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Abstract This paper presents a fixed-time control design for a class of un-
certain under-actuated nonlinear systems (UNS) using a non-singular fast ter-
minal sliding mode control (TSMC) with a radial basis function (RBF) based
estimator to achieve the fast convergence and robustness against the uncertain
disturbances. The generalized mathematical model of the considered class is
first reduced into an equivalent regular form, which is more convenient for any
control synthesis design. A fast TSMC is designed for the transformed reg-
ular form to improve the control performance and annihilate the associated
singularity problem of the conventional TSMC scheme. The steering of sliding
manifold and system states in fixed-time is ensured through the Lyapunov sta-
bility theory. The RBF-based neural networks are used to adaptively estimate
the nonlinear drift functions, which are feedbacked to the control input. The
theoretical design, analysis and simulations of cart-pendulum and quadcopter
systems demonstrate the feasibility and benefits of the regular form trans-
formation and the designed control design. Comparing the proposed control
synthesis with the standard literature presents the attractive nature of the
proposed method for such a class.
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1 Introduction

under-actuated systems are mechanical systems with less dimension of space
spanned by the applied stabilizing inputs than space spanned by the config-
uration variables [6,26]. Because of the low probability of system failure, low
power consumption, and low cost and weight, robust control of under-actuated
mechanical systems is becoming increasingly important in today’s research
community, and they are now regularly used in a number of applications such
as robotics, aerospace vehicles, and marine vehicles. This class also has several
potential applications in locomotive systems, underwater vehicles, surface ves-
sels, robots, satellites, and unmanned aerial vehicles. The stabilization of this
class, however, is a difficult task due to high-order nonholonomic constraints,
the lack of actuators for certain configuration variables, and coupling effects
[28]. A large number of researchers synthesized various advanced nonlinear
control algorithms to provide appealing results as well as closed-loop stability.
Some of these efforts are detailed in this article.

Backstepping, a nonlinear control algorithm, is used to transform the nth
order structure into a new recursive form with n number of subsystems (each
one of relative degree one). This control scheme has generally been used in
recent years for the global stabilization of UNS, such as surface vessel [8],
spacecraft [10] and unmanned aerial vehicle [9]. Unfortunately, as the degree
of freedom of the aforementioned class increases, such a control strategy’s de-
sign procedure becomes incredibly hard. Furthermore, many physical systems
are sensitive to many unknown disturbances, such as external perturbation and
parametric variations, making these approaches challenging to apply practi-
cally.

In the sense of robust nonlinear control algorithms, the sliding mode control
(SMC) has received much interest [22]. In the presence of disturbances, this
strategy will drive the dynamics of UNS to meet the desired target, like the
double-pendulum crane in [13], unmanned aerial vehicle (UAV) in [32], cart-
pendulum system in [21], satellite in [10] and ball and beam system in [5,1].
However, the chattering phenomenon has become more prevalent in UNS be-
cause of the high dynamics coupling and nonlinear solid terms. To circumvent
this shortcoming, various higher-order sliding mode techniques have been used
(see for instance [5,4,2,14]). In controlling UNS dynamics, the control strate-
gies developed in [5,4] produce some very impressive findings. These methods
were fascinating, but due to their asymptotic convergence, the steady-state
error resulted in less accuracy. To eliminate the chattering problem and get
high precision, [12] presented a fast TSMC law. Compared to conventional lin-
ear SMC, this method achieves finite-time convergence and delivers excellent
robustness with high precision. However, the negative fractional powers in its
sliding manifold, this scheme may cause the singularity issue ([30]). There
have been significant research efforts on the finite-time control method for
applications that need a time response constraint, such as robotic manipula-
tors [16], guidance systems [19], and spacecraft [15]. This technique not only
guarantees finite-time enforcement of the system states to the origin, but it
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also assures high precision [17]. However, its disadvantage is that initial condi-
tions require increased values for the kinematic state components, leading to a
longer convergence duration [24]. As a result, an accurate prior estimate of the
settling time can not be made [33]. As the finite time system states converge,
this scheme is closely related to the states’ initial condition; therefore, this law
can not be used in realistic application if the prior initial state conditions are
uncertain. However, the finite-time TSMC’s convergence speed is determined
by the values of initial system states, which leads to a longer stabilization time
when the values of the initial system state are high.

The literature [20] developed fixed-time convergence theory, an extension
of the finite-time convergence theory, to tackle this problem. In comparison
to the finite-time stability, the fixed-time stability possessed optimal stability
within bounded time without knowing the initial conditions. This algorithm
has been widely used in analysis over the last two decades due to its outstand-
ing characteristics. A fast fixed-time non-singular TSMC law was introduced in
[18] to compensate for the chaos in power systems. The control researchers in
[11] proposed a new non-singular fixed-time fast TSMC scheme for the control
of second-order multi-agent systems. The literature [29] developed a novel
fixed-time non-singular TSMC approach to control maneuvering objectives.
A fixed-time robust non-singular TSMC law was proposed in the literature
[3] for the control of uncertain nonlinear systems. For the stability of a sin-
gle cart-pendulum system, another non-singular fixed-time TSMC technique
was introduced in [25]. Nevertheless, these approaches were either limited in
their applicability or had theoretical problems such as chattering, step life,
and poor robustness in the entire operation of system dynamics [7]. Several
neural networks are used in the controller architecture to increase robustness
by estimating the external disturbances and uncertain nonlinearities (see [23]
and references therein).

