Development of a Novel Wireless Multi-Channel Stethograph System for Monitoring Cardiovascular and Cardiopulmonary Diseases

Xingzhe Zhang (xingzhe.zhang@wmich.edu)  
Western Michigan University

Dinesh Maddipatla  
Western Michigan University

Binu B. Narakathu  
Western Michigan University

Bradley J. Bazuin  
Western Michigan University

Massood Atashbar  
Western Michigan University

Research Article

Keywords: Acoustic sensor, Heart, lung and trachea (HLT) sounds, Multi-channel wireless stethograph system, Noninvasive, Signal conditioning boa

Posted Date: June 1st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-496375/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Development of a Novel Wireless Multi-Channel Stethograph System for Monitoring Cardiovascular and Cardiopulmonary Diseases

Xingzhe Zhang*, Dinesh Maddipatla, Binu B. Narakathu, Bradley J. Bazuin, Massood Z. Atashbar
Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, USA
*Correspondence to xingzhe.zhang@wmich.edu

Abstract—A multi-channel stethograph system was designed and developed as an electronic auscultation system for graphic recording of heart, lung, and trachea (HLT) sounds non-invasively through a set of 16 acoustic sensors. The multi-channel stethograph system was fabricated by placing 16 microphone based acoustic sensor in a CNC machined Delrin® housing cases that are covered using diaphragms. Among the 16 acoustic sensors, 14 were positioned in a memory foam pad, and two were placed directly on the heart and trachea to acquire sounds simultaneously from the lungs, heart, and trachea. The sounds acquired from the 16 acoustic sensors were processed through a custom designed and fabricated 16-channel PCB for signal conditioning. A National Instruments (NI) 9205 data acquisition device (DAQ) along with a NI 9191 wireless chassis was used to acquire and wirelessly transmit the data from the 16-channel PCB to a Wi-Fi enabled device such as a PC/tablet. A custom LabVIEW program was developed on a Wi-Fi enabled PC/tablet to record the data from the DAQ. In addition, a MATLAB program was developed to convert the recorded data from the acoustic sensors into 16 audio files (for audio playback) and plot the waveforms in time and frequency domain as well as spectrogram for visual examination of any abnormal patterns in inhalation and exhalation. This provides critical information on the presence of wheezes, crackles and rhonchi sounds as well as abnormal heartbeat and respiration rate which helps in analyzing the condition of heart and lungs. The graphically displayed HLT sounds will help physicians in the clinical diagnosis and monitoring of lung and heart disorders, particularly chronic obstructive pulmonary disease (COPD), asthma, pneumonia, and congestive heart failure by providing objective evidence.

Index Terms—Acoustic sensor; Heart, lung and trachea (HLT) sounds; Multi-channel wireless stethograph system; Non-invasive; Signal conditioning board.

I. INTRODUCTION

Cardiovascular and cardiopulmonary diseases (CCD) such as pneumonia, COPD (chronic obstructive pulmonary disease), and CHF (congestive heart failure) is prevalent in the US [1-3]. According to American Thoracic Society, pneumonia is considered the world’s leading cause of death (880,000 deaths were estimated in 2016) among children under the age of 5 [1]. In the United States alone, more than 55,000 die from this disease, with about 1 million adults seeking hospital care each year. Chronic lower respiratory disease, primarily COPD, is the fourth leading cause of death in the United States with 140,000 death each year (1 death every 4 minutes!) [2]. Almost 15 million Americans were diagnosed with COPD. In addition to Pneumonia and COPD, CHF is also a serious problem with ≈550,000 new cases being reported in the U.S. each year. Currently, 5 million people are diagnosed with CHF in the United States, and 287,000 deaths were reported to be linked to heart failures in a year [3].

CCDs are mainly diagnosed by chest X-ray, CT scan, and blood test [4]. However, some of these methods are not considered safe for multiple/repetitive tests (do not support continuous diagnosing of patients) due to the radiation exposure. Some are invasive and are associated with high costs. Typically, when breathing, a patient with pneumonia exhibits crackles sound, and abnormal respiratory rate, a patient with COPD has wheeze and rhonchi sounds. CHF causes crackle sound and abnormal heart rate in the patient [5]. To diagnose the CCD diseases efficiently in a simple way is to observe and identify these adventitious sounds, heart and respiratory rates in the heart, lung, and trachea (HLT) sounds. Stethoscopes are validated as a non-invasive and low-cost tool to perform the preliminary diagnosis on CCD [6,7]. Stethoscopes are often considered as a symbol of healthcare professionals and have been used since 1816 to obtain acoustic information from the chest, that is helpful in the diagnosis of pulmonary conditions [8-12]. In recent years, advancements in electronics and computerized methods have provided the potential to obtain this information more objectively with greater precision which in turn may aid in diagnosis and monitoring of various CCD more accurately and efficiently.

