi=3)+1.546I(PI-RADSi=4)+1.821I(PI-RADS=5) where Logitiis the probability of
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sPC for patient i given values of the covariates. I(PI-RADS=j) denotes the dummy variable that is 1 if PI-
RADS=j for j =2,…,5 (reference category PI-RADS=1)

Figure 2

Title: ROC curve analysis for the performance of Age(red line), PV(yellow line), PSA(green line), bpMRI PI-
RADS(blue line) and risk model(purple line) to predict sPC.
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Figure 3

Title: Calibration plots for the risk models to predict sPC. Legend: Calibration plot which illustrated the
accuracy of the novel risk model (Apparent) and the bootstrap model (Bias-corrected) in predicting the
probability of detecting sPC.
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Figure 4

Title: Net DCA demonstrating the bene�t for predicting sPC on biopsy Legend: The turquoise line is the
net bene�t of providing all patients with biopsy, and the horizontal black line is the net bene�t of
providing no patients with biopsy.The net bene�t provided by each prediction tool is given.
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