In this paper, a new non-singular fast TSMC strategy is proposed for the
fixed-time control of uncertain under-actuated nonlinear systems and elimi-
nating the associated singularity problem associated with the classical TSMC
scheme. The main contributions of this work are three-fold. The first one is
transforming the generalized dynamical model of the understudy class of n
degree of freedom into its equivalent control convenient regular form. The
transformed regular form divides the overall dynamical model into two blocks
named directly driven block and indirectly driven block by the applied control
actuator. The second contribution is the employment of RBF-based neural net-
works to estimate the highly nonlinear drift functions, which can suppress the
strong influence of uncertain disturbances. The last contribution is developing
a fixed-time TSMC framework for the transformed regular form to ensure sig-
nificant control characteristics with fast convergence and high precision. The
proposed control synthesis annihilates the singularity issue and ensures min-
imum settling time for any initial state conditions. The step-by-step proof of
fixed-time stabilization of both system states and sliding manifolds is presented
through the Lyapunov stability function. The theoretical analysis and MAT-
LAB simulations of two benchmark examples (cart-pendulum and quadcopter
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systems) demonstrate the feasibility and benefits of the non-singular coordi-
nate transformation, the proposed control synthesis, and RBF-based functions
estimator. The simulations of these benchmarks are compared with the stan-
dard literature to show the proposed control scheme’s attractive nature for
the under-study class. This paper proceeds as follows: The dynamical model
description of the under-study problem and its regular form transformation
are introduced in Section 2. In Section 3, the proposed control technique’s
design procedure is given to control the under-study class. Two benchmark
examples of cart-pendulum and quadcopter, along with detailed discussions of
simulation results, are demonstrated in Section 4. The concluding remarks are
summarized in the last section.

2 Problem Formulation

Consider the following motion equation for any mechanical system in vector
form

J(q)q̈ + Fb(q̇) + Fg(q) + Fc(q, q̇)q̇ = Fe (q)U (1)

where q, q̇ ∈ Rn and U ∈ R are the system states and applied control input,
respectively, Fb(q̇) are the fractional forces, Fg(q) are gravitational forces and
Fc(q, q̇) points to coriolis force/ or centrifugal force (see [26] for more details).
The system in equation (1) can be written in the following family of n under-
actuated systems.

q̈1 = F1 (q, q̇) +G1 (q)U

q̈2 = F2 (q, q̇) +G2 (q)U

...

q̈n = Fn (q, q̇) +Gn (q)U























(2)

Note that a signal control input U is used to control all configuration vari-
ables. For simplicity and without loss of generality, (2) can be presented in the
following comprehensive style.

q̈i = Fi (q, q̇) +Gi (q)U

q̈n = Fn (q, q̇) +Gn (q)U

}

i = 1, 2, ..., n− 1 (3)

Assumption 1 According to the controllability condition, the drift function
Gn is assumed to be a function of the non-zero value for q and t [27].

Remark 1 Since the dynamical model (3) is coupled both in inputs and states.
Therefore, the following non-singular coordinate transformation are presented
to reduce the dynamical model into a control convenient regular form.

yi =qi − ψi(qn, t) and zn = qn
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where qi = ψi(qn, t) is the solution of dqi
dqn

= ∂
∂qn

ψi(qn, t)q̇n = Gi
Gn
. Conse-

quently, the following regular form is achieved.

ẏi = q̇i −
∂

∂qn
ψi(qn, t)q̇n = Fi −

Gi
Gn

Fn

żn = q̇n

ÿi = F̄i (yi, ẏi, zn, żn)

z̈n = F̄n (yi, ẏi, zn, żn) + Ḡn (yi, zn)U



























(4)

The transformed dynamic model (4) can be expressed in the following state
space form.



















ẏi1 = yi2

ẏi2 = F̄i (yi1, zn1, yi2, zn2)

żn1 = zn2

żn2 = F̄n (yi1, zn1, yi2, zn2) + Ḡn (yi1, zn1)U +∆n (yi1, zn1, t)

(5)

where yi1 = yi, yi2 = ẏi, zn1 = zn and zn2 = żn. The yi dynamics are
known as the internal dynamics (which are not directly depend on the ap-
plied control input U) and the zn dynamics are named as the visible dynamics
(that are directly controlled by U). The term ∆ (yi1, zn1, t) (uncertainty of
matched/unmatched nature) is assumed to be less or equal to a positive con-
stant.

Remark 2 The main objective of this work is to investigate a fixed-time control
algorithm that will track the y-dynamics on the desired trajectories while
regulating the z-dynamics to the equilibrium points.

The step-by-step design procedure of the proposed method for the proposed
control problem will be investigated in the next section.

3 Control Law Design

In this section, the step by step control design of RBF neural network estimator
based non-singular TSMC synthesis is presented to enforce both the internal
dynamics yi and visible dynamics zn dynamics of the considered class of under-
actuated electromechanical systems to their equilibrium points in fixed-time.

3.1 Fixed-time TSM control law design

For this purpose, the following error variable is presented to track the actual
internal dynamics at its desired trajectory y⋆i .

ξi =yi1 − y⋆i (6)
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The time derivatives of the error variables ξi can be evaluated as follow

ξ̇i =yi2 − ẏ⋆i

ξ̈i =F̄i (yi1, zn1, yi2, zn2)− ÿ⋆i
...
ξi =

∂F̄i
∂yi1

ẏi1 +
∂F̄i
∂zn1

ż1 +
∂F̄i
∂yi2

ẏi2 +
∂F̄i
∂zn2

ż2 −
...
y ⋆
i

(7)

The fixed-time convergence of yi dynamics can be guaranteed by defining the
following non-singular fast terminal sliding manifold.

$i = ξ̇i + αi|ξi|κi sign(ξi) + βiχi(ξi) (8)

with

χi(ξi) =

{

|ξi|γi sign(ξi), |ξi| ≥ ρi

χ̄i sin(ξi) + ςi|ξi|ǫi sign(ξi), |ξi| < ρi
(9)

where αi > 0, βi > 0 κi = 0.5(µi + 1) + 0.5(µi − 1) sign(|ξi| − 1), γi =

0.5(µi + ηi) + 0.5(µi − ηi) sign(|ξi| − 1), µ > 1, χ̄i =
ηi̺

ηi
i −ǫi̺

ηi
i

̺i cos(̺i)−ǫi sin(̺i)
, ςi =

ηi̺
ηi−1

i −χ̄i cos(̺i)

ǫi̺
ǫi−1

i

, 0 < ρi < 1, 0 < ηi < 1 and 1 < ǫi < 2.