In the past, the heart and lung sounds were detected by placing the ear to the chest. However, with the invention of the stethoscope by Laennec [11], several categories of HLT sounds could be easily detected and classified. Laennec’s systematic and thorough clinical pathologic correlation of these sounds was a remarkable achievement and revolutionized the practice of medicine by “altering both the physician’s perception of disease and their relation to the patient” [12]. In particular, the stethoscope drew the
A multi-channel stethograph system with a custom-built signal conditioning unit and Wi-Fi communication capability was developed for more advanced diagnosis, and monitoring of HLT sounds simultaneously and non-invasively with high precision. The wireless data recording capability enables high portability and provides real-time monitoring of data remotely and significantly benefit developing and under developed countries where the patients are located in a hard-to-reach areas where a physician or doctor may not be available. The fabrication details and the simultaneous detection capability of the multi-channel stethograph system is demonstrated.

II. EXPERIMENTAL

A. Materials and Components

A 1" thick high-density memory foam pad was purchased from Foam N' More Inc., Detroit, MI. Microphones (CMC-5044PF-A CU) from Mouser Electronics were used for the stethoscopes fabrication. Black Delrin® acetal resin rod from McMaster-Carr™ was used for fabricating the microphone cases. Litmann L40022 diaphragm was purchased from 3M Co., USA. Custom PCB was fabricated at Safari Circuits Inc, USA. A shielded 4-conductor 32 AWG cable (30-00218), 44 position D-sub connector (1757823-9), 25 position two-piece backshell (970-025-030R121), insertion and extraction tool (91067-1), hand crimper tool (PA1460), and 44 position D-sub cable assembly (CS-DSDHD44MF0-002.5) were used to connect the wires from microphone to PCB and were purchased from DigiKey, USA. 37 position D-Sub cable assembly (2302191) from DigiKey was used to connect the PCB to DAQ. Data acquisition system (NI 9205) and wireless chassis (NI 9191) was purchased from National Instruments. The schematic of the system is shown in Fig. 1. In brief, the HLT audio will be acquired from the 16 acoustic sensors and then filtered and amplified using a custom-built signal conditioning board. Following
this, the amplified audio signals will be wirelessly transmitted using a National Instruments (NI) 9205 data acquisition device (DAQ) along with a NI 9191 wireless chassis to a Wi-Fi enabled device (PC/Tablet). A custom-built LabVIEW program will be used to real-time plotting of the sounds waveform and recording the data. A MATLAB program will be used to convert the recorded data into 16 audio files and further analysis the data especially heartbeat and respiration rate detection. The specifications of the multi-channel stethograph system shows in Table 1.

<table>
<thead>
<tr>
<th>Specification of the Stethograph System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
</tr>
<tr>
<td>Sampling Rate</td>
</tr>
<tr>
<td>Operating Frequency</td>
</tr>
<tr>
<td>Output Amplitude</td>
</tr>
</tbody>
</table>

### a. Fabrication of custom designed acoustic sensor

Initially the microphones were soldered to cables. A CNC machined cylindrical shaped Delrin® material with height 0.5" and radius of ~0.9" which matches the size of 3M Littmann diaphragm was used as casings to hold the condenser sensor. Microphones were embedded in the Delrin® casings by applying water proof and airtight transparent premium silicone glue on the soldered end of the microphone and by attaching an O-ring washer (5 mm ID, 8 mm OD, 1.5 mm cross section) to the other end of the microphone. The O-ring washer avoids the flow of glue from one end of the casing to other end and holds the microphone. Once the glue is dried/cured (approximately 3 hours), the casings were covered with the Littmann diaphragm. The fabricated acoustic sensors are shown in Fig. 2.