The proposed sliding surface (8) can be expended to following three parts.

$i =















ξ̇i + αi|ξi|µi sign(ξi) + βi|ξi|µi sign(ξi), |ξi| > 1

ξ̇i + αiξi + βi|ξi|ηi sign(ξi), ρi < |ξi| ≤ 1

ξ̇i + αiξi + βi(χ̄i|ξi| sign(ξi) + ςi|ξi|ǫi sign(ξi)), |ξi| ≤ ρi

(10)

Remark 3 Equation (10) ensures the fast convergence rate either the system
states are far from or close to the desired equilibria. In addition, the elimination
of singularity issues associated with conventional TSM is also claimed by the
proposed sliding surface.

Now, the time differentiation of sliding manifold (9) can be evaluated as

$̇i = ξ̈i + αiκi|ξi|κi−1ξ̇i + βiχ̇i(ξi) (11)

with

χ̇i(ξi) =

{

γi|ξi|γi−1ξ̇i, |ξi| ≥ ρi

χ̄i cos(ξi)ξ̇i + ςiǫi|ξi|ǫi−1ξ̇i, |ξi| < ρi
(12)

Note that the achievement of ξ̈i = −$i, in sliding phase, is the primary re-
quirement of this work. Therefore, along the following terminal attractor, the
steering of sliding mode is essential to meet this requirement.

Υi = ξ̈i + $i = F̄i (yi1, zn1, yi2, zn2)− ÿ⋆i + $i (13)

When the sliding mode is enforced then the forthcoming fixed-time stable
second order system will be used to control the zero dynamics of (5). Further-
more, the system states of (5) will achieve the fast convergence in fixed-time,
i.e.,

ξ̈i + ξ̇i + αi|ξi|κi sign(ξi) + βiχi(ξi) = 0 (14)
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In this case, the sliding variable Υi treated as a virtual output in visible dynam-
ics block, and the drift function F̄i is acted as a virtual input to the internal
dynamics block in (44).

Remark 4 If the system relative degree is more significant than one (i.e., the
nonlinear distribution function F̄i in (5) does not include ż), then another
fixed-time terminal attractor will be defined to increase its relative degree and
consequently, ensure the control of dynamics expressed in (14).

Υn = Υ̇i + αn|Υi|κn sign(Υi) + βnχn(Υi) (15)

with

χn(Υi) =

{

|Υi|γn sign(Υi), |Υi| ≥ ρn

χ̄n sin(Υi) + ςn|Υi|ǫn sign(Υi), |Υi| < ρn
(16)

Remark 5 The following reaching law is presented to tackle the associated
chattering issue with conventional SMC.

Υ̇i = −ᾱi|Υi|κ̄i sign(Υi)− β̄i|Υi|γ̄i sign(Υi) (17)

where ᾱi, κ̄i, β̄i and γ̄i are positive controller gains.

The forthcoming theorem details the fixed-time convergence of the under-study
class of UNS.

Theorem 1 Given the dynamical model of UNS as defined in (5) with the
fast terminal attractor expressed in (15) and the reachability law selected in
(17). Then, the following control scheme ensures the fast convergence of sliding
mode, in fixed-time, against the terminal attractor.

U =Ḡ−1
n

( ∂F̄i
∂zn2

−1
(

− ᾱi|Υi|κ̄i sign(Υi)− β̄i|Υi|γ̄i sign(Υi)−
∂F̄i
∂yi1

ẏi1

− ∂F̄i
∂zn1

ż1 −
∂F̄i
∂yi2

ẏi2 +
...
y ⋆
i − $i

)

− F̄n

)

(18)

Consequently, the system states will be enforced to their desired equilibria.

Proof: To prove this theorem, differentiate the given terminal attractor in
(13) along the dynamics of system (5).

Υ̇i =
∂F̄i
∂yi1

ẏi1 +
∂F̄i
∂zn1

ż1 +
∂F̄i
∂yi2

ẏi2 +
∂F̄i
∂zn2

(

F̄n + ḠnU +∆
)

− ...
y ⋆
i + $̇i (19)

The time differentiation of Lyapunov function Λi = 1
2Υ

2
i along (19) can be

evaluated as follows

Λ̇i =Υi

( ∂F̄i
∂yi1

ẏi1 +
∂F̄i
∂zn1

ż1 +
∂F̄i
∂yi2

ẏi2 +
∂F̄i
∂zn2

(

F̄n + ḠnU +∆
)

− ...
y ⋆
i + $̇i

)

(20)
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Therefore, by substituting (18) in (20), one can get the following expression.

Λ̇i =Υi

(

−ᾱi|Υi|κ̄i sign(Υi)− β̄i|Υi|γ̄i sign(Υi) +
∂F̄i
∂zn2

∆

)

(21)

Considering the identity |Υi| = Υi sign(Υi), (21) can be re-written as follows

Λ̇i ≤− ᾱi|Υi|κ̄i+1 − (β̄i + |∆̃|)|Υi|γ̄i+1 ≤ −ᾱi|Υi|κ̄i+1 − β̃i|Υi|γ̄i+1 (22)

where ∆̃ = ∂F̄i
∂zn2

∆
|Υi|γ̄i

. It is worth noting that the above inequality (22) remains

true subject to β̃i ≤ β̄i + |∆̃|. It may also be written as

Λ̇ = −άi|Λ|
κ̄i+1

2 − β́i|Λ|
γ̄i+1

2 (23)

where άi =
√
2ᾱi and β́i =

√
2β̃i.

Thus, the sliding mode establishment, against the fixed-time terminal attrac-
tor, has been proved. The following differential equation for the system (17)
is presented to find its upper bound of convergence time.

Υ̇i =

{

−ᾱi|Υi|µ̄i sign(Υi)− β̄i|Υi|µ̄i sign(Υi), |Υi| > 1

−ᾱiΥi − β̄i|Υi|η̄i sign(Υi), |Υi| ≤ 1
(24)

By solving (24), the upper bound of convergence time can be evaluated as

tr = lim
Υi(0)→∞

(
∫ Υi(0)

1

1

(ᾱi + β̄i)|Υi|µ̄i sign(Υi)
dΥi +

∫ 1

0

1

ᾱiΥi + β̄i|Υi|η̄i sign(Υi)
dΥi

)

<
1

(αi + βi)(µi − 1)
+

1

βi(1− ηi)
ln
(

1 +
αi
βi

)

(25)

Having enforced the sliding mode, the convergence of system states can be
analyzed by considering (8).

$i = ξ̇i + αi|ξi|κi sign(ξi) + βiχi(ξi) = 0 (26)

The time differentiation of the augmented Lyapunov function Λi1 = 1
2ξ

2
i can

be calculated as

Λ̇i1 =ξi (−αi|ξi|κi sign(ξi)− βi|ξi|γi sign(ξi)) = −αi|ξi|κi+1 − βi|ξi|γi+1

=− άi|Λ2|
κi+1

2 − β́i|Λ2|
γi+1

2

(27)

where ὰi =
√
2αi and β̀i =

√
2βi. From (27), the convergence time ts of the

system states, required to drive to their equilibrium points, is bounded by

ts <
1

(ὰi + β̀i)(µ̀i − 1)
+

1

β̀i(1− ὴi)
ln
(

1 +
ὰi

β̀i

)

(28)

Thus, the proof is completed. In this study, the designed fixed-time control law
(18) is used to establish sliding mode against the proposed fixed-time terminal
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attractor (15). Having confirmed sliding mode, Υi −→ 0 will be satisfied.
Consequently, it will confirm the tracking of system outputs on the desired
trajectory in fixed-time, i.e., yi −→ y⋆i . The total convergence time is the
algebraic sum of ts and tr.

In the following subsection, some nonlinear drift functions are estimated
via an advanced neural network method.

3.2 Neuro-adaptive fixed-time TSM control law design

The control input U , developed in theorem 1, requires the estimates of the
highly nonlinear drift functions in feedback. Therefore, a radial basis function-
based neural network is proposed, in this subsection, to estimate these un-
certain functions adaptively. Consequently, it ensures chattering elimination
and robust performance. In this algorithm, the network weight matrices are
adjusted online according to some adaptive control laws developed via the
Lyapunov stability function. Because of these network weights, the estimated
functions adapt and ensure the target data at the running condition. Whenever
there is a new situation in the system, the network will improve its knowledge
to handle this situation. The system states x = [yi1, yi2, zn1, zn2] ∈ R

n are
the network input vector and the estimated functions F̂n, Ĝn are the network
targets. The network output is expressed as follows

F̂n = ŴjF hj(x)

Ĝn = ŴjGhj(x)
(29)

where Ŵj = [Ŵ1, Ŵ2, ... , Ŵl]
T is the network weight matrix and hj(x) =

[h1(x), h2(x), ... , hl(x)]
T is the Gaussian function vector, which is introduced

as follows

hj(x) = exp

(

− (x− cjk)
T (x− cjk)

2b2j

)

(30)

where bj is the width of Gaussian function, k is the network input number,
cjk = [cj1, cj2, ..., cjq]

T is the center vector and j is the number of hidden layer
network nodes. For any e > 0, the following inequality holds.

F̄n =WjF hj(x) + eF (x)

Ḡn =WjGhj(x) + eG(x)
(31)

where

F̃n = F̂n − F̄n = W̃jF hj(x)− eF (x)

G̃n = Ĝn − Ḡn = W̃jGhj(x)− eG(x)

W̃jF = ŴjF −WjF ,
˙̃WjF =

˙̂
WjF

W̃jG = ŴjG −WjG ,
˙̃WjG =

˙̂
WjG

(32)
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and eF , eG are network approximation errors which are bounded over a com-
pact set, i.e., |e(x)| ≤ ξ with ξ > 0 an unknown constant.
Having invoked the proposed network, (18) can be re-designed in the following
form.

U =Ĝ−1
n

(

− F̂n − ∂F̄i
∂zn2

(

− ᾱi|Υi|κ̄i sign(Υi)− β̄i|Υi|γ̄i sign(Υi)

+
∂F̄i
∂yi1

ẏi1 +
∂F̄i
∂zn1

ż1 +
∂F̄i
∂yi2

ẏi2 + ξ̈i + αiκi|ξi|κi−1ξ̇i −
...
y id

+ βiχ̇i(ξi) + αnκn|Υi|κn−1Υ̇i + βnχ̇n(Υi)
))

(33)

Theorem 2 Consider the dynamical model of under-study class (5) along with
the fixed-time terminal sliding manifold (15) and the reachability law (17).
Then, the neuro-adaptive control input developed in (33) guarantees the estab-
lishment of sliding mode in fixed-time.

Proof:The following Lyapunov function is presented to approximate the net-
work weights.

Λ =
1

2
Υ 2
i +

1

2Υ1
W̃T
jF
W̃jF +

1

2Υ2
W̃T
jG
W̃jG (34)

The time differentiation of (34) along (19) can be evaluated as follows

Λ̇ =Υi

( ∂F̄i
∂yi1

ẏi1 +
∂F̄i
∂zn1

ż1 +
∂F̄i
∂yi2

ẏi2 +
∂F̄i
∂zn2

(

F̄n + ĜnU
)

− ∂F̄i
∂zn2

(

G̃nU +∆
)

+ ξ̈i + αiκi|ξi|κi−1ξ̇i −
...
y id + βiχ̇i(ξi)

+ αnκn|Υi|κn−1Υ̇i + βnχ̇n(Υi)
)

+
1

Υ1
W̃T
Fn

˙̂
WFn +

1

Υ2
W̃T
Gn

˙̂
WGn

(35)

Invoking the right side of U(t), one can get

Λ̇ =Υi

(

− ∂F̄i
∂zn2

F̃n − ∂F̄i
∂zn2

(

G̃nU +∆
)