### b. Memory foam pad assembly with acoustic sensors

A high-density memory foam pad of 5.3 lb/ft³ with indentation force deflection (IFD) of 9-10 lbs/50sq.inch was chosen since it provides better compression rates with longer life compared to medium and low-density memory foams. The foam pad assembly consists of top and bottom foam pad layers as shown in Fig. 2(e). 40 mm holes were punched out in the top memory foam pad layer and the acoustic sensors were embedded into the holes. The acoustic sensors were one each for trachea and heart location, to record the HLT audio efficiently and effectively [30, 31]. Then the bottom memory foam pad layer was attached to the backside of top foam layer with the help of a spray adhesive from Loctite®. The photograph of the foam pad with acoustic sensors is shown in Fig. 2(f). The foam pad provides relatively better contact with patient’s chest wall as well as comfort to the patient by conforming to the patient’s body contour when lying/leaning on the pad and provides acoustic isolation between the sensors.

Among the 16 acoustic sensors, 14 were positioned in the memory foam pad and 2 were placed directly on the heart and trachea to acquire sounds simultaneously from the lungs, heart and trachea. 14 sensors can cover the maximum area of the lungs and record sounds at different locations of lungs simultaneously (Fig. S1, Table S1). With multi-channel sensors, mother adventitious sound and its location can be determined based on the amplitude of all adventitious sounds in the audios at time domain. The concept of an adventitious sound (crackle, wheeze and rhonchi) family was first introduced and validated by Vyshedskiy et al [7]. The origin location of adventitious sound with highest sound amplitude is called the mother adventitious sound, and the corresponding deflections at other locations are called daughter adventitious sounds. However, without multi-channel sensors, it is difficult and time consuming to accurately measure the sound level in different locations using single stethoscope since the sound level may vary in each breath cycle.

### c. Signal conditioning unit

Even though the acoustic sensors are meant to detect the sounds from heart (50-200 Hz), lung (80-1600 Hz) and trachea (100 to 1500 Hz), they are also easily prone to external noise such as body noises, ambient/background noises as well as cable noises. The electrical signals generated by the acoustic sensors are very small voltages (<100 mV) and cannot be used directly for further analysis [32-34]. To address these issues, a signal conditioning circuit was required to filter and reduce the noise level in the electrical signal and amplify it for further analysis, such as analog-to-digital (A/D) conversion and signal processing. The signal conditioning circuits implemented in the literature were very simple and did not provide the desired filtering and gain characteristics [14-16,18-20]. In addition, these circuits affect the performance of the acoustic sensors due to the absence of any electrical DC isolation or sensor line isolator ICs.

The schematic of the single channel of the custom-designed signal conditioning circuit is shown in Fig. 3(a). The signal conditioning circuit was designed with a gain of 34 and operating frequency ranging from 50 Hz to 1600 Hz. Various components
such as capacitors, resistors, op-amp chip, optocoupler (isolator) chips were used for building cascaded signal processing circuits consisting of filters, isolator and amplification. In addition, two power supply circuit designs (power circuit_1 and power circuit_2) were used for generating specific voltages to power the signal conditioning circuit for Section 1 and Section 2, respectively.

- **Cut-off frequency and amplification gain calculation**

The signal conditioning circuit is divided into 6 stages with each stage performing a particular function. Multiple filtering stages were employed to increase the order of the filter (to attenuate the noise in the input signal). Stage 1 is a first order high pass filter powered by power circuit_1 and it includes a passive high pass filter with cut-off frequency of 2.3 Hz (for blocking the DC) (Eq. (1)) and a non-inverting amplifier (to amplify the input ac signal from acoustic sensor) with a gain of 6 calculated using Eq. (2):

\[
\text{Frequency} = \frac{1}{2\pi R_1 C_1} \tag{1}
\]

\[
\text{Gain} = 1 + \frac{R_{17}}{R_{18}} \tag{2}
\]

Stage 2 functions as an isolation amplifier (galvanic isolation). Operator safety and signal quality of the acoustic sensors were ensured with isolated interconnections provided by the IL300 (high common mode rejection (130 dB) and high gain stability (± 0.005 %/°C)). In addition, it provides a barrier to avoid the generation of ground loops from the two groundings in the signal conditioning circuit. The isolation amplifier consists of inverting input and output. It amplifies the signal with a gain of 1.62. The gain was calculated based on the Eq. (3), where \(k_2\) is the output forward gain, \(k_1\) is the feedback transfer gain [16].

\[
\text{Gain} = \frac{k_2(R_5+R_6)}{R_1R_2} \tag{3}
\]

Stage 3 is a second order active low pass filter with a cut-off frequency of 1600 Hz, calculated using Eq. (4). The signal frequencies (from stage 2) that are greater than 1600 Hz were considered as the interference sounds and filtered in order to reduce the noise. Stage 3 was powered by power circuit_2.

\[
\text{Frequency} = \frac{1}{2\pi \sqrt{C_{11}C_{12}R_8R_9}} \tag{4}
\]

Stage 4 is a third-order active high pass filter with a cut-off frequency at 50 Hz, calculated using Eq. (5), and powered by power circuit_2. The signal frequencies from stage 3 that are lower than 50 Hz were considered as noises and filtered.

\[
\text{Frequency} = \frac{1}{2\pi \sqrt{C_{7}C_{8}C_{9}R_4R_7R_{14}}} \tag{5}
\]

Stage 5 is a non-inverting amplifier and amplifies the signal from stage 4 with a gain of 3.5 and was powered by powered by power circuit_2.

\[
\text{Gain} = 1 + \frac{R_{13}}{R_{12}} \tag{6}
\]

Stage 6 is a first order passive low pass filter with cut-off frequency at 1600 Hz, calculated using Eq. (7), and is powered by powered by power circuit_2.

\[
\text{Frequency} = \frac{1}{2\pi R_{15} C_{15}} \tag{7}
\]

Stage 1, stage 3, stage 4 and stage 6 together function as a band pass filter and an amplifier. In addition, two separate power distribution circuit developed with specific grounding was used for supply different input voltage for circuit of each channel (Figure 3(b), S2 and S3).

d. **Wireless data acquisition**

Bluetooth 4.0 and Wi-Fi 802.11 (a, b, g, n) are widely used communication protocols for wireless data transmission. Even though Bluetooth offers better battery life with lower power consumption when compared to Wi-Fi, the data throughput, bit rate, and access range are lower for Bluetooth. In this work, the Wi-Fi based wireless transmission was chosen because the minimum raw
bit rate required is 2.93 Mbps which can be achieved only by Wi-Fi communication. Therefore, a compact and portable DAQ device (National Instruments (NI) 9205) along with a wireless chassis (NI 9191) was used to acquire the analog signal from the signal conditioning circuit, convert to digital signal using in-built-in A/D converter and then wirelessly transmit the data reliably to a Wi-Fi enabled device such as a PC/tablet. This NI DAQ provides accurate wireless data transmission of multichannel signals with high transmission rate and no noticeable cross talk.

e. Custom-built LabVIEW and MATLAB program

A custom-built LabVIEW program was developed in the Wi-Fi enabled device (PC and tablet) to acquire the digital signals from the NI 9191 Wi-Fi module, which were converted and conditioned from HLT sounds detected by the acoustic sensors. In the LabVIEW program, the ‘DAQ Assistant’ function was used to select the data channels (1-16) and the sample rate, which was 8 kHz for one channel and 128 kHz for 16 channels. The ‘Waveform Graph’ function was used to display the real time waveform signals on the display screen. The ‘Time Target’ function was used to set the sound recording time of the stethograph system for 20 seconds to cover at least 4 breath cycles (based on a previously reported study by Gurung et al., [35]). The ‘Write to Measurement File’ option was used to save the recorded data in a ‘.lvm’ format database. The real time sound waveform detected by the 16 acoustic sensors was shown simultaneously on the custom built graphical user interface (GUI) (Fig. 4(a)) while the data was saved in ‘.lvm’ file format.

A MATLAB program was developed to convert the recorded data from LabVIEW program into 16 audio files of ‘.WAV’ format (for audio playback) (Fig. 4(b)) and audio for analyzing the heart and the lung conditions by visual examination. In addition, another MATLAB program was developed with algorithms and it has the capability to analyze the acquired data off-line and provides the information on HLT sounds including heartbeat and respiration rate to a physician/doctor and serves as an efficient tool in CCD diagnosis and monitoring. The photograph of the multi-channel stethograph system is shown in Fig. S4.