− ᾱi|Υi|κ̄i sign(Υi)

− β̄i|Υi|γ̄i sign(Υi)
)

+
1

Υ1
W̃T
Fn

˙̂
WFn +

1

Υ2
W̃T
Gn

˙̂
WGn

(36)

Taking (31) and (32) into account, (36) becomes

Λ̇ =Υi

( ∂F̄i
∂zn2

∆− ∂F̄i
∂zn2

(

W̃jF hj(x)
)

+
∂F̄i
∂zn2

(eF (x))

− ∂F̄i
∂zn2

(

W̃jGhj(x)
)

U +
∂F̄i
∂zn2

(

eG(x)U
)

− ᾱi|Υi|κ̄i sign(Υi)

− β̄i|Υi|γ̄i sign(Υi)
)

+
1

Υ1
W̃T
Fn

˙̂
WFn +

1

Υ2
W̃T
Gn

˙̂
WGn

(37)
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After considering (29) and (31), one can get

Λ̇ =− ᾱi|Υi|κ̄i+1 − β̄i|Υi|γ̄i+1 + Υi
∂F̄i
∂zn2

(

eF (x) + eG(x)U +∆
)

− Υi

( ∂F̄i
∂zn2

(

W̃jF hj(x)
)

)

− Υi

( ∂F̄i
∂zn2

(

W̃jGhj(x)
)

U
)

+
1

Υ1
W̃T
Fn

˙̂
WFn +

1

Υ2
W̃T
Gn

˙̂
WGn

(38)

From the above (38), the estimated weights are chosen as

˙̂
WFn =ΥiΥ1

(

∂F̄i
∂zn2

(hj(x))

)

˙̂
WGn =ΥiΥ2

(

∂F̄i
∂zn2

(

hj(x)
)

U

) (39)

The elements of ∂F̄i
∂zn2

(eF (x) + eG(x)U +∆) are assumed to be norm bounded

by a positive constant Lc, i.e., ∂F̄i
∂zn2

(eF (x) + eG(x)U +∆) = L ∈ R
n and

|L| < Lc. Thus

Λ̇ =− ᾱi|Υi|κ̄i+1 − β̄i|Υi|γ̄i+1 + ΥiL

≤− ᾱi|Υi|κ̄i+1 −
(

β̄i|Υi|γ̄i − |L|
)

|Υi|
(40)

Now, if the controller gain β̄i is selected such that β̄i|Υi|γ̄i > |L| then (40) can
be written as

Λ̇ ≤− ᾱi|Υi|κ̄i+1 − β̄i|Υi|γ̄i+1 (41)

The approximation errors eF , and eH of the proposed neural network possess
a minimal value. Therefore, it will ensure the fast steering of system state z
to the equilibrium point in fixed-time.

In the next section, the feasibility of the proposed synthesis is verified with
the help of two illustrative examples in the MATLAB environment.

4 Benchmark Examples

The brief introduction of the two highly nonlinear under-actuated systems
(cart-pendulum and quadcopter UAV) as benchmark examples and their fixed-
time TSM control laws are designed and simulated in this section.

4.1 Cart-pendulum system

The cart-pendulum system (shown in figure 1) is presented as a benchmark
example of under-study class of UNS, which have two configuration variables
needed to control by only one control input. The pendulum’s pole freely moves
around the pivot point, while the cart can only travel in the horizontal plane.
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Fig. 1 Cart-pendulum system

4.1.1 Dynamical model description

Consider the following uncertain dynamics of the aforesaid system.















ẍ =
−1

̺(θ)

(

mg cos θsin θ − 4

3
U
)

θ̈ =
1

l̺(θ)

(

(M +m)g sin θ − cos θ U
)

(42)

where U = u+mlθ̇2sin θ, ̺(θ) = 4
3 (M +m)−mcos2θ. The parameter values

of cart-pendulum system are rod length (l) = 0.36 m, cart mass (M) = 2.5 kg,
gravitational acceleration g = 9.81 m/s, rod mass (m) = 0.23 kg and the
moment of inertia J = 0.099 kg.m2. By introducing the following non-singular
coordinate,

ẏ = ẋ+
4l

3 cos θ
θ̇ ⇒ ÿ = ẍ+

4l sin θ

3cos2θ
θ̇2 +

4l

3 cos θ
θ̈ (43)

and invoking ẍ and θ̈ given in (42), the dynamical system becomes

{

ẏ1 = y2, ẏ2 = F̄1(θ1, θ2)tan θ1

θ̇1 = θ2, θ̇2 = F̄2(θ1) + Ḡ2(θ1)U
(44)

where F̄1 = g
̺

((

4
3 − cos2θ1

)

m+ 4
3M

)

+ 4
3

lθ22
cos θ1

, F̄2 = (M+m)g sin θ1
l̺

and Ḡ2 =

− cos θ1
l̺

.

Now, the transformed model (44) is ready for the proposed control design,
which is presented in the next subsection.
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4.1.2 Control design

Now, the control design U will be designed to enforce the pendulum’s pole at
a vertically upright unstable position (θ = 0◦) while steering the translational
cart position at the origin. This law can be developed by defining the mismatch
between the cart actual and reference position.

ξ1 = y1 − yd (45)

The time differentiation of ξ1 is evaluated as follows














ξ̇1 =y2 − ẏd

ξ̈1 =F̃1 (θ1, θ2) tan θ − ÿd
...
ξ 1 =F̄11(θ, θ̇)θ̈ + F̄12(θ, θ̇)θ̇ −

...
y d

(46)

where F̄11(θ, θ̇) =
4
3

2lθ2
cos θ tan θ and F̄12(θ, θ̇) =

∂
∂θ
(F̄1(θ, θ̇)) tan θ+F̄1(θ, θ̇) sec

2 θ

with ∂
∂θ
(F̄1(θ, θ̇)) =

(

2
̺2
mg cos θ sin θ

((

( 43 − cos2 θ)m+ 4
3M

)

− ̺
)

− 4
3
lθ22 sin θ
cos2 θ

)

.
The fast stabilization of y dynamics can be ensured by defining the following
sliding surface.