C. Experiment Setup

Figure 4(c) shows the experiment setup of multi-channel stethograph system. The data (HLT sounds) was recording at the Center for Advanced Smart Sensors and Structures, Western Michigan University, USA. All the volunteers (above the age of 18 years) were seated, and the high density foam pad with 14 acoustic sensors was placed between the chest (behind/backside of the chest) and the backrest, one acoustic sensor was placed on the heart and the other sensor was placed on the side of the windpipe or trachea (Fig. 4(c)). The duration of each recording was set to 20 seconds for validating the functionality of the system by measuring HLT sound. The accuracy of vital sign measurement using the wireless stethograph system was validated by verifying the functionality of each component of the system individually as well as a whole system.

The human subjects internal review board (HSIRB) at Western Michigan University affirmed that the HSIRB approval is not required for conducting this study since the HLT sound data was only used to demonstrate the working of the prototype and optimizing the system design. In addition, all the subjects provided the written informed consent to participate in this study, and their personal information was not collected.

III. RESULTS AND DISCUSSION

A. Characterization of Multi-Channel Stethograph System

a. Characterization of signal conditioning circuit

Initially, to verify the amplification gain, 34, of designed signal conditioning circuit, its schematic was implemented in Pspice simulation software. A frequency of 1 kHz and a voltage of 0.1 Vpk was provided as input signal to the circuit and an output of 3.4 V was obtained that results in a gain of 34. Later, the amplification gain of each channel of the fabricated signal conditioning board was measured by providing an input signal with a frequency of 1 kHz and a voltage of 0.1 Vpk using R.S.R FS-30 function generator. An average output signal of 3.36 ± 0.07 Vpk with gain of 33.6 was measured for the 16 channels of conditioning board on TDS5104B digital phosphor oscilloscope (Fig. 5(a), Fig. S5 and Fig. S6). This clearly shows that the designed signal conditioning circuit can provide a constant output signal in all the 16 channels with a desired amplification gain of ~34. The ground pin of the oscilloscope was removed during measurements to avoid the generation of ground loops as well as the interference across the isolation barrier.

To characterize the filtering capability (noise reduction) of the fabricated signal conditioning board, an input signal with frequency ranging from 1 to 4000 Hz was applied to each channel using an Analog Discovery 2 USB logic analyzer. The output frequency response of the board was recorded and analyzed using Diligent Adept 2 software. Figure 5(b) shows the output frequency response of one of the channels (channel 1). The input signal with frequencies between 50 Hz to 1600 Hz were passed through the filters and amplified with gain ~34 whereas the frequency signals outside this range were attenuated (results in relatively lower gain).
b. Characterization of DAQ system

The functionality of DAQ system, which includes DAQ device (A/D signal conversion), Wi-Fi communication (data transmission) and custom-built LabVIEW program (data recording) was validated by comparing the similarity between the output analog signal of signal conditioning board and the digital signal data recorded from LabVIEW program. Initially, a signal with the frequency of 1 kHz and voltage of 0.1 V pk was applied as input to the signal conditioning board using the function generator, and the analog output of signal conditioning board output was measured and recorded using the digital oscilloscope. The analog output of signal conditioning board was then provided as input to the DAQ device integrated with Wi-Fi module. Following this, the digital output signal of DAQ device which was transferred to a Wi-Fi enabled PC and recorded by the LabVIEW program was compared with the analog output signal of the conditioning board using the cross-correlation algorithm implemented in MATLAB program. The result shows a correlation coefficient of 0.96 which indicates that the data acquisition system converts the signals from signal conditioning board and communicates to PC as intended.

c. Characterization of acoustic sensor

The performance of the 16 acoustic sensors was validated by detecting sound signal with a constant frequency and comparing their output voltage amplitudes that were recorded on LabVIEW program using MATLAB. Initially, an acoustic sensor (before embedding into foam pad) connected to the channel 1 of the conditioning board (conditioning board was connected to DAQ system) was placed in front of a speaker that was playing a constant 1000 Hz audio. The output voltage of the acoustic sensor was recorded using LabVIEW. Similarly, the output voltages of the other 15 acoustic sensors were recorded. Average amplitude value of each output voltage signal of acoustic sensor from LabVIEW was calculated based on peak detection algorithm using MATLAB. The calculated average amplitude of all 16 sensors was 0.98 ± 0.03 (Fig. 5(c)). The small standard deviation value indicates that the fabricated acoustic sensors have the same performance.

d. Comparison with commercial electronics stethoscope

The performance of the STG system was investigated by recording HLT sounds and common sounds from ambient environment and comparing the signal to noise (SNR) ratios with Clinicloud Digital Stethoscope (FDA approved commercially available stethoscope) from Clinicloud Inc.

Table 2. Signal to noise ratio of STG system and Clinicloud Digital Stethoscope.

<table>
<thead>
<tr>
<th>Sound Type</th>
<th>SNR (dB)</th>
<th></th>
<th>Sound Type</th>
<th>SNR (dB)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STG</td>
<td>Clinicloud</td>
<td></td>
<td>STG</td>
<td>Clinicloud</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>23.6</td>
<td>16.7</td>
<td>Crying</td>
<td>16.5</td>
<td>30.3</td>
</tr>
<tr>
<td>Trachea</td>
<td>24.2</td>
<td>23.2</td>
<td>Laughing</td>
<td>23.7</td>
<td>31.1</td>
</tr>
<tr>
<td>Lung</td>
<td>12.1</td>
<td>10.4</td>
<td>Speaking</td>
<td>12.6</td>
<td>21.8</td>
</tr>
</tbody>
</table>

20 sets of HLT sounds (20 heartbeat, 20 trachea and 20 lung sound) were recorded from 10 healthy people using one channel (channel #8) of STG system and Clinicloud digital stethoscope for fair comparison purpose. MATLAB program was used for plotting the time waveform of the data collected from STG system and Clinicloud digital stethoscope. Figure S7, S8 and S9 shows the example of HLT sound of a person measured using STG system and digital stethoscope. It was observed that the waveforms in Fig. S7(a), S8(a) and S9(a) has higher signal amplitude and lower noise when compared to Fig. S7(b), S8(b) and S9(b). The average SNR of heartbeat, trachea and lung sound from 10 persons is 23.6 dB, 24.2 dB and 12.1 dB for STG system, respectively. Similarly, a SNR of 16.7 dB, 23.2 dB and 10.4 dB was measured for HLT sounds using Clinicloud digital stethoscope (Table 2). SNR results demonstrated that the STG system has better performance in measuring and recording HLT sound when compared to the commercial device.

The performance of the STG system and digital stethoscope was also evaluated with background sound sources, which include crying, laughing, and speaking. Initially, an STG system’s acoustic sensor (channel 8 which is not embedded in foam pad) was placed in the front of a smartphone speaker that was playing a crying, laughing and speaking sound from YouTube. The same procedure was repeated with a digital stethoscope. The crying sound recorded by STG system (Fig. S10(a1)) and digital stethoscope (Fig. S10(b1)) has a SNR of 16.5 dB and 30.3 dB, respectively. The laughing and speaking sounds recorded by STG system
Identification of abnormalities in lung sounds

Wheeze, crackle and rhonchi are the most common abnormalities in the CCD [35]. Wheeze is a high-pitched adventitious, continuous sound. It is common in several diseases such as COPD, asthma, lung cancer, congestive heart failure. Wheeze has time duration greater than 250 ms and frequency approximately at 400 Hz [36,37]. Crackle is a discontinuous clicking or rattling sound common in patients with pneumonia and congestive heart failure. Crackles has a time duration less than 50 ms and frequency range from 100 Hz to 1600 Hz [38]. Rhonchi is a low-pitched adventitious, continuous sound and can be found in patients with COPD, bronchiectasis, pneumonia, chronic bronchitis and cystic fibrosis. Rhonchi has a time duration greater than 250 ms and frequency approximately at 250 Hz [39].

The traditional stethoscopes cannot provide information on the frequency and time duration of these adventurous sounds but only facilitates the physician/doctor to manually hear these sounds. Therefore, it is very difficult to accurately identify and distinguish wheezes, crackles, and rhonchi as well as origin location using the traditional stethoscopes. However, the developed multi-channel stethograph system was able to find the original location of the adventurous sounds by computerizing the lung sound amplitude as well as provides a visualization with all the information, including amplitude, frequency, count and duration of wheeze, crackles, and rhonchi in the time domain, frequency domain and spectrogram. Figure 6 shows the mother adventurous sound event collected by multi-channel stethograph system. Figure 6 (a1,a2,a3) shows the lung sound with wheeze in the time domain (time duration > 250 ms), frequency domain (prominent frequency at 400 Hz indicating domination of wheeze in the breath) and spectrogram (frequency at 400 Hz and time duration > 250 ms), respectively. Similarly, Fig. 6(b1,b2,b3) and (c1,c2,c3) shows the lung sound with the presence of crackles and rhonchi abnormalities, respectively.