$1 = ξ̇1 + α1|ξ1|κ1 sign(ξ1) + β1χ1(ξ1) (47)

As, the nonlinear term F̄1 has a positive value for all −π/2 ≤ θ ≤ π/2;
therefore, the virtual input tan θ is used to control the internal dynamics. The
following combination is offered to get this intermediate control.

tan θ − ÿd = −$1 (48)

This can be accomplished by assuming the sliding attractor of the following
form.

Υ1 =tan θ − ÿd + $1 ⇒ Υ̇1 = sec2 θθ̇ − ...
y d + $̇1 (49)

Since control input U does not appear in (49), therefore, another terminal
attractor is presented as follows

Υ2 = Υ̇1 + α2|Υ1|κ2 sign(Υ1) + β2χ2(Υ1) (50)

The reachability law appears as follows

Υ̇2 = −ᾱ2|Υ2|κ̄2 sign(Υ2)− β̄2|Υ2|γ̄2 sign(Υ2) (51)

where ᾱ2, β̄2, κ̄2 = 0.5(µ̄2+1)+0.5(µ̄2− 1) sign(|Υ2| − 1), γ̄2 = 0.5(µ̄2+ η2)+
0.5(µ̄2 − η̄2) sign(|Υ2| − 1), µ̄2 > 1 and 0 < η̄2 < 1 are positive constants.
The final control input can be developed from (50) and (51) as follows

U =
1

Ḡ2(θ1)

( 1

sec2 θ

(

− 2 sec2 θ tan θθ̇ +
....
y d − $̈1 − α2κ2|Υ1|κ2−1Υ̇1

− β2χ̇2(Υ1)− ᾱ2|Υ2|κ̄2 sign(Υ2)− β̄2|Υ2|γ̄2 sign(Υ2)
)

− F̄2(θ1)
)

(52)

Consequently, this will drive the system states to the equilibrium points in
fixed-time.
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Fig. 2 The cart position tracking performance via the proposed control algorithm in com-
parison with standard literature [21]

4.1.3 Result discussion

Now, the designed control law U (52) is simulated in MATLAB/Simulink
environment to verify the applicability of the developed control algorithm.

Figure 2 shows the simulation outcome for the cart location y1. As com-
pared to the results of [21], the proposed control method stabilizes the cart
position at equilibrium in a short time. Figure 3 depicts the pendulum angle
θ1 convergence to its target value. It is apparent from the figure that as com-
pared to the standard result of [21], the pendulum angle is quickly stabilized
at the origin via the proposed control technique and then stays there without
any oscillation. In figure 4, the regulated input is shown. It’s worth mentioning
that the control feedback has a virtually chatter-free structure when executing
the primary tasks. This technique achieves excellent stabilization with reduced
steady-state error and improved robustness in each stage of the control design.
The overall calculations were carried out in the presence of matched uncer-
tainties to verify the robustness of the proposed control scheme. Furthermore,
some unmatched complexities were inserted into the system, which is tackled
in each stage through the virtual control input framework. It’s worth mention-
ing that the newly designed control law is free from high-frequency chattering,
which is highly risky in realistic implementations. In other words, the proposed
algorithm has significantly decreased the unwanted chattering effects.

4.2 Quadcopter UAV

Now, a fixed-time control law is developed for the under-actuated quadcopter
system with the goal of achieving complete flight trajectory control, which is
further subdivided into two subsystems: fully-actuated and under-actuated.
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Fig. 3 The rod angle stabilization performance via the proposed control algorithm in com-
parison with the standard literature [21]

0 5 10 15 20 25 30 35 40
Time (sec)

-50

0

50

100

C
o

n
tr

o
l I

n
p

u
t 

(N
m

)

Control input reported by Riachy et al.
Control input via proposed NSTSMC

Fig. 4 The control input history of the proposed control algorithm in comparison with the
standard literature [21]

Fig. 5 Quadcopter UAV
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4.2.1 Dynamical model description

The quadcopter system (shown in figure figure 5) is typically developed via
either Euler-Newton or Euler-Lagrange equations of motion. The following
dynamical model of the aforesaid system, having twelve (12) configuration
variables, is adopted from [26].

ẍ = bm£xU1

ÿ = bm£yU1

z̈ = bm£zU1 − g

ϕ̈ = Jx1
ϑ̇℧̄+ Jx2

ϑ̇ψ̇ + Jx3
U2

ϑ̈ = Jy1 ϕ̇℧̄+ Jy2 ϕ̇ψ̇ + Jy3U3

ψ̈ = Jz2 ϕ̇ϑ̇+ Jz3U4











































(53)

where £x = sinϕ sinψ + sinϕϑ cos cosψ, £y = cosϕ sinϑ sinψ − sinϕ cosψ,
£z = cosϕ cosϑ, bm = b/m, Jx3

= bl/Ix, Jy3 = bl/Iy, Jz3 = 1/Iz, Jx2
= (Iy−

Iz)/Ix, Jx1
= IR/Ix, Jy2 = (Iz−Ix)/Iy, Jy1 = −IR/Iy and Jz2 = (Ix−Iy)/Iz.

The typical model parameters are the inertia constants (Ix, Iy, Iz, Ir), position
states (x, y, z, ϕ, ϑ, ψ), thrust coefficient (b), arm’s length (l), quadcopter

mass (m) and drag factor (d). The control inputs are U1 =
∑4
i=1 ℧

2
i , U2 =

−℧
2
2 + ℧

2
4, U3 = ℧

2
1 − ℧

2
3, and U4 =

∑4
i=1(−1)i℧2

i . It is evident that control
inputs U2, U3 and U4 derive ϕ, ϑ and ψ angles, respectively, whereas the
control input U1 controls three configuration variables (x, y, z), which is not
an easy task. Therefore, the following coordinates conversion will transform
the original model to a control convenient regular form.