Respiration and heart rate detection algorithms

In addition to abnormalities in lung sounds, heartbeat rate and respiratory rate are other important factors required for CCD monitoring and diagnosis. However, it is difficult to observe or manually identify/measure respiration and heartbeat rate directly from visualized lung sound. To overcome this problem, two dedicated sensors are used along with digital signal processing (DSP) methods for developing algorithms that can automatically measure respiration (inhalation and exhalation) and heartbeat rate which further ease physician/doctor in CCD diagnosis.

Respiration rate detection algorithm

The algorithm for detecting the respiration rate includes three stages consisting of pre-process, signal transformation, and signal analysis (Fig. 7(a)). Typically, respiration rates (inhalation and exhalation) has been detected using lung sound [40-47]. However, lung sounds are relatively small and has noises from heartbeat and blood vessels. Trachea sound is louder when compared to lung sound, contains less noise from the body and thus provides clear respiration patterns [48].

Initially, pre-process stage was required to ensure that all high-frequency and low frequency noise artifacts from environment as well as body were eliminated. This was achieved by employing a bandpass filter (passband of 50 Hz and stopband of 180 Hz) with no time shift in data processing using zero-phase digital filtering technique. Since sound is an oscillating signal with complexed pattern, the parameters of inhalation and exhalation were identified using time expanded waveform analysis and then the signal transformation was performed by segmentation and envelope detection techniques to convert the signal in time waveform to a smooth curve (Fig. 7(c)). This was implemented by moving a hamming window with size 100 (at 8000 samples per second) and 50% overlapping at the absolute value of the trachea signal.

The smooth curve of trachea signal was then analyzed by using threshold, zero-cross, peak detection, and feature extraction techniques (Fig. 7(d)). The threshold detection technique was used for inhalation and exhalation signal extraction. Typically, the amplitude of the recorded sound signals vary from one human subject to another due to numerous factors such as the size of lungs, health condition, age, and gender. Thus, a dynamic threshold for the amplitude was determined empirically, and the best result occurred at 10% of the mean peak value detected by peak detection technique was considered as the threshold of the amplitude. Every cycle with magnitude greater than 10% of the mean peak value of the time waveform was considered to be a breath (can be either inhalation or exhalation) when the threshold is applied. Then each of the breath pattern was extracted using zero-crossing method. Finally, the extracted breath patterns are verified by a set of criteria to improve the accuracy. Respiration rate was mathematically calculated using Eq. 7:

\[
\text{Respiration rate} = \frac{N}{T} \times 60
\]

where \(N\) is number of the breaths that were extracted and \(T\) is the total duration of the trachea sound in seconds. The rising time is longer than decay time in inhalation and shorter in exhalation, and this helps in identifying the inhalation and exhalation patterns.
in the trachea sound [49]. In addition, a peak detection method was used for determining the location of the breath peak and in calculating the rise and decay times for identifying inhalation and exhalation.

- **Heartbeat detection algorithm**

  The algorithm for detecting the heart rate from the recorded heart sound in time waveform was implemented in three stages (pre-process, signal transformation, and signal analysis) and includes techniques such as hamming window, envelop, peak detection and threshold (Fig. 7(b). Figure 7(e) shows the raw data of the heart signal. In preprocess stage, a bandpass filter (passband of 180 Hz and stopband of 300 Hz) with zero-phase digital filtering technique was used to filter unwanted sounds such as breath sound and white noise. In signal transformation stage, a smooth curve of heart signal was generated from its absolute value using a moving Hamming window with size 100 (at 8000 samples per second) and a 50% overlap. Each heartbeat includes a high and short amplitude peak, and a peak detection technique was used for determining the presence of heart sounds irrespective of the amplitude of the heart signal. During signal analysis stage, a dynamic threshold value was obtained by calculating the average of all the peaks with magnitude greater than threshold value was considered to be high peaks. Each high peak represents one heartbeat (Fig. 7(f)). Also, all the peaks are verified by a set of criteria. In addition, heartbeat rate can be calculated based on the duration of the heart signal and the number of high peaks/heartbeats in the signal.

- **Evaluation of algorithms**

  The overall performance of the developed algorithms have been evaluated based on the 40 sets of HLT sound data collected from 10 healthy people with the multi-channel stethograph system. From experimental data, three quantitative results was computed: true positive (TP) when a respiration and heartbeat segment is correctly detected, false negative (FN) when a respiration and heartbeat segment is not detected, and false positive (FP) when a noise signal is detected as either a respiration or heartbeat segment. The performance metrics are show in table 3. The developed algorithm obtained an average sensitivity (SE) of 95% and 92% for the measurement of respiration and heartbeat rate, respectively. High positive predictive value (PPV(%)) was calculated which indicates that no or few noise was detected as a respiration or heartbeat. Therefore, it can be concluded that the developed wireless stethograph system can serve as an effective and efficient tool to physician or doctor to quantify the abnormalities present in the HLT sound.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample</th>
<th>TP</th>
<th>FN</th>
<th>FP</th>
<th>SE(%)</th>
<th>PPV(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration Rate</td>
<td>40</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Heartbeat Rate</td>
<td>40</td>
<td>36</td>
<td>3</td>
<td>1</td>
<td>92</td>
<td>97</td>
</tr>
</tbody>
</table>

### IV. CONCLUSION

A multi-channel stethograph system was successfully developed to record and plot HLT sounds non-invasively through a set of 16 acoustic sensors. It has overcome the limitations of current stethoscope systems and has an advanced signal conditioning board with Wi-Fi communication functionalities for detecting, conditioning and transmitting HLT sounds simultaneously. The recorded audio files and plotted waveforms of the HLT sounds demonstrated the capability of employing the multi-channel stethograph system for visual examination of any abnormal patterns in inhalation and exhalation thus providing information to physicians which helps in analyzing the heart and the lungs condition and diagnosing CCD. The STG system provides various benefits including improved quality of care and clinical productivity through faster testing particularly when X-Rays or CAT scans are to be avoided; increased physician productivity through the immediate display of results vs X-Ray delays; cost savings from decreased use of X-Rays, echocardiographs, and other tests; lower risk of misdiagnosis by the visualization of sound waves, the automated counting of wheezes, crackles and other sounds and through the use of reference materials and sound samples. The future work is focused on performing the clinical studies by coordinating with hospitals and developing the algorithms as well as a graphical user interface (GUI) to automatically correlate the abnormalities in the HLT sounds to CCDs to further aid the physician/doctor in better diagnosis.

### REFERENCES


Angela, K., et al. Use of zonal distribution of lung crackles during inspiration and expiration to assess disease severity in idiopathic pulmonary fibrosis.


Bahrainwala, A. H., Michael, R. S. Wheezing and vocal cord dysfunction mimicking asthma.


Figure 1

Schematic of the multi-channel stethograph system.
Figure 2

(a) Microphone soldered to cable, (b) CNC machined Delrin® casing, (c) Delrin® casing with microphone and diaphragm and (d) multiple acoustic sensors. (e) schematic of the foam pad with acoustic sensors, (f) photograph of the foam pad with acoustic sensors.
Figure 3

(a) The schematic of the single channel on signal conditioning circuit, (b) signal conditioning board with shield cover.
Figure 4

(a) LabVIEW program interface showing the real time sound waveforms, (b) MATLAB program converted digital data to 16 .WAV audio file format, (c) measurement setup
Figure 5

(a) Amplification gain of signal condition circuit. (b) frequency response of signal conditioning circuit, (c) output voltages of the 16 acoustic sensors
Figure 6

Lung sound with wheeze (a1, a2, a3), crackle (b1, b2, b3) and rhonchi (c1, c2, c3) in time domain, frequency domain and spectrogram.
Figure 7

(a) Block diagram of respiration rate detection algorithm, (b) block diagram of heart rate detection algorithm, (c) trachea sound in time domain, (d) processed trachea sound in time domain, (e) heart audio in time domain and (f) processed heart audio in time domain.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarydocument.pdf