υ = x− Γx, ̺ = y − Γy (54)

Note that Γx = (£x/£z)z and Γy = (£y/£z)z are the solutions of d(Γx)/dz =
£x/£z and d(Γy)/dz = £y/£z.
The time differentiation of (54) can be evaluated in the following form.

υ̇ = ẋ− £x
£z

ż, ϋ = ẍ− £x
£z

z̈

˙̺ = ẏ − £y
£z

ż, ¨̺ = ÿ − £y
£z

z̈

(55)

After invoking ẍ, ÿ and z̈ in (55), the regular form of the quadcopter system
(53) can be achieved as follows

ż1 = z2, ż2 = −g + bm£zU1

ψ̇1 = ψ2, ψ̇2 = Jz2ϑ2ϕ2 + Jz3U4

˙̺1 = ̺2, ˙̺2 = £y/£z = g£̺

ϕ̇1 = ϕ2, ϕ̇2 = Jx2
ψ2ϑ2 + Jx1

℧̄ ϑ2 + Jx3
U2

υ̇1 = υ2, υ̇2 = g£x/£z = g£υ

ϑ̇1 = ϑ2, ϑ̇2 = Jy2ψ2ϕ2 + Jy1℧̄ ϕ2 + Jy3U3











































(56)
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It is evidant that the system (56) have two fully-actuated subsystems (z, ψ)
and two under-actuared subsystems (̺−ϕ, υ−ϑ). Since the internal dynamics
(x and y) are interconnected with ϕ and ϑ-dynamics in practical scenario.
Therefore, these dynamics are indirectly controlled by control inputs U2 and
U3.
Now, the system 56 is ready to design any control system for its stability.

4.2.2 Control design

Now, the complete flight control of the quadcopter UAV (56) is developed
in two-part: fully-actuated and under-actuated. However, for simplicity’s pur-
pose, the detail control design of ψ-dynamics (in case of the fully-actuated
subsystem) and (̺ − ϕ) dynamics (in case of the under-actuated subsystem)
is presented.

Now, to control the ψ-dynamics, the following mismatch is defined.

εψ = ψ1 − ψd (57)

The sliding mode can be enforced against the following fast fixed-time terminal
attractor to get the main tracking objective.

Υψ = ξ̇ψ + αψ|ξψ|κψ sign(ξψ) + βψχψ(ξψ) (58)

The reachability law can be defined as follows

Υ̇ψ =− ᾱψ|Υψ|κ̄ψ sign(Υψ)− β̄ψ|Υψ|γ̄ψ sign(Υψ) (59)

In the light of (58) and (59), the control input U4 can be developed as follows

U4 =
1

Jz3

(

− Jz2ϑ2ϕ2 − ᾱψ|Υψ|κ̄ψ sign(Υψ)− β̄ψ|Υψ|γ̄ψ sign(Υψ) + ψ̈d

− αψκψ|ξψ|κψ−1ξ̇ψ − βψχ̇ψ(ξψ)
)

(60)

Note that the control law (60) along sliding surface (58) will ensure the fast
convergence of ψ-dynamics in fixed-time. Consequently, the mismatch ξψ will
approach to zero in fixed-time [12].

Similarly, the proposed terminal sliding manifold is used to develop the
following control law to control z-dynamics.

U1 =
1

bmcosϑ1cosϕ1

(

g − ᾱz|Υz|κ̄z sign(Υz)− β̄z|Υz|γ̄z sign(Υz)

+ z̈d − αzκz|ξz|κz−1ξ̇z − βzχ̇z(ξz)
)

(61)

Thus, the control design for the fixed-time stabilization of fully-actuated dy-
namics is completed. Now, before proceeding to controller design for the under-
actuated subsystem, the following remark is presented.
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Remark 6 Here, the main objective of the control design is to track υ(t) on the
desired trajectory υd(t) in fixed-time while steering ϑ at the origin. To meet
this objective, the terminal attractor can be established in following form.

$υ =ξ̇υ + α1|ξυ|κ1 sign(ξυ) + β1χ1(ξυ) (62)

along with
g£υ − ϋd = −$υ (63)

and
Υ1 = g£υ − ϋd + $υ (64)

Since, ϑ̇ does not appeared in the first derivative of (64), therefore, the sys-
tem relative degree can be increased by introducing the following hierarchical
manifold.

Υ2 =Υ̇1 + α2|Υ1|κ2 sign(Υ1) + β2χ2(Υ1) (65)

According to remark 5, the reachability law is presented as follows

Υ̇2 = −ᾱ2|Υ2|κ̄2 sign(Υ2)− β̄2|Υ2|γ̄2 sign(Υ2) (66)

where κ̄1υ and κ̄2υ are positive design constants. Following the theorem 1, the
following control input can ensure the sliding mode establishment against the
proposed fixed-time terminal attractor (65).

U3 =
1

Jy3

( −1

g ∂£υ
∂ϑ

(

g
(∂£υ
∂ϕ

ϕ̈+
∂£υ
∂ψ

ψ̈ +
d

dt

(∂£υ
∂ϑ

)

ϑ̇+
d

dt

(∂£υ
∂ϕ

)

ϕ̇+
d

dt

(∂£υ
∂ψ

)

ψ̇
)

− ....
υd + $̈υ + α2(κ2)|Υ1|κ2−1Υ̇1 + β2χ̇2(Υ1) + ᾱ2|Υ2|κ̄2 sign(Υ2)

+ β̄2|Υ2|γ̄2 sign(Υ2)
)

−
(

Jy2ψ2ϕ2 + Jy1℧̄ϕ2

)

)

(67)
When the sliding mode is established, then Υ2 → 0 leads eventually to assure
the tracking error ξυ enforcement to zero in fixed-time.

In similar fashion, the following control scheme can be designed to control
the other under-actuated subsystem (of y and ϕ dynamics).

U2 =
1

Jx3

( −1

g
∂£̺
∂ϕ

(

g
(∂£̺
∂ϑ

ϑ̈+
∂£̺
∂ψ

ψ̈ +
d

dt

(∂£̺
∂ϑ

)

ϑ̇+
d

dt

(∂£̺
∂ϕ

)

ϕ̇+
d

dt

(∂£̺
∂ψ

)

ψ̇
)

− ....
̺d + $̈y + α2(κ2)|Υ1|κ2−1Υ̇1 + β2χ̇2(Υ1) + ᾱ2|Υ2|κ̄2 sign(Υ2)

+ β̄2|Υ2|γ̄2 sign(Υ2)
)

−
(

Jx2
ψ2ϑ2 + Jx1

℧̄ϑ2
)

)

(68)

Remark 7 It is worthy of mentioning that the approximation of nonlinear drift
terms is accomplished via feed-forward neural networks. In simulation, the
words £̺ and £υ should be replaced by respective estimates £̺̂ and £̂υ.

Thus, the discussion on the control of under-actuated subsystems is finished.
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Fig. 6 The tracking performance of x-subsystem via the proposed control law in comparison
with standard literature [31]
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Fig. 7 The tracking performance of y-subsystem via the proposed control law in comparison
with standard literature [31]

4.2.3 Result Discussion

Numerical simulations in the Matlab/ Simulink environment are used to val-
idate the efficacy and supremacy of the proposed control algorithm in terms
of robustness against unknown disturbances ∆ = K∆ sin(2πt) and trajectory
tracking in high precision. In addition, the RBF-based neural network is used
to estimate the nonlinear drift functions of the under-actuated subsystem. The
developed control algorithm simulations are compared to those of a standard
fractional-order SMC scheme (designed in [31]). The model parameters for the
quadcopter that have been used in simulation are as follows: the thrust coef-
ficient is b = 3.13 × 10−5N.s2, the arm length l = 0.23m, the quadcopter’s
mass is m = 0.650 Kg, the inertia coefficients are Jx = Jy = Jz = 7.5× 10−3

kg.m2, the drag coefficients are d = 7.5 × 10−7N.m.s2, and the rotor inertia
coefficient is Jr. For simulation tests, [0 0 0] m and [0 0 0] rad are the initial
values of translational positions and angular orientations. Meanwhile, the trial
and error method is used for the selection of controller gains.
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Fig. 8 The tracking performance of z-subsystem via the proposed control law in comparison
with standard literature [31]
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Fig. 9 Roll angle trajectory performance of the proposed control law in comparison with
standard literature [31]
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Fig. 10 Pitch angle trajectory performance of the proposed control law in comparison with
standard literature [31]

Figure 6-8 shows the tracking performance of the quadcopter system under
the newly configured control algorithm. The proposed controller enforces the
tracking error to zero with a slightly faster-tracking speed than [31]. Mean-
while, figure 9-11 depicts the stabilization of roll, pitch, and yaw angles at
origin, which further assure that the configured flight controller produces a
significantly faster converging response with less overshoot than its counter-
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Fig. 11 Yaw angle trajectory performance of the proposed control law in comparison with
standard literature [31]
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Fig. 12 The time history of control input ω1 produced by the proposed control law

part presented in [31]. In addition, using the designed control method elimi-
nates the problem of high-frequency chattering in conventional sliding modes.
In addition, the time histories of the applied control inputs ω1, ω2, ω3 and ω4

under the proposed control protocol are depicted in figures 13, from which
it is clear that the control inputs are substantially smooth and behave in a
very feasible manner. Furthermore, the configured control scheme with ap-
plied control inputs suppressed unwanted external uncertainties, resulting in
the output tracking error being reduced to zero in a fixed period of time. The
overall theoretical and numerical study of both cart-pendulum and quadcopter
UAV concludes that the newly proposed control method is one of the best can-
didates for controlling the considered class (which can be transformed in its
equivalent regular form).

5 Conclusion

A non-singular fast terminal sliding mode-based neuro-adaptive control syn-
thesis is developed for a class of UNS in this research work. Some non-singular
coordinates are presented to transform the generalized mathematical model
of the considered class to a control convenient regular form to pursue the de-
sign. The drift function estimations via RBF neural network are introduced
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Fig. 13 The time history of control input ω2 produced by the proposed control law
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Fig. 14 The time history of control input ω3 produced by the proposed control law
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Fig. 15 The time history of control input ω4 produced by the proposed control law

to improve the newly configured control system’s robustness. A non-singular
fast TSMC synthesis is devised for the formulated problem, which is free from
the singularity problem and has minimum settling time without knowing the
initial conditions. The fixed-time stability of both system states and sliding
manifolds is ensured with the help of Lyapunov stability theory. The simu-
lation results of quadcopter and cart-pendulum systems under the proposed
control algorithm are compared with their respective standard literature [31]
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and [21] to comprehensively demonstrate the feasibility and benefits of the
proposed synthesis over the existing standard literature.
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Figures

Figure 1

Cart-pendulum system

Figure 2



The cart position tracking performance via the proposed control algorithm in comparison with standard
literature [21]

Figure 3

The rod angle stabilization performance via the proposed control algorithm in comparison with the
standard literature [21]

Figure 4

The control input history of the proposed control algorithm in comparison with the standard literature [21]



Figure 5

Quadcopter UAV

Figure 6

The tracking performance of x-subsystem via the proposed control law in comparison with standard
literature [31]



Figure 7

The tracking performance of y-subsystem via the proposed control law in comparison with standard
literature [31]

Figure 8

The tracking performance of z-subsystem via the proposed control law in comparison with standard
literature [31]



Figure 9

Roll angle trajectory performance of the proposed control law in comparison with standard literature [31]

Figure 10

Pitch angle trajectory performance of the proposed control law in comparison with standard literature [31]



Figure 11

Yaw angle trajectory performance of the proposed control law in comparison with standard literature [31]

Figure 12

The time history of control input ω1 produced by the proposed control law



Figure 13

The time history of control input ω2 produced by the proposed control law

Figure 14

The time history of control input ω3 produced by the proposed control law



Figure 15

The time history of control input ω4 produced by the proposed control law


